劉小鋒,馮志敏*,陳躍華,張 剛,李宏偉
(1.寧波大學(xué)海運學(xué)院,浙江 寧波 315211;2.寧波杉工智能安全科技股份有限公司,浙江 寧波 315100)
近年來,我國跨海、跨江大橋持續(xù)建設(shè),高速公路網(wǎng)絡(luò)體系逐步完善,然而車輛超限超載現(xiàn)象十分嚴(yán)重,對公路橋梁壽命造成影響,交通事故屢有發(fā)生,給人們生命財產(chǎn)和橋梁安全帶來極大危害。車輛動態(tài)稱重系統(tǒng)是快速檢測超載車輛的一種有效方法,基于壓電薄膜檢測的車輛動態(tài)稱重方法在工程上得到廣泛應(yīng)用[1-4],其中檢測信號處理中徑向基函數(shù)RBF(Radical Basis Function)神經(jīng)網(wǎng)絡(luò)算法對于提高車輛動態(tài)稱重精度相當(dāng)重要,受到學(xué)者廣泛關(guān)注。RBF神經(jīng)網(wǎng)絡(luò)隱含層節(jié)點數(shù)、徑向基函數(shù)中心、徑向基函數(shù)寬度、連接權(quán)值等均影響著網(wǎng)絡(luò)精度,大都通過K均值、模糊C均值、蟻群等聚類算法確定相關(guān)參數(shù)[5-7],提高了RBF神經(jīng)網(wǎng)絡(luò)精度。Frey[8]等人提出AP(Affinity Propagation)聚類算法,較其他聚類算法,不需事先設(shè)定聚類數(shù)和對聚類中心作初始化選擇,可快速處理大規(guī)模數(shù)據(jù)。AP算法的偏向參數(shù)決定聚類數(shù)目,通常以相似度矩陣中值法、粒子群法、密度法等算法加以確定[9-11],一定程度上提高了AP算法聚類精度。但是,如何尋求一種確定偏向參數(shù)的優(yōu)化算法以進(jìn)一步提高RBF神經(jīng)網(wǎng)絡(luò)精度還需研究;另外,RBF神經(jīng)網(wǎng)絡(luò)訓(xùn)練完成后,由于連接權(quán)值固定不變,則RBF神經(jīng)網(wǎng)絡(luò)將難以對每一測試樣本均達(dá)到較高精度。為使連接權(quán)值能自適應(yīng)調(diào)整,遞推最小二乘法、基于Lyapunov理論法已應(yīng)用于RBF神經(jīng)網(wǎng)絡(luò)[12-13],其分別在網(wǎng)絡(luò)結(jié)構(gòu)確定、設(shè)計特定自適應(yīng)控制律條件下取得較好效果,因此,RBF神經(jīng)網(wǎng)絡(luò)連接權(quán)值自適應(yīng)調(diào)整算法仍需作進(jìn)一步研究。
本文提出取相似度矩陣中值2倍為偏向參數(shù)初始值,按一定步長迭代增加偏向參數(shù),以RBF神經(jīng)網(wǎng)絡(luò)測試誤差為評價指標(biāo)最終確定偏向參數(shù)的改進(jìn)算法;提出將測試樣本歸類至經(jīng)AP算法聚類后的訓(xùn)練樣本集,在測試樣本所在類集中,選取兩個與測試樣本至類代表點距離相差最小的訓(xùn)練樣本,根據(jù)其實際連接權(quán)值,插值計算測試樣本連接權(quán)值,實現(xiàn)連接權(quán)值的自適應(yīng)調(diào)整;并且對該改進(jìn)算法進(jìn)行3種車型的工程實測試驗,在車速10 km/h~50 km/h,溫度16 ℃~29 ℃時,構(gòu)建RBF神經(jīng)網(wǎng)絡(luò)車輛動態(tài)稱重模型,對其進(jìn)行500次循環(huán)測試,稱重誤差均值均控制在0.06%以內(nèi),最大實時性均值為0.022 3,網(wǎng)絡(luò)結(jié)構(gòu)簡單、可靠。該算法適合交通和海洋工程結(jié)構(gòu)振動信號的檢測應(yīng)用。
