周亞麗,欒雪濤,王利廷,張振文,2,惠竹梅,2*
(1 西北農(nóng)林科技大學(xué) 葡萄酒學(xué)院,陜西楊陵 712100;2 陜西省葡萄與葡萄酒工程中心,陜西楊陵712100)
土壤鹽漬化是世界性的農(nóng)業(yè)問(wèn)題,嚴(yán)重影響植物的生長(zhǎng)發(fā)育和作物產(chǎn)量,甚至還會(huì)造成植株死亡[1]。Downton將赤霞珠葡萄(Vitisvinifera)定義為對(duì)鹽適度敏感的植物,當(dāng)溫室栽培的赤霞珠葡萄用NaCl濃度超過(guò)50 mmol/L的營(yíng)養(yǎng)液灌溉時(shí),芽的生長(zhǎng)速度會(huì)大大減少[2]。鹽脅迫產(chǎn)生的活性氧類(lèi)物質(zhì)會(huì)造成葡萄植株根際微環(huán)境的紊亂,葉片中葉綠素含量、有機(jī)滲透調(diào)節(jié)物質(zhì)含量及抗氧化酶活性降低等傷害,進(jìn)而影響葡萄的產(chǎn)量和品質(zhì)[3]。在植物系統(tǒng)中,這些活性氧類(lèi)物質(zhì)通過(guò)由抗壞血酸過(guò)氧化物酶(APX)、谷胱甘肽還原酶(GR)、超氧化物歧化酶(SOD)及其他抗氧化劑組成的抗氧化防御系統(tǒng)來(lái)清除[4],這一系統(tǒng)就是我們所知的抗壞血酸-谷胱甘肽(ASA-GSH)循環(huán)系統(tǒng)。正常情況下,植物細(xì)胞內(nèi)活性氧的產(chǎn)生與清除處于一種動(dòng)態(tài)平衡狀態(tài),不會(huì)對(duì)植物產(chǎn)生傷害。在鹽脅迫初期,植物可通過(guò)自身調(diào)節(jié)增加體內(nèi)抗氧化酶類(lèi)和非酶類(lèi)抗氧化物質(zhì)協(xié)同清除由于鹽脅迫產(chǎn)生的活性氧自由基,減輕鹽脅迫對(duì)植物的傷害,提高植物的抗鹽性。長(zhǎng)時(shí)間鹽脅迫會(huì)使植物體內(nèi)活性氧代謝系統(tǒng)失去平衡,氧自由基大幅增加誘導(dǎo)氧化脅迫,進(jìn)而引起細(xì)胞膜系統(tǒng)氧化損傷[5-7]。
應(yīng)用外源植物生長(zhǎng)調(diào)節(jié)劑被認(rèn)為是提高植物抗逆性的有效方法之一[4, 8]。油菜素內(nèi)酯(brassinosteroids, BRs)是一種新型的天然植物激素,在逆境條件下,BRs能夠激發(fā)植物的內(nèi)在潛能,緩解植物受到的逆境傷害,提高植物的抗逆性[9-11];研究表明,BRs處理可以顯著提高葡萄[12]、黃瓜[13]、小麥[14, 15]、薄荷[16]等作物對(duì)低溫脅迫、鹽脅迫的抗性;在逆境脅迫下,BRs處理通過(guò)提高AsA-GSH循環(huán)系統(tǒng)中抗壞血酸(AsA)和還原型谷胱甘肽(GSH)等抗氧化物質(zhì)的含量及APX、GR、SOD活性,從而提高茄子[17]、黃瓜[18]和無(wú)柄小葉榕[19]等植物的抗氧化能力,緩解高溫、低溫和鹽脅迫對(duì)植株造成的傷害。但關(guān)于外源BRs預(yù)處理對(duì)鹽脅迫下葡萄幼苗葉片中抗氧化物質(zhì)及酶活性影響的研究還未見(jiàn)報(bào)道。因此,本試驗(yàn)以2年生扦插苗葡萄品種赤霞珠為試材,探究外源油菜素內(nèi)酯(EBR)預(yù)處理對(duì)鹽脅迫下葡萄幼苗葉片抗氧化物質(zhì)及酶活性的影響,以明確EBR在葡萄幼苗受到鹽脅迫時(shí)的調(diào)節(jié)作用,為進(jìn)一步研究BRs調(diào)控葡萄幼苗耐鹽機(jī)理和利用EBR減輕葡萄幼嫩組織鹽堿傷害提供理論依據(jù)。
本試驗(yàn)于2016年在西北農(nóng)林科技大學(xué)水土保持研究所人工智能氣候室和葡萄酒學(xué)院實(shí)驗(yàn)室進(jìn)行,供試品種為歐亞種釀酒葡萄品種赤霞珠(Cabernet Sauvignon),材料為兩年生扦插苗。
(1)移苗:當(dāng)盆栽扦插苗長(zhǎng)到10~12片真葉時(shí),選取生長(zhǎng)勢(shì)基本一致的幼苗用自來(lái)水將根系上的泥土洗凈,并用海綿纏繞根的基部,然后將其移到裝有1/2 Hoagland營(yíng)養(yǎng)液的水培盆中(50 cm×35 cm×15 cm),并固定在水培盆的泡沫蓋上,在人工氣候室(AGC-D001P頂置光氣候室)中進(jìn)行預(yù)培養(yǎng)。
