褚 蔚, 劉洋洋, 李永波, 楚秀生*
1.山東師范大學(xué)生命科學(xué)學(xué)院, 濟(jì)南 250014;2.山東省農(nóng)業(yè)科學(xué)院作物研究所, 農(nóng)業(yè)部黃淮北部小麥生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室; 小麥玉米國家工程實(shí)驗(yàn)室, 濟(jì)南 250100
植物體內(nèi)的異戊二烯類代謝產(chǎn)物如細(xì)胞分裂素、赤霉素、脫落酸、葉綠素、萜類、輔酶Q、甾醇和一些植物毒素等是維持植物生長發(fā)育及應(yīng)對環(huán)境脅迫(生物脅迫[1~3]和非生物脅迫[4])所必需的重要物質(zhì)。這些產(chǎn)物中有些還是重要的商業(yè)用化合物如醫(yī)用藥物、橡膠、香水及調(diào)料等。植物中的異戊二烯類代謝產(chǎn)物主要是通過細(xì)胞內(nèi)甲羥戊酸代謝途徑中一系列酶催化合成的,其中3-羥基-3-甲基戊二酰輔酶A還原酶(HMGR;EC:1.1.1.34)是這一代謝途徑中的第一個關(guān)鍵限速酶,能夠?qū)⒁阴]o酶A轉(zhuǎn)化為特別重要的中間產(chǎn)物甲羥戊酸。本文對植物HMGR基因的cDNA克隆、酶結(jié)構(gòu)和功能分析、基因組織表達(dá)及調(diào)控等方面進(jìn)行了綜述,旨在為其在重要農(nóng)作物的遺傳改良、代謝產(chǎn)物工程植物創(chuàng)制以及植物親緣關(guān)系分析中的應(yīng)用等研究提供理論依據(jù)。
植物HMGR基因的cDNA最早從擬南芥[5]中分離克隆出來,隨后從番茄[6]、巴西橡膠樹[7]、長春花[8]、馬鈴薯[9]、香瓜[10]、水稻[11]、小麥[12]等植物中陸續(xù)克隆出來。目前,HMGR基因的cDNA已從80多種植物中分離克隆出來,其中擬南芥、巴西橡膠、馬鈴薯、苜蓿等植物HMGR基因家族的所有成員均已被克隆出來(表1)。
表1 部分植物HMGR基因信息一覽表Table 1 Information of partial HMGR genes cloned from plants.
對已克隆的植物HMGR基因的cDNA進(jìn)行綜合分析,發(fā)現(xiàn)其編碼HMGR的開放閱讀框長度在1~2 kb之間不等,多數(shù)集中在1.7 kb左右,編碼的氨基酸數(shù)目在500~600個氨基酸不等。對植物HMGR基因開放閱讀框編碼的氨基酸序列進(jìn)行比對,發(fā)現(xiàn)多數(shù)植物HMGR具有7個保守區(qū)域(圖1)。Motif1和Motif2為跨膜區(qū),包含20多個氨基酸,多數(shù)為脂肪族和芳香族氨基酸交替組合,如大戟EpHMGR的2個跨膜區(qū)分別位于多肽鏈的A40(P)和A62(L)之間、A83(I)和A105(V)之間[17];Motif3和Motif4是HMG-CoA結(jié)合區(qū)域。Motif3的氨基酸序列為EMPIGYVQIP,在水稻、玉米和小麥等單子葉植物中的第二位氨基酸為亮氨酸(L),雙子葉植物中則是蛋氨酸(M)。Motif4非常保守為TTEGCLVA;Motif5和Motif6非常保守,是NADPH結(jié)合區(qū)域,Motif5和Motif6的氨基酸序列分別為DAMGMNM和GTVGGGTQ。多數(shù)植物HMGR末尾還存在Motif7,其中第一個絲氨酸(S)含有磷酸化位點(diǎn),可能與翻譯后調(diào)控有關(guān)。磷酸化是在類異戊二烯生物合成前幾步的酶中確認(rèn)的主要蛋白質(zhì)修飾[44]。
