亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Multi-sensor optimal weighted fusion incremental Kalman smoother

        2018-04-27 06:38:07SUNXiaojunandYANGuangming

        SUN Xiaojun and YAN Guangming

        Electrical Engineering Institute,Heilongjiang University,Harbin 150080,China

        1.Introduction

        Kalman filtering is an important state estimation algorithm.It can solve the filtering problems for the time-varying system with unstable or multidimensional signals.In this perspective,the Kalman filtering algorithm is better than the Wiener filtering algorithm and the modern time series analysis algorithm[1].So far,the Kalman filtering algorithm has been widely applied to many fields such as signal processing and navigation[2,3].However,its disadvantage is that the model parameters and noise statistic of the systems must be exactly known[4].In the practical application process,the influence of the surrounding environment,the error of measurement equipment or improper selection for the model and the parameter always lead to observation system errors[5,6].However,they are difficult to be eliminated by applying the traditional Kalman filtering algorithm[7].Now there have been a series of incremental filtering algorithms.For the linear discrete system under poor observation condition,an incremental Kalman filtering algorithm was presented in[8].Those for the nonlinear systems were given by[9]and[10].The extended incremental Kalman filtering problem and the incremental particle filtering problem were solved respectively.However,the incremental smoother has not been presented.

        The multi-sensor estimation problems are more common in practice.Many different information fusion Kalman filtering algorithms and results have been presented under different information fusion criteria and methods[11].Compared with the centralized fusion algorithm,the weighted measurement fusion algorithm can yield a globally optimal fuser with lower computation burden[12,13].

        In this paper,the detail derivation of an incremental Kalman smoother is given.Furthermore,a weighted measurement fusion incremental Kalman smoother based on the global optimalweighted measurement fusion algorithm is given.The simulation results show its effectiveness and feasibility.

        2.Problem formulation

        Consider the multi-sensor target tracking systems,with the state equation for target motion denoted by

        wherexk∈ Rnis the state at time k,Φk∈ Rn×nis the state transformation matrix,Γk∈Rn×ris the system noise distribution matrix,andwk∈Rris the system noise vector.

        Assumption 1wkis Gauss white noise with zero mean and varianceQk.x0is the initial state for the target,and Cov[wk,wj]=Qkδkj,Cov[x0,wk]=0.

        Suppose the target is observed by N sensors,and the observation equation can be denoted by

        wherezik∈Rmis the observation vector for the ith sensor at time k,∈Rm×nis the observation matrix of the ith sensor at time k,and∈Rmis the observation noise vector of the ith sensor at timek.is a Gauss white noise with zero mean and variance.is the observation system error of the ith sensor at time k.

        Assumption 2Suppose the observation noises are independent of each other at the same time k,as well as those

        at different times,i.

        e,Cov[]=δkl,Cov[wl,]=0 and Cov[x0,]=0.

        The objectives are to find the local and weighted fusion linear minimum variance incremental smoothersandfor the statexk,based on the measurementat time k.

        3.Single sensor incremental Kalman smoother

        Based on (2), the incremental observation equation is given as follows:

        Remark 1In the practical engineering application,the observation system errors ofandare usually close to each other.Thus the system error of Δis comparatively small and can be omitted.

        Furthermore,applying(1)and(3)yields

        In(4),the unknown observation error is eliminated.Equations(1)and(4)contribute to the multi-sensor incremental filtering fusion equations.The minimum performance index for the local incremental Kalman filteris

        Based on(5),the problem is equivalent to computing the following projection

        Using the iterative projection formulation,we have the following iterative relationship

        whereis the Kalman filtering gain.

        Computing the projection for(1)on Lit follows that

        Iterating(1),we find thatxkis a linear combination ofwk-1,...,w0,x0,i.e.,

        From(4),we have the following containment relationship:

        Furthermore,applying assumption 1 and assumption 2 yields

        Applying the projection formula and Ewk=0 yields

        then(9)turns into

        Taking projection for(4),it follows that

        From(11),it is obtained that

        The innovation expression is given as

        Suppose that the filtering error and its variance matrix for statexkare

        withandas the filtering error variance matrix and the one step prediction error variance matrix,i.e.,

        Substituting(4)into(18)yields the innovation expression

        Subtracting(14)from(1),we have the error relationship

        Applying(7),it follows that

        Substituting(22)into(24)yields

        Applying the following relationship:

        From(25),it is obtained that

        Based on(8),it is required to computein order to computeApplying the projection orthogonality,and substituting(1),(22)andintowe haveNote thatit is obtained that

        From(8),(28)and(30),it follows that

        In summary,we have the incremental Kalman filter as follows.

        Theorem 1For the systems(1)and(4)with assumption 1 and assumption2,the iterative Kalman filter is given as

        In practice,the Kalman smoother has important applications,such as the initial velocity estimation problem in launching a guided missile,the initial concentration estimation problem in the chemical reaction process,and the initial velocity estimation problem in launching the artificial satellite into the orbit.