(2)加營(yíng)養(yǎng)液:在水培盆中注水,每盆添加1/2 Hoagland營(yíng)養(yǎng)液17 L,然后用帶刻度注射器向水中添加各種營(yíng)養(yǎng)成分,其中大量元素每種添加21.25 mL,微量元素添加8.5 mL,用H3PO4或NaOH將營(yíng)養(yǎng)液pH調(diào)至6.5±0.1。
(3)環(huán)境調(diào)控:將通氣管穿過(guò)泡沫板小孔,底部連接沙錘。各個(gè)水培盆用三通與通氣管連接,再將主通氣管與氣泵相連,氣泵正常通氣(30 min/h)。每5 d更換1次營(yíng)養(yǎng)液。培養(yǎng)室內(nèi)溫度為晝溫23~25 ℃/夜溫15~18 ℃,光源為日光燈(14 h光照/d),光照強(qiáng)度為160 μmol·m-2·s-1。
(4)處理:幼苗在營(yíng)養(yǎng)液中培養(yǎng)5 d完全適應(yīng)水培環(huán)境后,按照試驗(yàn)設(shè)計(jì)向營(yíng)養(yǎng)液中加入不同濃度(0.05、0.10、0.20 mg/L)EBR(美國(guó)Sigma 公司),適應(yīng)5 d后,加入50 mmol/L的NaCl進(jìn)行鹽脅迫處理。試驗(yàn)設(shè)5組處理:CK,正常生長(zhǎng)組(0 mg/L EBR+0 mmol/L NaCl);T0,鹽對(duì)照組(0 mg/L EBR+50 mmol/L NaCl);T1,0.05 mg/L EBR+50 mmol/L NaCl;T2,0.10 mg/L EBR+50 mmol/L NaCl;T3,0.20 mg/L EBR+50 mmol/L NaCl。各處理3次重復(fù),每個(gè)重復(fù)8株幼苗,共計(jì)120株。EBR施用前用98%的乙醇溶解后稀釋到需要的濃度,乙醇最終含量為0.1%(v/v),用吐溫-80 ℃作為展開(kāi)劑,最終含量為0.1%(v/v),CK和T0組也加入同樣體積的98%乙醇和吐溫-80 ℃。
(5)采樣:分別在鹽脅迫處理后的第6 天和第12 天,采取葡萄幼苗從基部起3~7節(jié)位的葉片。將葉片樣品用剪刀除去葉脈,并將葉片其他部位剪碎,放入封口袋中,密封保存于-80 ℃冰箱,用于各項(xiàng)指標(biāo)的測(cè)定。
試驗(yàn)數(shù)據(jù)用Excel 2007軟件作圖、DPS7.55進(jìn)行統(tǒng)計(jì)分析。采用鄧肯氏檢驗(yàn)方法進(jìn)行多重比較,差異顯著性用不同的字母顯示。每組試驗(yàn)重復(fù)3次,試驗(yàn)結(jié)果用3次試驗(yàn)的平均值表示。
CK.正常對(duì)照(無(wú)EBR和鹽處理);T0.鹽處理(50 mmol/L NaCl);T1. EBR 0.05 mg/L +50 mmol/L NaCl;T2. EBR 0.10 mg/L+50 mmol/L NaCl;T3. EBR 0.20 mg/L+50 mmol/L NaCl,同期不同小寫(xiě)字母表示處理間在0.05水平存在顯著性差異(P<0.05);圖中短線(xiàn)代表標(biāo)準(zhǔn)誤;下同圖1 EBR預(yù)處理葡萄幼苗葉片和MDA 含量在鹽脅迫下的變化CK.Control(without EBR and salt treatments);T0.Salt treatment(50 mmol/L NaCl,only);T1. EBR 0.05 mg/L +50 mmol/L NaCl;T2. EBR 0.10 mg/L+50 mmol/L NaCl;T3. EBR 0.20 mg/L+50 mmol/L NaCl,Different normal letters above the columns mean significant difference among treatments within same time at the 0.05 level; Bars represent SE. The same as belowFig.1 The and MDA contents in grape seedlings with EBR pretreatment under salt stress