設(shè)數(shù)據(jù)集X={xi,i=1,2,…,n},AP算法[8]將X中各數(shù)據(jù)點間負(fù)歐式距離平方稱為相似度,即s(i,k)=-‖xi-xk‖2,取所有相似度構(gòu)成n×n的相似度矩陣S,并將對角線元素s(k,k)稱為偏向參數(shù)p,p越大,xk被選作類代表點的幾率就越大,相應(yīng)聚類數(shù)也就越多。由于每個數(shù)據(jù)點都有可能成為類代表點,故AP算法將p設(shè)為同一值,一般常取p為相似度矩陣中值。另外,AP算法又定義r(i,k)和a(i,k)兩個信息量參數(shù),分別代表不同競爭目的。其中,r(i,k)是從xi向xk發(fā)送消息,表示xk作為類代表點時對xi的吸引度,而a(i,k)是從xk向xi發(fā)送消息,表示xi選擇xk作為類代表點時對xk的歸屬度。顯然,r(i,k)與a(i,k)之和越大,xk被選作類代表點的幾率就越大。
AP算法以相似度矩陣S和偏向參數(shù)p作為輸入,對r(i,k)、a(i,k)進(jìn)行迭代運算,當(dāng)出現(xiàn)r(k,k)+a(k,k)>0時,則將xk視為一個類代表點。取a(i,k)初始值為0,按式(1)計算r(i,k),即
(1)
按式(2)計算a(i,k),即
(2)
按式(3)計算a(k,k),即
(3)
當(dāng)?shù)^1 000次或經(jīng)連續(xù)50次迭代類代表點都不發(fā)生改變時,則迭代終止,聚類結(jié)束。
RBF神經(jīng)網(wǎng)絡(luò)為一種前饋型網(wǎng)絡(luò),僅由輸入層、隱含層、輸出層三層組成[14],結(jié)構(gòu)如圖1所示。
圖1 RBF神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖
圖1中,xi=(xi1,xi2,…,xil)T為輸入向量,其中i=1,2,…,n,n為輸入向量個數(shù)、φ(‖xi-cj‖)為隱含層節(jié)點激活函數(shù),其中j=1,2,…,r,r為隱含層節(jié)點數(shù)、W∈Rr×m為隱含層與輸出層間權(quán)值矩陣、∑為輸出層節(jié)點激活函數(shù)、yi=(yi1,yi2,…,yim)T為輸出向量。
輸出層各節(jié)點的輸出表達(dá)式為:
(4)
式中:φ(‖xi-cj‖)一般采用高斯基函數(shù),即
(5)
式中:cj為隱含層第j個節(jié)點中心,‖·‖為歐式距離,δj為第j個高斯基函數(shù)寬度。
設(shè)理想輸出向量為oi,取誤差函數(shù)
(6)
為性能指標(biāo),利用梯度下降或最小二乘法計算連接權(quán)值,以完成RBF神經(jīng)網(wǎng)絡(luò)訓(xùn)練。
AP算法應(yīng)用于RBF神經(jīng)網(wǎng)絡(luò),主要用來求取隱含層相關(guān)參數(shù)[15],以確定RBF神經(jīng)網(wǎng)絡(luò)內(nèi)部結(jié)構(gòu)。隱含層相關(guān)參數(shù)的求取過程一般如下:
①對訓(xùn)練樣本集X={xi,i=1,2,…,n}、xi∈Rl按式(7)進(jìn)行歸一化[16],得
(7)
②利用AP算法對X′中樣本進(jìn)行聚類,若共產(chǎn)生r個類代表點cj,j=1,2,…,r,則取隱含層節(jié)點數(shù)為r、隱含層各節(jié)點中心分別為c1、c2、…、cr。