圖1 8種植物HMGR氨基酸序列比對中的7個保守區(qū)域Fig.1 Seven conservative motifs of eight plant HMGR amino acid sequences.注:OsHMGR:水稻(Oryza sativa)AAD08820.1;AtHMGR:擬南芥(Arabidopsis thaliana)NP_179329.1;EpHMGR:大戟(Euphorbia pekinensis)ABK56831.1;HbHMGR:橡膠樹(Hevea brasiliensis)AAQ63055.1;GbHMGR:銀杏(Ginkgo biloba)AAU89123.1;ZmHMGR:玉米(Zea mays)CAA70440.1;ATHMGR:節(jié)節(jié)麥(Aegilops tauschii)EMT29532;TaHMGR:小麥(Triticum aestivum)HMGR;“*”和“·”分別表示氨基酸完全相同和半保守。
植物HMGR由N-末端區(qū)、跨膜區(qū)、連接區(qū)和C-末端區(qū)組成(圖2),C-末端序列較N-末端序列保守[36],對截取C端35個氨基酸的短角蒲公英Tbhmgrc3瞬間表達(dá),發(fā)現(xiàn)HMGR活性依賴于部分形成一個螺旋的C末端最后30~40個氨基酸殘基[46]。高度保守的N-末端氨基酸殘基和行使催化功能的C-末端氨基酸殘基暴露于內(nèi)質(zhì)網(wǎng)膜外側(cè)的細(xì)胞質(zhì)中,如黃花蒿HMGR的N末端和C末端,通過2個跨膜雙螺旋被定位在細(xì)胞質(zhì)中[47]。鑲嵌在內(nèi)質(zhì)網(wǎng)膜上的跨膜區(qū)由2個富含疏水氨基酸殘基的跨膜結(jié)構(gòu)域構(gòu)成,由一段短的位于內(nèi)質(zhì)網(wǎng)腔內(nèi)的親水區(qū)域相連。研究表明,跨膜區(qū)有助于內(nèi)質(zhì)網(wǎng)的形態(tài)發(fā)生[48]。所有植物HMGR催化區(qū)都含有4個保守的區(qū)域,即2個HMG-CoA結(jié)合區(qū)域和2個NADP(H)結(jié)合區(qū)域,這些殘基單元與底物識別和結(jié)合有關(guān)。
圖2 植物HMGR酶結(jié)構(gòu)及其與膜結(jié)合示意圖[45]Fig.2 Diagram of the plant HMGR structure and bounding to membrane[45]注:H1和H2代表跨膜疏水區(qū),粗線代表催化區(qū)。
植物HMGR蛋白的三維結(jié)構(gòu)可分成3個結(jié)構(gòu)域:①N-結(jié)構(gòu)域:N-末端的小螺旋結(jié)構(gòu)域;②L-結(jié)構(gòu)域:包含2個HMG-CoA結(jié)合序列(EMPIGYVQIP和TTEGCLVA)和1個NADP(H)結(jié)合序列(GTVGGGT),該結(jié)構(gòu)域在立體結(jié)構(gòu)上呈棱鏡狀,由1個大α螺旋構(gòu)成其結(jié)構(gòu)的中心元件;③S-結(jié)構(gòu)域:包含另1個NADP(H)結(jié)合區(qū)域(DAMGMN)的小螺旋結(jié)構(gòu)域。