抗壞血酸(AsA)是植物抵抗氧化脅迫的重要物質(zhì),其含量的高低與植物的抗逆性密切相關(guān);而脫氫抗壞血酸(DHA)含量的積累對(duì)細(xì)胞代謝及相關(guān)酶活性會(huì)產(chǎn)生不利影響[26]。而AsA/DHA也是植物抵抗非生物脅迫誘發(fā)的活性氧類(lèi)物質(zhì)積累的關(guān)鍵因素,AsA/DHA的值越大,抗脅迫能力越強(qiáng)[27]。圖2,A顯示,T0處理葡萄幼苗葉片中AsA含量在鹽脅迫6 d和12 d時(shí)均比CK不同程度升高,且在鹽脅迫12 d時(shí)達(dá)到顯著水平。與T0處理相比,T2處理葡萄幼苗葉片AsA含量在鹽脅迫6和12 d時(shí)分別顯著提高20.3%和82.8%,而T1和T3處理葡萄葉片AsA含量在鹽脅迫后均無(wú)顯著變化。
同時(shí),如圖2,B所示,T0處理葡萄幼苗葉片中DHA含量均比CK不同程度降低,在鹽脅迫6 d時(shí)還達(dá)到顯著水平。與T0處理相比,T1處理葡萄幼苗葉片中DHA含量?jī)H在鹽脅迫12 d時(shí)顯著升高45.5%,在脅迫6 d時(shí)無(wú)顯著變化,T2處理DHA含量在鹽脅迫6 和12 d時(shí)分別顯著升高23.4%和70.9%,而T3處理DHA含量在鹽脅迫過(guò)程中均無(wú)顯著變化。另外,在圖2,C中,T0處理葡萄幼苗葉片中AsA/DHA均比同期CK顯著升高。在鹽脅迫6 d時(shí),T1~T3處理葡萄葉片AsA/DHA均與T0之間無(wú)顯著性差異;在鹽脅迫12 d時(shí), T1處理葡萄幼苗葉片中AsA/DHA比T0顯著降低39.1%,T2處理AsA/DHA比T0顯著升高7.0%,而T3處理AsA/DHA則與T0處理之間無(wú)顯著性差異。以上結(jié)果說(shuō)明0.1 mg/L EBR預(yù)處理使葡萄幼苗葉片具有較高的AsA、DHA含量和AsA/DHA,從而表現(xiàn)出更強(qiáng)的抗鹽能力。
圖2 EBR預(yù)處理葡萄幼苗葉片ASA含量、DHA含量及AsA/DHA在鹽脅迫下的變化Fig.2 The AsA, DHA contents and AsA/DHA in grape seedlings with EBR pretreatment under salt stress
GSH是細(xì)胞內(nèi)過(guò)氧化物的有效清除劑之一,GR在植物細(xì)胞AsA-GSH循環(huán)中可將GSSG還原為GSH,從而增強(qiáng)植物的抗逆性。同時(shí),GSH/GSSG也是植物抵抗非生物脅迫誘發(fā)的活性氧類(lèi)物質(zhì)積累的關(guān)鍵因素,GSH/GSSG的值越大,抗脅迫能力越強(qiáng)[27];保持較高GSH/GSSG在提高植物耐鹽性方面起著非常重要的作用[28]。首先,T0處理葡萄幼苗葉片中GSH含量在鹽脅迫過(guò)程中均比同期CK顯著增加;與T0處理相比,葡萄葉片GSH含量除在T2處理12 d時(shí)顯著升高29.7%外,而在其余時(shí)期EBR預(yù)處理中顯著降低(圖3,A)。其次,T0處理葡萄幼苗葉片中GSSG含量在鹽脅迫6和12 d后均比CK不同程度增加,但僅在鹽脅迫12 d時(shí)達(dá)到顯著水平;與T0處理相比,葡萄葉片GSSG含量?jī)H在鹽脅迫6 d時(shí)的T1處理顯著升高6.8%,而在其余脅迫時(shí)間各濃度EBR處理下顯著降低(圖3,B)。另外,T0處理葡萄幼苗葉片中GSH/GSSG在鹽脅迫6和12 d時(shí)分別比CK顯著增大185.2%和106.6%;與T0處理相比, T2處理葡萄葉片GSH/GSSG在鹽脅迫6 d和12 d時(shí)均不同程度增加,且在處理12 d時(shí)顯著增加49.2%,而T1和T3處理葡萄葉片GSH/GSSG在兩個(gè)時(shí)期均顯著降低(圖3,C)??梢?jiàn),鹽脅迫誘導(dǎo)葡萄幼苗葉片GSH、GSSG及比值不同程度提高,而0.1 mg/L EBR預(yù)處理又促使各指標(biāo)值在鹽脅迫葡萄幼苗葉片中保持較高水平,從而有效增強(qiáng)葡萄幼苗的抗鹽能力。
首先,與CK相比,T0處理葡萄幼苗SOD活性在各鹽脅迫時(shí)間內(nèi)均顯著增加;而與T0處理相比,3種濃度的EBR預(yù)處理均使葡萄幼苗SOD的活性不同程度增加,尤其在T2處理下升幅均達(dá)到顯著水平(圖4,A),在鹽脅迫6和12 d時(shí)SOD活性分別顯著升高20.1%和24.0%。其次,T0處理葡萄葉片APX活性均比同期CK顯著升高;與T0處理相比,同期T1和T3處理葡萄幼苗葉片APX活性均不同程度降低,在鹽脅迫6 d還達(dá)到顯著水平,而T2處理APX活性卻在鹽脅迫6和12 d時(shí)分別顯著升高7.1%和8.5%(圖4,B)。