亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Wave Functions for Time-Dependent Dirac Equation under GUP?

        2018-05-02 01:51:29MengYaoZhang張夢瑤ChaoYunLong龍超云andZhengWenLong隆正文
        Communications in Theoretical Physics 2018年4期
        關(guān)鍵詞:正文

        Meng-Yao Zhang(張夢瑤),Chao-Yun Long(龍超云), and Zheng-Wen Long(隆正文)

        College of Physics,Guizhou University,Guiyang 550025,China

        1 Introduction

        The study of exactly solvable potentials has attracted much interest since the early development of quantum mechanics because the explicit expressions for the eigenvalues and eigenfunctions give a better insight into the detailed properties of a dynamical system.[1]Apart from time-independent quantum system,the time-dependent quantum problems raised considerable interest since the work of Lewis and Riesenfeld.[2?9]The analytical solutions of the time-dependent Schr?dinger equation are not only of physical importance but also of theoretical interest because their quantum correspondence provides fundamental structure of basic physics and interpretation of new physics in different areas of physics,such as,gravitation,[10]quantum optic,[11?12]the Paul trap[13?15]and spintronics.[16]In the past few decades,an extensive effort has been made to obtain the exact solution of the time-dependent Schr?dinger equation and Dirac equation[17?21]making use of different methods,for example path integral,[22?24]invariant theory,[25?27]unitary transformation approach,[28?29]and Lie-algebraic.[30?31]On the other hand,the modification of the standard Heisenberg algebra has obtained a growing attention recently.[32?40]Such interest was motivated by the investigations in various approaches to Quantum Gravity[41?43]and black hole physics.[44]Within the GUP framework,almost all physical system with a well-defined quantum Hamiltonian is modified,near the Planck scale.In the past few years,a large amount of research work has been devoted to the study of quantum gravitational corrections to various quantum phenomena such as the Landau levels,[45]the Lamb shift,[46]phase shifts,[47]black hole entropy,[48]Hawking temperature,[49]the tunneling current in a scanning tunneling microscope,[50]and quantum phase transitions.[51]

        In spite of a large variety of papers that have been published concerning time-dependent quantum systems and modification quantum systems separately,to the best of our knowledge,few works have been done on the timedependent quantum problems under the GUP.In this paper,we are interested in the time-dependent Dirac equation under the GUP which implies the existence of a minimum measurable length and a maximum measurable momentum.[52?58]It is possible to construct the exact solutions of Dirac equation for some special conditions satis fied by time-dependent potential in(1+1)dimensions.The paper is organized as follows:In Sec.2,the timedependent Dirac equation under the GUP is studied.In Sec.3,we obtain the analytical wave functions for the two kinds special time-dependent potentials in(1+1)dimension.Section 4 is our conclusions.

        2 Time-Dependent Dirac Equation under the GUP

        In the minimal length and maximal momentum formalism,the generalizations of the uncertainty principle is given by[53?58]

        where a is the GUP parameter.According to the standard methods,the above inequality follows from the modified Heisenberg algebra

        It is notice that if the parameter a is taken to be equal to zero,we obtain Heisenberg algebra of usual quantum mechanics.However,the above algebra does not admit of a simple representation in position space.So if we define

        it can be shown that Eq.(2)is satis fied to order a.Here,p0ican be interpreted as the momentum at low energies,and pias that at higher energies.

        Now let us begin with the(1+1)-dimensional Dirac equation with time-dependent potential in the presence of generalized uncertainty principle

        where σxand σzare two 2 × 2 standard Pauli matrices and the subscripts for the terms of potential denote their properties under a Lorentz transformation:V for the time component of the two-vector potential,S and P for the scalar and pseudoscalar terms,respectively.[20]In this way ΨGUPis a two-component spinor.