植物HMGR三維結(jié)構(gòu)相似性很高,其空間結(jié)構(gòu)整體呈現(xiàn)一個“V”字型,N-結(jié)構(gòu)域和S-結(jié)構(gòu)域位于“V”型的上端,L-結(jié)構(gòu)域在“V”型下部。圖3(彩圖見圖版一)顯示大戟EpHMGR的三級結(jié)構(gòu),其催化區(qū)含有L、N和S 3個結(jié)構(gòu)域,L結(jié)構(gòu)域最大,具有2個HMG-CoA結(jié)合區(qū)和1個NADP(H)結(jié)合區(qū),而小的螺旋狀的S結(jié)構(gòu)域包含另1個NADP(H)結(jié)合區(qū)[17]。
圖3 大戟(E. pekinensis)EpHMGR的三維 空間結(jié)構(gòu)圖[17]Fig.3 The 3D structure of E. pekinensis EpHMGR[17]. (彩圖見圖版一)
HMGR參與的催化反應(yīng)是以1分子的3-羥基-3-甲基戊二酰輔酶A(HMG-CoA)和2分子的還原型輔酶NADPH為底物,首先,1分子NADPH脫H,加到HMG-CoA中與CoA結(jié)合的?;跎希S后CoA分子脫離HMG,形成中間體甲羥戊醛和CoASH,最后另1分子NADPH的H加到甲羥戊醛的?;跎?,形成甲羥戊酸,NADPH還原為2分子NADP+。Maurey 等[49]利用一種單細(xì)胞植物藻(Ochromonasmalhamensis),通過對底物進(jìn)行14C同位素標(biāo)記,液體閃爍計(jì)數(shù)器測定HMGR的催化產(chǎn)物,證明了HMGR能夠催化3-羥基-3-甲基戊二酰輔酶A形成產(chǎn)物甲羥戊酸。研究表明,對植物HMGR同源或異源過量表達(dá),能夠促進(jìn)代謝途徑中類異戊二烯物質(zhì)含量的增加,然而利用酶抑制劑抑制該酶活性,則類異戊二烯物質(zhì)含量明顯減少,并引起植物表型的一些變化,說明該酶在類異戊二烯合成中具有非常重要的作用,這為利用轉(zhuǎn)基因技術(shù)大量合成有重要商業(yè)價值的類異戊二烯物質(zhì)及農(nóng)作物遺傳改良研究奠定了堅(jiān)實(shí)的理論基礎(chǔ)。
植物HMGR酶動力學(xué)研究是體外驗(yàn)證所克隆的基因編碼的酶是否具有催化活性的重要環(huán)節(jié),通過分析酶動力學(xué)參數(shù),可以獲得酶與底物的結(jié)合能力以及催化速率等重要信息,為該酶體內(nèi)過表達(dá)中催化效率的功能驗(yàn)證奠定了基礎(chǔ)。目前有關(guān)植物HMGR酶動力學(xué)研究的文獻(xiàn)報(bào)道相對較少,植物HMGR對底物HMG-CoA和NADPH的Km值是不同的。Km值是酶與底物結(jié)合能力的重要體現(xiàn),Km值越小,酶與底物的結(jié)合力越強(qiáng),反之酶與底物的結(jié)合力越弱。由表2可以看出,蘿卜HMGR對2個底物的結(jié)合力最強(qiáng),其他4種植物HMGR對HMG-CoA的結(jié)合力相似,而玉米HMGR對NADPH的結(jié)合力最弱。說明不同植物HMGR對底物的結(jié)合力不同,其催化速率也不同。
表2 幾種已分離純化植物HMGR的Km值Table 2 Km values of several plant HMGR purified.