此外,GR是AsA-GSH循環(huán)系統(tǒng)的重要組成部分,可維持細(xì)胞內(nèi)GSH含量的穩(wěn)定,催化GSSG還原為GSH,其活性限制AsA-GSH循環(huán)系統(tǒng)的運(yùn)行速率。圖4,C顯示,T0處理處理葡萄幼苗葉片中GR活性在鹽脅迫12 d時(shí)比CK顯著升高35.1%,而在脅迫6 d時(shí)比CK稍高。與T0處理相比,T1和T3處理葡萄幼苗葉片中GR活性在鹽脅迫6 d時(shí)均顯著升高,而在脅迫12 d時(shí)均顯著降低,T2處理葡萄幼苗葉片GR活性則在兩個(gè)時(shí)期均顯著升高,其在鹽脅迫12 d時(shí)增加幅度為7.2%。可見(jiàn),在鹽脅迫環(huán)境下,EBR預(yù)處理能誘導(dǎo)葡萄幼苗葉片APX、SOD抗氧化酶活性的提高,有效清除超氧陰離子自由基對(duì)細(xì)胞膜的損害,抑制膜脂過(guò)氧化反應(yīng);尤其是0.10 mg/L EBR預(yù)處理還可有效誘導(dǎo)葡萄葉片GR活性的提高,進(jìn)一步增加GSH含量和GSH/GSSG比值,促進(jìn)AsA-GSH循環(huán)高效運(yùn)行,有助于緩解鹽脅迫對(duì)葡萄幼苗的傷害[29]。
圖3 EBR預(yù)處理葡萄幼苗葉片GSH含量、GSSG含量及GSH/GSSG 在鹽脅迫下的變化Fig.3 The GSH, GSSG contents and GSH/GSSG of grape seedlings with EBR pretreatment under salt stress
圖4 EBR預(yù)處理葡萄幼苗葉片抗壞血酸過(guò)氧化物酶SOD、APX及GR活性在 鹽脅迫下的變化Fig.4 The SOD, APX and GR activities of grape seedlings with EBR pretreatment under salt stress
BRs是一種被廣泛用于增強(qiáng)植物抗逆性的生長(zhǎng)調(diào)節(jié)劑[9],它可通過(guò)調(diào)節(jié)植物體內(nèi)抗氧化物質(zhì)含量及相關(guān)酶的活性,從而提高植株的抗氧化能力,緩解逆境脅迫對(duì)植株造成的傷害[15, 17-19]。
而抗氧化酶類(lèi)和非酶類(lèi)抗氧化物質(zhì)所構(gòu)成的抗氧化系統(tǒng)是植物自身在逆境條件下應(yīng)對(duì)膜脂過(guò)氧化傷害的重要機(jī)制,目前在這方面已有較多研究[32-34]。其中,AsA和GSH在植物抗氧化系統(tǒng)中發(fā)揮著重要作用[22]。本試驗(yàn)結(jié)果表明,與單獨(dú)鹽脅迫處理(T0)相比,0.05 和0.20 mg/L EBR預(yù)處理(T1和T3)均使葡萄幼苗葉片AsA和GSH含量降低,以及AsA/DHA和GSH/GSSG減小,而0.10 mg/L EBR預(yù)處理(T2)使葡萄幼苗葉片AsA和GSH含量以及AsA/DHA和GSH/GSSG顯著增大。說(shuō)明適宜濃度的外源BRs處理可提高葡萄葉片抗氧化劑AsA和GSH的含量,從而提高赤霞珠葡萄的耐鹽性,這與?zkan等[16]的研究結(jié)果一致。
參考文獻(xiàn):
[1]HASANUZZAMAN M, NAHAR K, FUJITA M. Plant Response to Salt Stress and Role of Exogenous Protectants to Mitigate Salt-Induced Damages [M]// Ecophysiology and Responses of Plants under Salt Stress. Springer New York. 2013: 25-87.
[2]DOWNTON W J S. Salinity effects on the ion composition of fruiting Cabernet Sauvignon vines [Wine grape cultivar][J].AmericanJournalofEnology&Viticulture, 1977, 28:210-214.
[3]MEGGIO F, PRINSI B, NEGRI A S,etal. Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments [J].AustralianJournalofGrape&WineResearch, 2014,20(2): 310-323.