        Incorporating the GUP corrections,the modified Hamiltonian in Eq.(6)becomes

        where we have used the relation(σxp0x)2=.It is easy to find that the second term and third term will disappear when the GUP is not considered(a=0).The equation(6)will be reduced to the equation considered in literature.[20]We make the more general Ansatz

        where M1(t),M2(t),F1(x,t),and F2(x,t)are four undetermined functions.Substituting Eqs.(7)and(8)into Eq.(6),we have

        where the prime denotes differentiation with respect to x and dot with respect to t.It is worth mentioning that it is also difficult to obtain the analytic solutions of Eq.(9)because of the existence of exponential factor.In order to get rid of exponential factor in the above equations and to get the corresponding exact solutions,we impose that F1=F2,+aF′′+Vv=0,F′?2a2F′′′=0,VS+m=0.Then Eq.(9)becomes

        It is worth noting that due to the M1(t)and M2(t)being independent of x,in order to make Eqs.(10)and(11)hold,the factor Vp(x,t)must be independent of x.From now on,let us suppose that Vp(x,t)is just a function of time Vp(x,t)=Vp(t).Then from above decoupled equations(10)and(11)it is easy to get the following secondorder equations:

        In this work,our main task is to solve Eqs.(12)and(13)for different potential Vp(t).Taking account of Eqs.(12)and(13)having same form,only one equation is considered in this article.It is worth mentioning that in general,it is also difficult to obtain analytic solutions for the Eqs.(12)and(13).In the following section of the article,we will obtain the exact solution for the two special different potential functions Vp(t).

        3 Solution of Time-Dependent Dirac Equation under the GUP

        Case 1

        Now let us take the potential Vp(t)in form

        where θ is a constant.Substituting the expression(14)into Eq.(12)yields following equation

        Introducing new variable s=e?θt,we have

        In new variable,Eq.(15)can be written as

        Above equation is nothing but second order linear differential equation with constant coefficient and the corresponding solution is

        where α =1/θ,A1and A2are two constants.With the help of Eq.(10)we can obtain

        where

        Finally the total wave function can be written as

        It is worth pointing out that so far F(x,t)in solution Ψ(x,t)is an undetermined function of time and position.Now letting F(x,t)=f(t)g(x)and using the precedent assumption condition F′? 2a2F′′′=0,it is straightforward to obtain the expression of function F(x,t)

        Furthermore,from the assumption condition˙F+aF′′+Vv=0,it is also not difficult to find the expression of potential function Vv(x,t):

        In Eq.(22),the divergence of potential function Vv(x,t)can be avoided for a=0 if the undetermined function f(t)is taken as an appropriate function.

        Case 2

        We make the potential Vp(t)being of the following form

        Putting Eq.(23)into Eq.(12),we have the following second-order equation

        The solution of Eq.(24)can be given by the asymptotic iteration method(AIM),which is a powerful method to obtain energy eigenvalues and wave functions.[59?61]AIM is proposed and applied to solve the second-order differential equations of the form

        where the λ0(t)and s0(t)are sufficiently differentiable with respect to t. Based on the asymptotic iteration method,if for sufficiently large n we can obtain

        where

        which are called recurrence relations,the general solution of differential Eq.(24)can be written as

        where C1and C2are two constants.

        Making use of the recurrence relations(27)and(28),it is immediate to find θ(t)= ?1/t for Eq.(24).In consideration of taking proper integral constant,from expression(29)we can get the solution of differential equation(24):

        where c is a constant.It is very easy to prove that result given in Eq.(30)satis fies Eq.(24).With the help of Eq.(10)we can obtain

        Similar to the case 1,for the potential Vp(t)=λ/t,the expression of potential function Vv(x,t)can be written as

        4 Conclusions

        In this work the time-dependent Dirac equation is investigated under generalized uncertainty principle(GUP)framework.It is worth noting that in general,it is difficult to obtain analytic solutions for the time-dependent Dirac equation under the GUP because of the existence of exponential factor in the wave equation.However,it is possible to get rid of the exponential factor and to construct the exact solutions for proper condition satis fied by time-dependent potential.In this work,the analytical wave functions have been obtained for the two special different potential functions Vp(t).In addition the low energy excitations of charge carriers in grapheme are similar to massless relativistic Dirac particles.The grapheme provides a new and unexpected bridge between condensed matter and high-energy physics.[62]So it is also interesting to study the time-dependent Dirac particles in grapheme.

        [1]Y.Bouguerra,A.Bounames,M.Maamache,and Y.Saadi,J.Math.Phys.49(2008)4859.