分離克隆的植物HMGR基因編碼的酶是否能夠在植物體內(nèi)代謝途徑中發(fā)揮作用,需要對其進(jìn)行體內(nèi)功能驗(yàn)證。通常將植物HMGR基因轉(zhuǎn)入大腸桿菌中,查看其對細(xì)菌中甲羥戊酸代謝途徑終產(chǎn)物的影響,或通過該酶抑制劑的抑制作用,測定植物體內(nèi)類異戊二烯物質(zhì)含量及其對植物表型的影響,達(dá)到體內(nèi)驗(yàn)證其代謝功能的目的。
研究發(fā)現(xiàn),大戟EpHMGR[17]、樂昌含笑MichHMGR[25]和睡茄WsHMGR基因[38]能夠促進(jìn)大腸桿菌中β-胡蘿卜素的生物合成;將短角蒲公英TbHMGR1、TbHMGR2和TbHMGR3分別轉(zhuǎn)入一種利用內(nèi)源MEP(methylerythritol phosphate)途徑不能合成IPP的缺陷型大腸桿菌中,發(fā)現(xiàn)轉(zhuǎn)入HMGR催化區(qū)域基因的大腸桿菌可以存活,證明了3種HMGR都含有相應(yīng)的催化活性,可以重啟MVA途徑[45]。
酶抑制劑是驗(yàn)證酶活性的重要化合物。他汀類化合物是動植物HMGR的有效競爭性抑制劑,可以抑制HMGR的活性,進(jìn)而減少甾醇類物質(zhì)的合成,影響植物正常生長。研究表明,用30 μmol/L抑制劑lovastatin處理短角蒲公英10 d,其根縮短超過38%,側(cè)根數(shù)量也減少,這是由于IPP的生物合成不足而影響植物根長[45];用抑制劑mevinolin處理4周大的人參1 d,可使其不定根中人參皂苷的含量比對照減少34%,人參皂苷的代謝波動與HMGR的酶活性高低相關(guān)[35]。擬南芥HMGR1和HMGR2基因缺失突變株對洛伐他汀敏感程度均比野生型植株要高,而且缺失HMGR1基因會導(dǎo)致擬南芥植株矮小、早衰、雄性不育,且甾醇含量比野生型植株低[54]。
植物HMGR是甲羥戊酸代謝途徑上游的一個關(guān)鍵限速酶,對控制代謝途徑中碳源流向起到非常重要的作用,該酶基因表達(dá)上調(diào)明顯促進(jìn)植物類異戊二烯物質(zhì)含量的增加,同源及異源基因過表達(dá)研究顯示,轉(zhuǎn)基因植物中甾醇、萜類等類異戊二烯物質(zhì)含量明顯提高。
研究發(fā)現(xiàn),橡膠樹HMGR1基因使轉(zhuǎn)基因煙草總甾醇含量提高了6倍,而且中間代謝產(chǎn)物也在組織中累積[55];青蒿hmgr轉(zhuǎn)基因青蒿中的最高表達(dá)量是野生型的2.8倍,而且最高青蒿素含量約是對照植株的1.8倍[56];長春花HMGR基因使黃花蒿中萜類化合物含量提高22.5%[57],使青蒿素含量比受體植株高出38.9%,且酶活性也比受體植株高[58],部分青蒿素含量是受體植株的7.65倍[59];陽春砂AvpHMGR促進(jìn)了轉(zhuǎn)基因煙草光合色素的合成[60];短角蒲公英TbHMGR1和TbHMGR2的瞬間表達(dá),導(dǎo)致煙草甾醇前體物的較強(qiáng)積累[45];人參PgHMGR基因使轉(zhuǎn)基因桔梗毛狀根中的皂苷水平提高1.5~2.5倍,植物固醇水平提高1.1~1.6倍[61];過表達(dá)丹參SmHMGR2基因,丹參毛根中雙萜和三萜等的含量顯著提高[19]。