③由隱含層各節(jié)點中心,按式(8)計算高斯基函數(shù)寬度,即
(8)
根據(jù)隱含層相關(guān)參數(shù)以及輸入、輸出向量,構(gòu)建RBF神經(jīng)網(wǎng)絡(luò),最后再對RBF神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練、測試。
對于RBF神經(jīng)網(wǎng)絡(luò)隱含層節(jié)點數(shù),過少會降低網(wǎng)絡(luò)泛化力,而過多又將導(dǎo)致網(wǎng)絡(luò)過擬合[17]。由于AP算法中偏向參數(shù)p決定聚類數(shù),故p值大小必將影響RBF神經(jīng)網(wǎng)絡(luò)精度。以往常取p為相似度矩陣中值,但可能會造成隱含層節(jié)點數(shù)取得不夠合理,從而使RBF神經(jīng)網(wǎng)絡(luò)精度降低。因此,可以RBF神經(jīng)網(wǎng)絡(luò)測試精度為評價標(biāo)準(zhǔn),確定偏向參數(shù)。
偏向參數(shù)p為負(fù)值,其值越小,聚類數(shù)就越少,而當(dāng)p取相似度矩陣中值2倍時,聚類數(shù)已很少。因此,可以在p為負(fù)值的條件下,從2倍相似度矩陣中值開始,迭代增加p值,取RBF神經(jīng)網(wǎng)絡(luò)測試誤差達(dá)最小值時對應(yīng)p值作為偏向參數(shù)。偏向參數(shù)的確定流程如下:
①設(shè)步長為λ,取p的初始值p0為相似度矩陣中值2倍,按式(9)迭代增加p值,即
pi+1=pi+λ,i=0,1,…,ξ
(9)
式中:ξ為p增加的最大次數(shù)。
②對各p值下的RBF神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練測試,按式(10)分別計算每次測試的RBF神經(jīng)網(wǎng)絡(luò)誤差,即
(10)
式中:z為測試樣本個數(shù)。
③若序列{ei}在eκ處取最小值,則取偏向參數(shù)為
p=pκ
(11)
步長λ的大小會影響p值,若過大,可能會錯過最優(yōu)p值選取。因此,為取到合適的p值,則在反復(fù)試驗基礎(chǔ)上,選取步長λ=0.001。偏向參數(shù)的尋優(yōu)流程框圖如圖2所示。
由于以RBF神經(jīng)網(wǎng)絡(luò)測試誤差為評價指標(biāo),按一定步長,迭代增加p值確定偏向參數(shù),故使得RBF神經(jīng)網(wǎng)絡(luò)能取到合適的隱含層節(jié)點數(shù),從而達(dá)到較高精度。
圖2 偏向參數(shù)的尋優(yōu)流程圖
用AP算法對訓(xùn)練樣本聚類后,將測試樣本歸至某一類訓(xùn)練樣本集。由于在該類集中必存在兩個與測試樣本至類代表點間距離相差最小的訓(xùn)練樣本,則由高斯基函數(shù)特性可知,這兩個訓(xùn)練樣本與測試樣本的隱含層輸出值相差會較小,且它們在該類隱節(jié)點處輸出值要遠(yuǎn)大于其他隱節(jié)點處輸出值,因此可將其他隱節(jié)點處輸出值全部置0。根據(jù)這兩個訓(xùn)練樣本在該類隱節(jié)點處實際連接權(quán)值,利用插值法計算測試樣本在該類隱節(jié)點處連接權(quán)值,進(jìn)而實現(xiàn)連接權(quán)值隨測試樣本的自適應(yīng)調(diào)整。
算法具體運行過程如下:
①用AP算法對訓(xùn)練樣本聚類,由聚類結(jié)果確定RBF神經(jīng)網(wǎng)絡(luò)相關(guān)參數(shù),構(gòu)建并訓(xùn)練RBF神經(jīng)網(wǎng)絡(luò)。