        [2]G.Fiore and L.Gouba,J.Math.Phys.52(2011)1976.[3]H.R.Lewis,J.Math.Phys.9(1968)1976.

        [4]N.J.Gunther and P.G.L.Leach,J.Math.Phys.18(1977)572.

        [5]M.Kleber,Phys.Rep.236(1994)331.

        [6]C.I.Um,K.H.Yeon,and T.F.George,Phys.Rep.362(2002)63.

        [7]M.Maamache,J.Phys.A 31(1998)6849.

        [8]M.Maamache and H.Bekkar,J.Phys.A 36(2003)L359.

        [9]D.X.Macedo and I.Guedes,J.Math.Phys.53(2012)6224.

        [10]S.A.Fulling,Aspects of Quantum Fields in Curved Space,Cambridge University Press,Cambridge(1982).

        [11]G.S.Agarwal and S.A.Kumar,Phys.Rev.Lett.67(1991)3665.

        [12]H.P.Yuen,Phys.Rev.A 13(1976)2226.

        [13]L.S.Brown,Phys.Rev.Lett.66(1991)527.

        [14]W.Paul,Rev.Mod.Phys.62(1998)531.

        [15]M.Feng,K.Wang,J.Wu,and L.Shi,Phys.Lett.A 230(1997)51.

        [16]X.F.Wang,P.Vasilopoulos,and F.M.Peeters,Phys.Rev.B 65(2002)165217.

        [17]J.Q.Shen,Phys.Rev.A 63(2003)034102.

        [18]M.Maamache and H.Choutri,J.Phys.A 33(2000)6203.

        [19]H.G.Oh,H.R.Lee,T.F.George,and C.I.Um,Phys.Rev.A 39(1989)5515

        [20]A.S.D.Castro and A.D.S.Dutra,Phys.Rev.A 67(2003)785.

        [21]I.Guedes,Phys.Rev.A 68(2003)016102.

        [22]I.Sokmen,Phys.Lett.A 115(1986)249.

        [23]S.N.Storchak,Phys.Lett.A 161(1992)397.

        [24]K.Kaneko,Phys.Rev.C 30(1984)723.

        [25]H.R.Lewis and W.B.Riesenfeld,J.Math.Phys.10(1969)1458.

        [26]X.C.Gao,J.Fu,J.Xu,and X.Zou,Phys.Rev.A 59(1999)55.

        [27]J.Q.Shen,H.Y.Zhu,and P.Chen,Eur.Phys.J.D 23(2003)305.

        [28]M.Maamache,J.Math.Phys.39(1998)161.

        [29]M.A.Lohe,J.Phys.A:Math.Theor.42(2008)035307.[30]C.F.Lo,Eur.Phys.J.B 84(2011)131.

        [31]C.F.Lo,Europhys.Lett.39(1997)263.

        [32]M.I.Samar and V.M.Tkachuk,J.Math.Phys.57(2016)407.

        [33]H.Hassanabadi,S.Zarrinkamar,and E.Maghsoodi,Phys.Lett.B 718(2012)678.

        [34]P.Pedram,K.Nozari,and S.H.Taheri,J.High Energy Phys.1103(2011)093.

        [35]A.F.Ali,M.Faizal,and M.M.Khalil,J.High Energy Phys.1412(2014)159.

        [36]A.F.Ali,M.Faizal,and M.M.Khalil,Nucl.Phys.B 894(2015)341.

        [37]M.Faizal and B.Pourhassan,Phys.Lett.B 751(2015)487.

        [38]J.P.Bruneton and J.Larena,Gen.Relat.Gravit.49(2017)56.

        [39]S.Das,E.C.Vagenas,and A.F.Ali,Phys.Lett.B 690(2010)407.

        [40]S.Das and R.B.Mann,Phys.Lett.B 704(2011)596.

        [41]K.Konishi,G.Paffuti,and P.Provero,Phys.Lett.B 234(1990)276.

        [42]M.Maggiore,Phys.Lett.B 304(1993)65.

        [43]A.Kempf,Phys.Rev.D 54(1996)5174.

        [44]P.Meade and L.Randall,J.High Energy Phys.05(2012)2008.