橡膠樹hmgr1基因表達(dá)導(dǎo)致轉(zhuǎn)基因擬南芥植株表型與野生型明顯不同,使葉片增大50%,植株生長更健壯[14];芥菜BjHMGS1基因及其突變體S359A和H188N/S359A基因在擬南芥中過表達(dá),則上調(diào)HMGR、SMT2(固醇甲基轉(zhuǎn)移酶基因)、DWF1(δ-24固醇還原酶基因)、CYP710A1(C-22固醇去飽和酶基因)和BR6OX2(油菜素甾醇-6-氧化酶基因)基因的表達(dá),并導(dǎo)致葉片和苗中整體甾醇含量的增加,表現(xiàn)為種子萌發(fā)較對照提前、H2O2誘導(dǎo)細(xì)胞死亡減少以及依賴水楊酸發(fā)病相關(guān)基因(PR1/未知蛋白、PR2/β-1、3葡聚糖酶和PR5/類甜蛋白)的組成型表達(dá),導(dǎo)致對灰葡萄孢菌抗性增強(qiáng),其中轉(zhuǎn)基因擬南芥OE-S359A抗性最高[62]。另外,在轉(zhuǎn)基因棉花中過表達(dá)棉鈴蟲HMGR基因的dsRNA,成功下調(diào)棉鈴蟲HMGR基因,并使目標(biāo)昆蟲的發(fā)育和生長受損[63]。
HMGR基因在植物的根、莖、葉、花及果實(shí)中的表達(dá)明顯不同,細(xì)胞分裂比較旺盛的器官中的表達(dá)相對較強(qiáng)。香瓜果實(shí)體積大小是由果實(shí)早期發(fā)育過程中果皮細(xì)胞的分裂增殖決定的,早期果實(shí)生長過程中CmHMGR基因表達(dá)和酶活性非常關(guān)鍵[64];荔枝LcHMG1在果實(shí)發(fā)育早期階段表達(dá)水平最高,這與高水平細(xì)胞分裂有關(guān),并參與調(diào)控果實(shí)大小,與小果類型相比,LcHMG1在大果類型中的表達(dá)水平較高,且表達(dá)持續(xù)時間較長,而LcHMG2主要在果實(shí)發(fā)育后期階段高表達(dá),這與后期細(xì)胞伸長需要的類異戊二烯物質(zhì)的生物合成有關(guān)[65];番茄HMGR基因在果實(shí)發(fā)育早期其mRNA轉(zhuǎn)錄水平和酶的活性水平非常高[66];擬南芥HMGR1的mRNA在所有組織中都能檢測到,而HMGR2只在分生組織和花中表達(dá)水平較高[54];大戟EpHMGR基因在根中高表達(dá),而在莖、葉中低表達(dá)[17];樂昌含笑MichHMGR只在葉片中表達(dá),在莖和根中沒有表達(dá)[25];咖啡CaHMGR1表現(xiàn)暫時性和組織特異性表達(dá),而CaHMGR2則是組成型表達(dá),前者只在發(fā)育初始階段的果實(shí)組織(果肉、外胚乳和胚乳)、花芽和葉片中表達(dá),而后者在所有組織(花芽、葉片、樹枝和根)及整個發(fā)育階段不同果實(shí)組織中都有表達(dá)[24];丹參SmHMGR3在根莖葉中均有表達(dá),但在葉中表達(dá)量最高[67];人參PgHMGR2在花中表達(dá)量最高,其次為葉和根,莖中表達(dá)量最低[68];睡茄WsHMGR表達(dá)量由多到少依次是花>根>果實(shí)>莖和葉,而且在幼葉中的表達(dá)量比在成熟葉片中的表達(dá)量高[38];白木香AsHMGR2基因主要在根和莖尖中表達(dá),其次是莖,葉中的表達(dá)量最低[15];露水草CaHMGR的mRNA在莖、根和葉片中富集[69];球藥隔重樓PfHMGR基因在根和莖中的表達(dá)比在葉片中強(qiáng)[34];玉米ZmHMG6在種子中較高表達(dá),ZmHMGR5只在種子的胚乳中專一性表達(dá),而大豆GmHMGR4在種子發(fā)育后期高表達(dá)[70]。由此可見,植物不同器官中,不同HMGR在植物發(fā)育不同階段擔(dān)負(fù)的功能是不同的。