(12)
(13)
(14)
(15)
(16)
即
(17)
(18)
圖3 連接權(quán)值自適應(yīng)調(diào)整算法流程圖
連接權(quán)值自適應(yīng)調(diào)整算法流程框圖如圖3所示。通過對測試樣本利用歸類插值法,使連接權(quán)值隨測試樣本改變而自適應(yīng)調(diào)整,避免有些測試樣本因連接權(quán)值固定而產(chǎn)生較大輸出誤差,因此RBF神經(jīng)網(wǎng)絡(luò)精度將得到進(jìn)一步提高。
在跨海大橋公路連接線的試驗場地上,均勻布置兩條壓電薄膜傳感檢測系統(tǒng),對車輛動態(tài)情況下的稱重系統(tǒng)進(jìn)行工程實測試驗。
試驗車輛:選取三軸貨車、四軸貨車和六軸罐車等3種車型,共5種不同載荷。
試驗條件:溫度范圍為16 ℃~29 ℃,車速范圍為10 km/h~50 km/h。
試驗前,分別對各試驗車輛進(jìn)行標(biāo)定以獲得它們的實際車重。試驗共采集數(shù)據(jù)187組,具體數(shù)據(jù)如表1所示。
表1 試驗基礎(chǔ)數(shù)據(jù)
一輛重為32.02 t的四軸貨車駛過一條壓電薄膜傳感器,其產(chǎn)生的壓電信號波形如圖4所示。
圖4 32.02 t四軸貨車壓電信號波形
受許多干擾因素的影響,壓電信號中會含有大量噪聲。以往學(xué)者在對壓電信號進(jìn)行降噪處理后,大都再通過經(jīng)驗公式[2-4]
G=KAV
(19)
計算車重。其中,G為車重值、A為壓電信號各波形面積之和、V為車速、K為標(biāo)定常數(shù)。由于此公式并未對溫度、車速、車型等進(jìn)行相應(yīng)補(bǔ)償,故導(dǎo)致車輛動態(tài)稱重精度不高。因此,為提高車輛動態(tài)稱重精度,且避開復(fù)雜的數(shù)學(xué)建模,則利用RBF神經(jīng)網(wǎng)絡(luò)構(gòu)建車輛動態(tài)稱重模型。
設(shè)兩條壓電薄膜傳感器的壓電信號各波形面積之和分別為A1和A2、傳感器所處環(huán)境溫度為T、車軸數(shù)為n。由式(19)可知,車重值G與AV成比例關(guān)系,則可將AV直接作為RBF神經(jīng)網(wǎng)絡(luò)輸入向量的一個元素。為對兩條壓電薄膜傳感器測量結(jié)果進(jìn)行融合,且考慮溫度、車型影響,則取A1V、A2V、T、n作為輸入向量。由于最終測量結(jié)果為車重值,故僅取G作為輸出向量。根據(jù)輸入、輸出向量,構(gòu)建車輛動態(tài)稱重RBF神經(jīng)網(wǎng)絡(luò)模型,如圖5所示。
圖5 車輛動態(tài)稱重RBF神經(jīng)網(wǎng)絡(luò)模型
對187組試驗數(shù)據(jù),分別從各車輛試驗數(shù)據(jù)中隨機(jī)選取85%作為訓(xùn)練樣本,剩余15%作為測試樣本,構(gòu)建基于AP聚類RBF神經(jīng)網(wǎng)絡(luò)車輛動態(tài)稱重模型,并對其進(jìn)行訓(xùn)練測試。其中,運算環(huán)境:CPU主頻為2.30 GHz,2 Gbyte內(nèi)存,Windows 7 32位操作系統(tǒng),軟件為MATLAB R2012a。
首先取p為相似度矩陣中值,得p=-0.386 5,則原算法的測試結(jié)果如圖6所示。其次取p的初始值p0=-0.773,按步長λ=0.001,迭代增加p值,使得RBF神經(jīng)網(wǎng)絡(luò)測試誤差為最小值時的p=-0.015,則偏向參數(shù)尋優(yōu)算法的測試結(jié)果如圖7所示。