        Theorem 2For the systems(1)and(4)with assumption 1 and assumption 2,the iterative Kalman smoother is given by

        ProofBased on the iterative projection formula,we have the following iterative relationship:

        where the smoothing gain is

        From(22),it is obtained that

        From(28),it follows that

        In a word,the smoothing gainis summed up as computing

        Applying(23)and(25),we have

        Iterating(44)for N times yields the relationship as follows:

        where we define

        withInas an n×n unit matrix.Applying(42)yields

        Note the following relationships:

        and substituting(46)into(48),it follows that

        Using(47),it is obtained that

        Substituting(53)and(43)into(41),we have

        From(40)it is obtained that

        Based on the orthogonality of the projection

        then from(56),it is obtained that

        Substituting(43)into(59),we have

        The proof is completed.

        4.Multi-sensor weighted measurement fusion incremental Kalman smoother

        Applying the augmented method, a centralized fusion measurement equation is contributed as

        Applying the incremental Kalman filtering algorithm similar to that in Theorem 1,we can obtain the centralized fusion incremental Kalman filterand predictorand their error variance matricesandAnd applying the incremental Kalman smoothing algorithm similar to that in Theorem 2,we can obtain the centralized fusion incremental Kalman smootherand its error variance matrix

        The centralized fusion measurement fusion equation(61)can be considered as the measurement model for the statexk.Applying the weighted least squares(WLS)method,we can obtain the WLS estimator as follows:

        Thus the weighted measurement fusion equation is given by

        Substituting(62),(63)and(65)into the above equation and introducing the average measurement fusion yield the following weighted estimator:

        Introduce the average inverse fusion variance matrix as follows:

        and define the average fusion measurement noise as

        Multiplying(70)by 1/N,it follows that and the fusion measurement noise has the variance matrix as

        Remark 2For the same measurement matricesora simplified incremental measurement fusion equation is given by

        Theorem 3For the weighted measurement fusion incremental systems(1)and(74)with assumption 1 and assumption 2,the weighted measurement fusion incremental Kalman filter is given as

        ProofIt is similar to that given by Theorem 1. □

        Theorem 4For the systems(1)and(74)with assumption 1 and assumption 2,the weighted measurement fusion incremental Kalman smoother is given by

        ProofIt is similar to that given by Theorem 2.

        5.Global optimality of the weighted fusion incremental Kalman smoother

        Theorem 5The weighted measurement fusion incremental Kalman filerand predictorfor the multi-sensor weighted fusion incremental systems(1)and(74)has the global optimality,i.e.,it is numerically identical to the centralized fusion incremental Kalman predictorand predictoras

        with the same error variance matrices

        It is only required to take the same initial values

        ProofSee that in[1].

        Theorem 6The weighted measurement fusion incremental Kalman smootherfor the multi-sensor weighted fusion incremental systems(1)and(74)has the global optimality,i.e.,it is numerically identical to the centralized fusion incremental Kalman smootheras

        with the same error variance matrix

        ProofSee that in[1].

        6.Simulation model and result analysis

        Many simulation experiments show that the system errors cannot be eliminated by the traditional Kalman filtering and self-adaptive Kalman filtering when the observation data has unknown errors due to the environments.In this paper,the presented local and weighted fusion incremental Kalman smoothers can eliminate the system error and greatly improve the filtering accuracy.

        Example 1Consider the one dimension discrete system

        wherewkandvkiare the system noise and observation noise at time k,respectively.They both are independent Gauss white noises.The mean and variance forwkare 0 andQk=0.1.The mean and variance forareThey are all known.(i=1,2,3)are unknown observation errors.Suppose=3(i=1,2,3).

        The simulation results are shown in Fig.1 and Table 1.A hundred Monte Carlo runs are carried out and the mean square error(MSE)curves are shown in Fig.1,and the numerical comparison at time k=50 is given in Table 1.They show the accuracy of the proposed weighted fusion incremental Kalman smoothing algorithm,which is effective and feasible.

        Fig.1 MSE curves for the local and weighted fusion incremental smoothers in Example 1

        Table 1 Numerical comparison of MSEs for the local and weighted fusion smoothers at time k=50 in Example 1

        Table 2 Numerical comparison between the proposed estimator and that given in[14]

        Example 2Consider the two dimensions discrete system

        wherewkandare the system noise and observation noise at time k,respectively.They are independent Gauss white noises.The mean and variance forwkare 0 andQk= 10.The mean and variance forare 0 and=0.005,=0.006 5,=0.009 5(i=1,2,3).They are all known.(i=1,2,3)are unknown observation errors.Suppose=3(i=1,2,3).