不同器官中類異戊二烯含量與HMGR表達(dá)密切相關(guān)。歐洲榛樹CgHMGR在根中的表達(dá)水平最高,葉片次之,莖中表達(dá)量最少[33],這與榛子根部紫杉酚(為雙萜物質(zhì),一種有效的抗癌物質(zhì))含量最高相一致;巴西橡膠樹HbHMGR1和HbHMGR3在橡膠樹紅色幼葉、淺綠幼葉、成熟葉、乳汁液、韌皮部和木質(zhì)部中都有表達(dá)信號,但在橡膠樹乳膠液中表達(dá)量最高,是調(diào)控橡膠合成的主效基因[71];短角蒲公英TbHMGR1在所有組織中都表達(dá),但在乳膠組織中表達(dá)量最高[45];尾巨桉EuHMGR1在枝組織中表達(dá)水平最高,其次是葉,根中基本沒有表達(dá),與桉樹萜類精油合成代謝旺盛程度是相一致的[40];人參PgHMGR1和PgHMGR2基因在種子、葉片、莖和花中表達(dá)相對較低,但在幼苗葉柄和根中表達(dá)較強(qiáng),PgHMGR2基因在6齡人參根中的轉(zhuǎn)錄是3齡人參根中轉(zhuǎn)錄的5倍[35];羅漢果HMGR在莖和果實(shí)中表達(dá)量較高,在葉片中表達(dá)量較低,在果實(shí)不同發(fā)育時期,表達(dá)量呈現(xiàn)先升高再降低,然后再升高再降低的波動式變化,與苷V合成積累變化規(guī)律相似[72];積雪草CaHMGR在節(jié)和葉片中表達(dá)最強(qiáng),而在根中表達(dá)較低,節(jié)對萜類物質(zhì)合成非常重要[23]。重要類異戊二烯物質(zhì)在植物不同器官的累積與HMGR基因表達(dá)的一致性、為創(chuàng)制富集類異戊二烯物質(zhì)的工程植物奠定了堅(jiān)實(shí)的理論基礎(chǔ)。
茉莉酸甲酯(methyl jasmonate,MeJA)可以使HMGR基因表達(dá)上調(diào),從而促進(jìn)植物次生代謝物的積累。100 μmol/L的MeJA能顯著提高紫衫細(xì)胞懸浮培養(yǎng)液中紫杉醇含量[73];100 mmol/L的MeJA使丹參發(fā)根12 h后HMGR表達(dá)量是未處理的3.5倍,而96 h后比對照提高了50%[19];MeJA使睡茄WsHMGR基因表達(dá)24 h后達(dá)到高峰[38];0.2 mmol/L的MeJA誘發(fā)的露水草懸浮細(xì)胞培養(yǎng)中20-羥基蛻皮酮(20E)的含量是對照的8倍[69]。水楊酸使睡茄WsHMGR基因在24 h時表達(dá)增加[38]。化學(xué)傷害對白木香AsHMGR2基因表達(dá)的誘導(dǎo)強(qiáng)度在8 h時達(dá)到最大[15]。Ag+使丹參SmHMGR基因的轉(zhuǎn)錄水平24 h時迅速提高[67];25 μmol/L Ag+使露水草懸浮細(xì)胞培養(yǎng)中20E的含量是對照的6倍[69]。
擬南芥HMGR1基因表達(dá)直接受光照調(diào)控,但存在組織特異性。在光照條件下,成熟擬南芥葉子只有極其微弱的GUS顯色,而無光條件下幼嫩葉片和葉柄以及成熟葉片邊緣都有很深的GUS染色;根部HMGR1啟動子的表達(dá)只在伸長區(qū),且不受光照影響[74]。切割和真菌感染使馬鈴薯塊莖和甘薯根組織中HMGR表達(dá)量上升,進(jìn)而導(dǎo)致半倍萜烯類植物抗毒素含量增多[75]。物理傷害導(dǎo)致睡茄WsHMGR基因表達(dá)顯著上調(diào),在24 h時達(dá)到高峰[38],而白木香AsHMGR2基因的表達(dá)緩慢升高, 6 h 時達(dá)到最高表達(dá)水平[15]。
此外,植物HMGR基因還有其他的調(diào)控方式,生物因素如微生物使假馬齒莧HMGR基因表達(dá)上調(diào)[4],病菌強(qiáng)烈誘導(dǎo)棉花HMGR基因的表達(dá)[3];內(nèi)源代謝因素如甾醇含量的減少可引起關(guān)鍵酶HMGR的反饋調(diào)節(jié),煙草細(xì)胞鯊烯合酶和角鯊烯環(huán)氧化酶的抑制導(dǎo)致HMGR的表達(dá)上調(diào),其活性可達(dá)到平時的7倍[76];翻譯后修飾如絲氨酸磷酸化、N-糖基化修飾以及蛋白質(zhì)水解等可對酶活性進(jìn)行調(diào)控[44]。