圖6 原算法的測試結(jié)果
圖7 偏向參數(shù)尋優(yōu)算法的測試結(jié)果
由圖6、圖7可看出,當(dāng)p=-0.386 5時,32.02 t四軸貨車的測試輸出與實際輸出之間存在較大差異,而當(dāng)p=-0.015時,差異度得到有效抑制,說明通過對偏向參數(shù)的尋優(yōu),提高了RBF神經(jīng)網(wǎng)絡(luò)精度。表2分別列出了當(dāng)p=-0.386 5和p=-0.015時,32.02 t四軸貨車的測試結(jié)果(稱重誤差均取絕對值)。表中可見,當(dāng)p=-0.386 5時,最大稱重誤差為21.533 2%,而當(dāng)p=-0.015時,最大稱重誤差為5.346 3%,較原算法減小4.03倍。
表2 32.02 t四軸貨車測試結(jié)果
利用連接權(quán)值自適應(yīng)算法對原算法進(jìn)行改進(jìn),其中偏向參數(shù)仍取相似度矩陣中值,測試結(jié)果如圖8所示。由圖8可見,測試輸出與實際輸出幾乎完全重合,說明連接權(quán)值經(jīng)自適應(yīng)調(diào)整后,RBF神經(jīng)網(wǎng)絡(luò)精度得到顯著提高。
圖8 連接權(quán)值自適應(yīng)調(diào)整測試結(jié)果
表3列出了此時32.02 t四軸貨車的測試結(jié)果,最大稱重誤差僅為0.269 6%,較原算法減小79.87倍。
連接權(quán)值經(jīng)自適應(yīng)調(diào)整后,若再對偏向參數(shù)進(jìn)行尋優(yōu),得p=-0.46,測試結(jié)果如圖9所示。
由圖9可見,圖9與圖8幾乎完全相同,且此時32.02 t四軸貨車的最大稱重誤差為0.057 1%,說明RBF神經(jīng)網(wǎng)絡(luò)經(jīng)連接權(quán)值自適應(yīng)調(diào)整后,精度已達(dá)到很高,而偏向參數(shù)的尋優(yōu)又使精度得到進(jìn)一步提高。
圖9 連接權(quán)值自適應(yīng)調(diào)整且偏向參數(shù)尋優(yōu)的測試結(jié)果
為綜合比較上述4種情況下RBF神經(jīng)網(wǎng)絡(luò)的精度、結(jié)構(gòu)復(fù)雜度、訓(xùn)練速度、測試速度,則分別將它們的稱重誤差均值、隱含層節(jié)點數(shù)、訓(xùn)練時間、測試時間列于表4。
表3 32.02 t四軸貨車測試結(jié)果(連接權(quán)值自適應(yīng)調(diào)整)
表4 4種情況下的RBF神經(jīng)網(wǎng)絡(luò)測試結(jié)果
由表4可見,在對原算法改進(jìn)中,連接權(quán)值自適應(yīng)對RBF神經(jīng)網(wǎng)絡(luò)精度提高貢獻(xiàn)最大,較原算法提高88.63倍,且網(wǎng)絡(luò)結(jié)構(gòu)也較簡單,訓(xùn)練時間與原算法相同,但因需對測試樣本歸類插值求取連接權(quán)值,故測試時間較原算法增加0.026 9 s;若對原算法只進(jìn)行偏向參數(shù)尋優(yōu),雖然RBF神經(jīng)網(wǎng)絡(luò)精度提高2.36倍,但隱含層節(jié)點數(shù)卻為原算法3倍,導(dǎo)致網(wǎng)絡(luò)結(jié)構(gòu)變得復(fù)雜、測試時間較原算法增加0.000 1 s。同時,因進(jìn)行偏向參數(shù)尋優(yōu)逐次迭代,而致使訓(xùn)練時間增加;若對原算法進(jìn)行連接權(quán)值自適應(yīng)調(diào)整后,再作偏向參數(shù)尋優(yōu),則RBF神經(jīng)網(wǎng)絡(luò)精度達(dá)到最高,結(jié)構(gòu)最簡單,測試時間仍比連接權(quán)值自適應(yīng)算法減小0.000 2 s。