        [45]A.F.Ali,S.Das,and E.C.Vagenas,Phys.Rev.D 84(2011)741.

        [46]C.H.T.Wang,R.Bingham,and J.T.Mendonca,Am.Inst.Phys.Conf.Ser.1412(2010)203.

        [47]K.C.Littrell,B.E.Allman,and S.A.Werner,Phys.B 241(1997)1219.

        [48]L.Susskind and J.Uglum,Phys.Rev.D 50(1994)2700.

        [49]R.Banerjee,C.Kiefer,and B.R.Majhi,Phys.Rev.D 82(2010)2105.

        [50]S.Das and E.C.Vagenas,Phys.Rev.Lett.101(2008)221301.

        [51]E.Elizalde and S.D.Odintsov,Mod.Phys.Lett.A 8(1992)3325.

        [52]S.Masood,M.Faizal,Z.Zaz,et al.,Phys.Lett.B 763(2009)218.

        [53]S.Deb,S.Das,and E.C.Vagenas,Phys.Lett.B 755(2016)17.

        [54]A.F.Ali,S.Das,and E.C.Vagenas,Phys.Lett.B 678(2009)497.

        [55]H.Hassanabadi,S.Zarrinkamar,and A.A.Rajabi,Phys.Lett.B 718(2013)1111.

        [56]S.Haouat,Phys.Lett.B 729(2014)33.

        [57]A.F.Ali,J.High Energy Phys.2012(2012)1.

        [58]P.Pedram,Phys.Lett.B 702(2011)295.

        [59]H.Ciftci,R.L.Hall,and N.Saad,J.Phys.A 36(2003)11807.

        [60]A.Soylu,O.Bayrak,and I.Boztosun,J.Math.Phys.51(2010)4789.

        [61]H.Ciftci,R.L.Hall,and N.Saad,J.Phys.A 38(2005)1147.

        [62]M.A.H.Vozmediano,M.I.Katsnelson,and F.Guinea,Phys.Rep.496(2010)109.

        猜你喜歡
        正文
        更正聲明
        傳媒論壇(2022年9期)2022-02-17 19:47:54
        更正啟事
        科技論文正文書寫的要求
        科技論文正文書寫的要求
        科技論文正文書寫的要求
        中華醫(yī)學(xué)會(huì)系列雜志對(duì)正文中表的要求
        中華醫(yī)學(xué)會(huì)系列雜志對(duì)正文中圖的要求
        Solution of the Dipoles in Noncommutative Space with Minimal Length?
        戶口本
        正文主體部分之“結(jié)果”
        日本二区三区在线免费| 一区二区在线观看日本免费| 91国语对白在线观看| 亚洲精品456在线播放狼人| 91精品啪在线观九色| 国产精品午夜高潮呻吟久久av| 美女下蹲露大唇无遮挡| 色天使久久综合网天天| 亚洲精品无码久久久影院相关影片| 亚洲午夜精品久久久久久人妖| 人妻人人澡人人添人人爽人人玩| 2022国内精品免费福利视频| 性感人妻一区二区三区| 亚洲天堂av黄色在线观看| 久久精品中文少妇内射| 久久精品国内一区二区三区| 狠狠色综合播放一区二区 | 国产亚洲精品hd网站| 亚洲高清在线视频网站| 亚洲精品一区二区三区四区久久| 亚洲午夜无码毛片av久久| 性裸交a片一区二区三区| a在线观看免费网站大全| 国产精品久久久久孕妇| 国产大学生自拍三级视频| 精品国产一区二区三区性色| 色综合久久精品亚洲国产| 无遮挡边吃摸边吃奶边做 | 黄色网页在线观看一区二区三区| 99久久婷婷国产精品综合网站| 隔壁老王国产在线精品| 国产福利一区二区三区在线观看 | 蜜臀人妻精品一区二区免费| 777精品出轨人妻国产| 大肉大捧一进一出好爽视频mba| 国产尻逼视频| 国产一区二区精品av| 肥老熟女性强欲五十路| 熟妇的荡欲色综合亚洲| 无码伊人66久久大杳蕉网站谷歌| 精品一区2区3区4区|