植物HMGR基因主要在細(xì)胞分裂比較旺盛的器官以及類異戊二烯產(chǎn)物富集的器官中表達(dá)強(qiáng)度高,且該基因在轉(zhuǎn)基因受體植株中過表達(dá),能夠顯著促進(jìn)類異戊二烯物質(zhì)含量的增加。研究證明,香瓜CmHMGR基因的表達(dá)水平?jīng)Q定了果實(shí)體積的大小[64],同樣,荔枝LcHMG1在大果類型中的表達(dá)水平較高,且持續(xù)時間較長[65]。若通過定點(diǎn)誘變技術(shù),創(chuàng)制該酶催化速率提高的基因突變體,轉(zhuǎn)化以類異戊二烯次生代謝產(chǎn)物為主的經(jīng)濟(jì)植物,可以進(jìn)一步提高這些植物體內(nèi)相應(yīng)物質(zhì)的含量,獲取更大的商業(yè)價值;若轉(zhuǎn)化重要農(nóng)作物并在體內(nèi)過量表達(dá),一方面可使作物體內(nèi)細(xì)胞分裂素、赤霉素等植物激素含量水平得到提高,從而加速果實(shí)(籽粒)細(xì)胞的分裂和伸長,增大作物籽粒的庫容,另一方面可加速作物植株中葉綠素的生物合成,進(jìn)而提高植物的光合效率,增加植株中可溶性糖的含量及籽粒中的淀粉積累,從而提高作物的產(chǎn)量水平。研究表明,細(xì)胞分裂素是決定小麥籽粒產(chǎn)量的關(guān)鍵因素[77],降低細(xì)胞分裂素氧化酶活性(cytokinin oxidase,CKX)能夠顯著提高小麥的穗粒數(shù)、千粒重和根重[78];將GA3溶液噴灑在小麥赤霉素應(yīng)答矮桿基因突變體(Rht12)植株的葉片上,能夠顯著促進(jìn)植株地上部分的生長[79]。此外,通過該酶基因過表達(dá),某些萜類物質(zhì)含量的增加可能對作物籽粒品質(zhì)及食品口感有所改善,或通過加速植物毒素合成,使病蟲害防御能力得到進(jìn)一步提高;對該酶基因結(jié)構(gòu)進(jìn)行深入剖析,研究其內(nèi)含子、外顯子和啟動子等元件,可用于開發(fā)代謝途徑中關(guān)鍵酶基因的分子標(biāo)記,進(jìn)行分子標(biāo)記輔助育種選擇。
另外,根據(jù)植物HMGR氨基酸序列構(gòu)建分子進(jìn)化樹,發(fā)現(xiàn)整個植物界HMGR基因家族的功能和進(jìn)化是相當(dāng)保守的,該酶基因起源于一個祖先基因,最后演化成4個不同群,單子葉植物和雙子葉植物各兩個群[48,70]。由于植物HMGR基因是甲羥戊酸途徑中的一個相對保守的基因,可以作為生物遺傳分化和分子進(jìn)化研究工作中的重要因子,對于判斷物種間親緣關(guān)系的遠(yuǎn)近具有一定的參考價值。
[1] Mosquera T, Alvarez M F, Jiménez-Gómez J M,etal.. Targeted and untargeted approaches unravel novel candidate genes and diagnostic SNPs for quantitative resistance of the potato (SolanumtuberosumL.) toPhytophthorainfestanscausing the late blight disease[J]. PLoS ONE, 2016, 11(6):e0156254.