        The simulation results are shown in Fig.2 and Table 3.A hundred Monte Carlo runs are carried out and the MSE curves are shown by Fig.2,and the numerical comparison at time k=50 is given by Table 3.They show the accuracy of the proposed weighted fusion incremental Kalman smoothing algorithm,which is effective and feasible.

        Fig.2 MSE curves for the local and weighted fusion incremental smoothers in Example 2

        Table 3 Numerical comparison of MSEs for the local and weighted fusion smoothers at time k=50 in Example 2

        7.Conclusions

        In this paper, the incremental measurement equation is presented,which can effectively eliminate the unknown system errors.Based on the incremental observation equation,an incremental Kalman smoother is given,which solves the state estimation problem for the system with unknown systems errors.Moreover,a globally optimal weighed measurement fusion incremental Kalman smoother is also given based on a globally optimal weighted measurement fusion algorithm.The simulation results show its effectiveness and feasibility.

        [1]DENG Z L.Information fusion estimation theory and its application.Beijing:Science Press Ltd,2012.(in Chinese)

        [2]KALMAN R E.A new approach linear filtering and prediction problems.Journal of Basic Engineering(ASME),1960,82D:35–45.

        [3]QINYY,ZHANGHY,WANGSH.Kalman filtering and integrated navigation theory.Xi’an,Shaanxi:Northwestern Polytechnical University,2010.(in Chinese)

        [4]SUN X J,GAO Y,DENG Z L,et al.Multi-model information fusion Kalman filtering and white noise deconvolution.Information Fusion,2010,11:163–173.

        [5]ZHENG G,BEJARANO F J,PERRUQUETTI W,et al.Unknown input observer for linear time-delay systems.Automatica,2015,61:35–43.

        [6]CHAKRABARTY A,AYOUB R,ZAK S H,et al.Delayed unknown input observers for discrete-time linear systems with guaranteed performance.Systems&Control Letters,2017,103:9–15.

        [7]LIU L S,WU B,YANG P.Orbit precision determination&self-calibration technique of spacecraft.Beijing:National Defense Industry Press,2005.(in Chinese)

        [8]FU H M,WU Y Z,LOU T S.Incremental Kalman filter method under poor observation condition.Journal of Mechanical Strength,2012,34(1):43–47.(in Chinese)

        [9]FU H M,LOU T S,WU Y Z.Extended incremental Kalman if lter method under poor observation condition.Journal of Aerospace Power,2012,27(4):777–781.(in Chinese)

        [10]FU H M,LOU T S,WU Y Z.Incremental particle filter method.Journal of Aerospace Power,2013,28(6):1201–1207.(in Chinese)

        [11]HAN C Z,ZHU H Y,DUAN Z S.Multi-source information fusion.Beijing:Tsinghua University Press,2010.(in Chinese)

        [12]SUN X J,YAN G M.Self-tuning weighted measurement fusion white noise deconvolution estimator and its convergence analysis.Digital Signal Processing,2013,23(1):38–48.

        [13]SUN X J,DENG Z L.Self-tuning weighted measurement fusion white noise deconvolution estimator.Journal of Electronics(China),2010,27(1):51–59.

        [14]MA L L,ZHANG M,CHEN J G.Multi-sensor centralized incremental Kalman filtering fusion algorithm.Computer Engineering and Application,2014,50(11):229–232.(in Chinese)

        蜜桃免费一区二区三区| 欧美成人免费看片一区| 亚洲中文字幕黄色小视频| 亚洲天堂亚洲天堂亚洲色图| 粗大的内捧猛烈进出少妇| 男女性高爱潮免费观看| 亚洲欧洲一区二区三区波多野| 国产一区二区三区在线观看黄 | 精品香蕉久久久午夜福利| 欧美日韩国产高清| 狼人精品剧情av在线观看| 国模精品一区二区三区| 内射后入在线观看一区| 人妻中文字幕av有码在线| 国产精品大片一区二区三区四区| 久久精品国产久精国产果冻传媒| 亚洲h视频| 男女羞羞的视频免费网站| 一区二区三区人妻少妇| 国产真人性做爰久久网站| 亚洲日韩中文字幕在线播放 | 99精品国产一区二区三区a片| 麻豆五月婷婷| 成人亚洲av网站在线看| 在厨房被c到高潮a毛片奶水| 最近中文字幕完整版| 91精品亚洲一区二区三区| 成人久久久精品乱码一区二区三区 | 国产特级毛片aaaaaa高潮流水| 欧美日韩中文国产一区发布| 色婷婷狠狠97成为人免费| av影片手机在线观看免费网址| 亚洲图片日本视频免费| 性导航app精品视频| 国产情侣自拍偷拍精品| 男人扒开女人双腿猛进视频 | 亚洲AV无码久久精品成人| 国产高清女主播在线观看| 四川丰满妇女毛片四川话 | 成年视频网站在线观看777 | 91九色国产在线观看|