[4]SALIN M L. Toxic oxygen species and protective systems of the chloroplast [J].PhysiologiaPlantarum, 2010,72(3):681-689.
[6]MOHAMMADKHANI N, HEIDARI R,etal. Effects of salinity on antioxidant system in four grape (VitisviniferaL.) genotypes [J].VitisGeilweilerhof, 2013,52(3): 105-110.
[7]MOHAMMADKHANI N, HEIDARI R,etal. Salinity effects on expression of some important genes in sensitive and tolerant grape genotypes [J].TurkishJournalofBiology, 2016,40:95-108.
[8]LIU W, ZHANG Y, YUAN X,etal. Exogenous salicylic acid improves salinity tolerance ofNitrariatangutorum[J].RussianJournalofPlantPhysiology, 2016,63(1): 139-149.
[9]KRISHNA P, PRASAD B D, RAHMAN T. Brassinosteroid action in plant abiotic stress tolerance [J].MethodsinMolecularBiology, 2017,1 564: 193.
[10]SASSE J M, Recent progress in brassinosteroid research [J].PhysiologiaPlantarum, 1997,100(3): 696-701.
[11]FARIDUDDIN Q, YUSUF M, AHMAD I,etal. Brassinosteroids and their role in response of plants to abiotic stresses [J].BiologiaPlantarum, 2014,58(1): 9-17.
[12]惠竹梅,王智真,胡勇,等. 24-表油菜素內(nèi)酯對(duì)低溫脅迫下葡萄幼苗抗氧化系統(tǒng)及滲透調(diào)節(jié)物質(zhì)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2013,46(5): 1 005-1 013.
XI Z M, WANG Z Z, HU Y,etal. Effects of 24-Epibrassinolide on the antioxidant system and osmotic adjustment substance in grape seedlings (V.viniferaL.) under chilling stress [J].ScientiaAgriculturaSinica, 2013,46(5): 1 005-1 013.
[13]FARIDUDDIN, Q., MIR B.A., YUSUF M.,etal. 24-Epibrassinolide and/or putrescine trigger physiological and biochemical responses for the salt stress mitigation inCucumissativusL [J].Photosynthetica, 2014,52(3): 464-474.
[14]SHAHBAZ, M., ASHRAF M., ATHAR H.U.R.. Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (TriticumaestivumL.) [J].PlantGrowthRegulation, 2008,55(1): 51-64.
[15]TALAAT N B, SHAWKY B T. 24-Epibrassinolide ameliorates the saline stress and improves the productivity of wheat (TriticumaestivumL.) [J].Environmental&ExperimentalBotany, 2012,82(3): 80-88.