由于神經(jīng)網(wǎng)絡(luò)訓(xùn)練完成后,是以一個固定函數(shù)模型進(jìn)行輸入、輸出映射,故訓(xùn)練時間長短對網(wǎng)絡(luò)輸出實時性并無影響。本試驗中,兩條壓電薄膜傳感器間距為2.4 m,車速檢測范圍為10 km/h~200 km/h。因此,為驗證網(wǎng)絡(luò)在該試驗中實時性,則提出如下實時性指標(biāo)
τ=t1/t2
(20)
式中:t1為單個測試樣本的測試時間、t2為車輛通過兩條傳感器的時間。為滿足實時性要求,τ應(yīng)小于1。
由于表4中的測試時間為28個測試樣本總共所用時間,故單個測試樣本的測試時間應(yīng)為原來1/28倍。根據(jù)最高檢測車速和表4中最大測試時間,計算得到t1max=0.000 975 s、t2min=0.043 2 s,則最大實時性指標(biāo)值為
(21)
因此,RBF神經(jīng)網(wǎng)絡(luò)在改進(jìn)前后均能很好滿足實時性要求。
利用偏向參數(shù)尋優(yōu)和連接權(quán)值自適應(yīng)算法,按上述樣本隨機(jī)選取方法,對187組試驗數(shù)據(jù)進(jìn)行500次循環(huán)測試,并計算每次循環(huán)測試的稱重誤差均值,結(jié)果如圖10所示。
圖10 AP聚類RBF神經(jīng)網(wǎng)絡(luò)改進(jìn)算法循環(huán)測試
由圖10可見,大多稱重誤差均值均在0.06%以內(nèi),其中有82.6%的稱重誤差均值低于0.01%。在500次循環(huán)測試中,RBF神經(jīng)網(wǎng)絡(luò)隱含層節(jié)點數(shù)為8個~10個、單個測試樣本網(wǎng)絡(luò)測試時間均值為0.000 964 s,對應(yīng)最大實時性指標(biāo)值為0.022 3。由此可知,基于AP聚類RBF神經(jīng)網(wǎng)絡(luò)改進(jìn)算法具有很高的精度及實時性,網(wǎng)絡(luò)結(jié)構(gòu)簡單、可靠。
根據(jù)基于AP聚類RBF神經(jīng)網(wǎng)絡(luò)算法研究和試驗結(jié)果分析,得到以下結(jié)論:
①按一定步長,迭代增加偏向參數(shù),以RBF神經(jīng)網(wǎng)絡(luò)測試誤差為評價指標(biāo),最終確定偏向參數(shù),使RBF神經(jīng)網(wǎng)絡(luò)取到較合適的隱含層節(jié)點數(shù),精度較原算法提高2倍以上。
②對測試樣本利用歸類插值法,使RBF神經(jīng)網(wǎng)絡(luò)連接權(quán)值隨測試樣本改變而自適應(yīng)調(diào)整,精度較原算法提高80倍以上。
③將基于AP聚類的RBF神經(jīng)網(wǎng)絡(luò)改進(jìn)算法應(yīng)用于車輛動態(tài)稱重系統(tǒng),稱重誤差均值均控制在0.06%以內(nèi),最大實時性均值為0.022 3,且網(wǎng)絡(luò)結(jié)構(gòu)簡單、可靠。該方法能有效滿足車輛快速振動檢測要求,對海洋工程結(jié)構(gòu)振動信號檢測和數(shù)據(jù)融合計算也具有重要的應(yīng)用價值。
[1] 馬賓,隋青美. 基于光纖微彎傳感器的汽車動態(tài)稱重系統(tǒng)設(shè)計[J]. 傳感技術(shù)學(xué)報,2010,23(8):1195-1200.
[2] 李紅杰. 汽車動態(tài)稱重信號采集與處理方法的研究[D]. 武漢:中國地質(zhì)大學(xué),2012.
[3] 孫秀雅. 基于壓電薄膜軸傳感器的動態(tài)稱重系統(tǒng)的研發(fā)[D]. 合肥:合肥工業(yè)大學(xué),2014.
[4] 黃必飛,馮志敏,張剛,等. 壓電薄膜車輛動態(tài)稱重系統(tǒng)算法研究[J]. 傳感技術(shù)學(xué)報,2016,29(6):941-946.
[5] 管碩,高軍偉,張彬,等. 基于K-均值聚類算法RBF神經(jīng)網(wǎng)絡(luò)交通流預(yù)測[J]. 青島大學(xué)學(xué)報(工程技術(shù)版),2014,29(2):20-23.
[6] 張永志,董俊慧. 基于模糊C均值聚類的模糊RBF神經(jīng)網(wǎng)絡(luò)預(yù)測焊接接頭力學(xué)性能建模[J]. 機(jī)械工程學(xué)報,2014,50(12):58-64.
[7] 孫艷梅,都文和,馮昌浩,等. 基于蟻群聚類算法的RBF神經(jīng)網(wǎng)絡(luò)在壓力傳感器中的應(yīng)用[J]. 傳感技術(shù)學(xué)報,2013,26(6):806-809.
[8] Frey B J,Dueck D. Clustering by Passing Messages between Data Points[J]. Science,2007,315(5814):972-976.
[9] 王麗敏,姬強(qiáng),韓旭明,等. 基于奇異值分解的自適應(yīng)近鄰傳播聚類算法[J]. 吉林大學(xué)學(xué)報(理學(xué)版),2014,52(4):753-757.
[10] 謝文斌,童楠,王忠秋,等. 基于粒子群的近鄰傳播算法[J]. 計算機(jī)系統(tǒng)應(yīng)用,2014,23(3):103-107.
[11] 孫勁光,趙欣. 一種改進(jìn)近鄰傳播聚類的圖像分割算法[J]. 計算機(jī)工程與應(yīng)用,2017,53(6):178-182.
[12] 魏娟,楊恢先,謝海霞. 基于免疫RBF神經(jīng)網(wǎng)絡(luò)的逆運動學(xué)求解[J]. 計算機(jī)工程,2010,36(22):192-194.
[13] 石為人,陶芬,張元濤. 基于RBF神經(jīng)網(wǎng)絡(luò)的減搖鰭自適應(yīng)滑??刂芠J]. 控制工程,2012,19(6):978-981.
[14] 王慧,宋宇寧. 基于混合優(yōu)化算法的壓力傳感器溫度補(bǔ)償[J]. 傳感技術(shù)學(xué)報,2016,29(12):1864-1868.
[15] 張輝宜,周奇龍,袁志祥,等. 基于AP聚類的RBF神經(jīng)網(wǎng)絡(luò)研究及其在轉(zhuǎn)爐煉鋼中的應(yīng)用[J]. 鋼鐵研究學(xué)報,2014,26(1):22-26.
[16] 張小俊,張明路,李小慧. 基于RBF神經(jīng)網(wǎng)絡(luò)的電化學(xué)CO氣體傳感器的溫度補(bǔ)償[J]. 傳感技術(shù)學(xué)報,2009,22(1):11-14.
[17] 張輝,柴毅. 一種改進(jìn)的RBF神經(jīng)網(wǎng)絡(luò)參數(shù)優(yōu)化方法[J]. 計算機(jī)工程與應(yīng)用,2012,48(20):146-149.