[16]?ZKAN ?OBAN, BAYDAR N G. Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Menthapiperita, L.) under salt stress [J].IndustrialCrops&Products, 2016, 86:251-258.
[17]吳雪霞,查丁石,朱宗文,等. 外源24-表油菜素內(nèi)酯對(duì)高溫脅迫下茄子幼苗生長(zhǎng)和抗氧化系統(tǒng)的影響[J]. 植物生理學(xué)報(bào), 2013,49(9): 929-934.
WU X X, ZHA D S, ZHU Z W,etal. Effects of exogenous 24-Epibrassinolide on plant growth and antioxidant system in eggplant seedlings under high temperature stress [J].PlantPhysiologyJournal, 2013,49(9): 929-934.
[18]JIANG Y P, HUANG L F, CHENG F,etal. Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber [J].PhysiologiaPlantarum, 2013,148(1): 133.
[19]JIN S H, LI X Q, WANG G G,etal. Brassinosteroids alleviate high-temperature injury inFicusconcinnaseedlings via maintaining higher antioxidant defence and glyoxalase systems [J].AoBPlants, 2015,7: doi:10.1093/aobpla/plv00.
[20]ELSTNER E F, HEUPEL A. Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase [J].AnalyticalBiochemistry, 1976,70(2): 616-620.
[21]高俊鳳. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M].北京: 高等教育出版社,2006.
[22]SHAN C, ZHAO X. Effects of lanthanum on the ascorbate and glutathione metabolism ofVignaradiataseedlings under salt stress [J].BiologiaPlantarum, 2014,58(3): 595-599.
[23]GIANNOPOLITIS C N,RIES S K. Superoxide Dismutases: I. Occurrence in higher plants [J].PlantPhysiology, 1977,59(2): 309-14.
[24]NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J].Plant&CellPhysiology, 1981,22(5): 867-880.
[25]FOYER C H, HALLIWELL B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism [J].Planta, 1976,133(1): 21.
[26]GARA L C, DE T M,etal. Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid: evidence of an improved detoxification mechanism against reactive oxygen species.[J].PhysiologiaPlantarum, 2000,109(1):7-13.
[28]HASANUZZAMAN M, FUJITA M. Exogenous silicon treatment alleviates salinity-induced damage inBrassicanapusL. seedlings by up-regulating the antioxidant defense and methylglyoxal detoxification system [J].AbstractofPlantBiology, 2011,AmericanSocietyofPlantBiology. http://abstracts.aspb.org/ pb2011/public /P10/P10001.html/.
[29]WANG C, ZHANG S H, WANG P F,etal. Excess Zn alters the nutrient uptake and induces the antioxidative responses in submerged plantHydrillaverticillata(L.f.) Royle [J].Chemosphere, 2009,76(7):938-945.
[30]AHMAD P, HASHEM A, ABDALLAH E F,etal. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (BrassicajunceaL) through antioxidative defense system [J].FrontiersinPlantScience, 2015, 6: 868.
[31]SUN S, AN M, HAN L,etal. Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass [J].HortscienceAPublicationoftheAmericanSocietyforHorticulturalScience, 2015,50(10): 1 518-1 523.
[32]SHAN C, LIU H, ZHAO L,etal. Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress [J].BiologiaPlantarum, 2014,58(1): 169-173.
[33]RAHAT N, SHAHID U, KHAN N A. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress [J].PlantSignaling&Behavior, 2015,10(3).
[34]MOSTOFA M G, HOSSAIN M A, FUJITA M. Trehalose pretreatment induces salt tolerance in rice (OryzasativaL.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems [J].Protoplasma, 2015,252(2): 461-475.
[35]WILLEKENSH., LANGEBARTELS C., TIRé C.,etal. Differential expression of catalase genes inNicotianaplumbaginifolia(L.) [J].ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica, 1994,91(22): 10 450.
[36]WANG R, LIU S, ZHOU F,etal. Exogenous ascorbic acid and glutathione alleviate oxidative stress induced by salt stress in the chloroplasts ofOryzasativaL [J].ZeitschriftFurNaturforschungC, 2014.69(5-6): 226-236.
[37]GUPTA P, SRIVASTAVA S, SETH C S. 24-epibrassinolide and sodium nitroprusside alleviate the salinity stress inBrassicajunceaL. cv.varunathrough cross talk among proline, nitrogen metabolism and abscisic acid [J].Plant&Soil, 2016, 411: 1-16.