[2] Tian X, Ruan J, Huang J,etal.. Gossypol: phytoalexin of cotton[J]. Sci. China(Life Sci.), 2016, 59(2):122-129.
[3] Gupta R, Singh A, Srivastava M,etal.. Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism inBacopamonnieriunderMeloidogyneincognitastress[J]. Sci. Rep., 2017, 7:41867,1-11.
[4] 陸 平,田躍勝,王明雪,等. 枸杞脫落酸生物合成關(guān)鍵酶基因NCED的克隆及表達(dá)分析[J].植物遺傳資源學(xué)報(bào),2013,14(2):303-310.
[5] Caelles C, Ferrer A, Balcells L,etal.. Isolation and structural characterization of a cDNA encodingArabidopsisthaliana3-hydroxy-3-methylglutaryl coenzyme A reductase[J]. Plant Mol. Biol., 1989, 13(6): 627-638.
[6] Denbow C J, L?ng S, Cramer C L. The N-terminal domain of tomato 3-hydroxy-3-methylglutaryl-CoA reductases sequence microsomal targeting, and glycosylation[J]. J. Biol. Chem., 1996, 271(16): 9710-9715.
[7] Chye M L, Kush A, Tan C T,etal.. Characterization of cDNA and genomic clones encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase fromHeveabrasiliensis[J]. Plant Mol. Biol., 1991, 16(4): 567-577.
[8] Maldonado-Mendoza I E, Burnett R J, Nessler C L. Nucleotide sequence of a cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase fromCatharanthusroseus[J]. Plant Physiol., 1992, 100(3):1613-1614.
[9] Choi D, Ward B L, Bostock R M. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response toPhytophthorainfestansand to its elicitor arachidonic acid[J]. Plant Cell Online, 1992, 4(10): 1333-1344.
[10] Kato-Emori S, Higashi K, Hosoya K,etal.. Cloning and characterization of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in melon (CucumismeloL. reticulatus)[J]. Mol. Genet. Genomics, 2001, 265:135-142.
[11] Nelson A J, Doerner P W, Zhu Q,etal.. Isolation of a monocot 3-hydroxy-3-methylglutaryl coenzyme A reductase gene that is elicitor-inducible[J]. Plant Mol. Biol., 1994, 25(3): 401-412.
[12] 劉洋洋.小麥3-羥基-3-甲基戊二酰輔酶A還原酶(HMGR)基因克隆及功能分析[D].濟(jì)南:山東師范大學(xué),碩士學(xué)位論文,2015.
[13] Chye M L, Tan C T, Chua N H. Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase inHeveabrasiliensis: hmg1 and hmg3 are differentially expressed[J]. Plant Mol. Biol., 1992 , 19 (3):473-484.
[14] Venkatachalam P, Priya P, Jayashree R,etal.. Molecular cloning and characterization of a 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (hmgr1) gene from rubber tree (HeveabrasiliensisMuell. Arg.): A key gene involved in isoprenoid biosynthesis[J]. Physiol. Mol. Biol. Planta, 2009, 15(2):133-143.
[15] 徐艷紅,楊 欣,張 爭,等.白木香3-羥基-3-甲基戊二酰輔酶A 還原酶基因AsHMGR2的克隆及表達(dá)分析[J].藥學(xué)學(xué)報(bào), 2013, 48 (6): 953-959.
[16] Ha S H, Kim J B, Hwang Y S,etal.. Molecular characterization of three 3-hydroxy-3-methylglutaryl-CoA reductase genes including pathogen-induced Hmg2 from pepper (Capsicumannuum)[J]. Biochim. Biophys. Acta, 2003, 1625(3):253-260.
[17] Cao X, Zong Z, Ju X,etal.. Molecular cloning, characterization and function analysis of the gene encoding HMG-CoA reductase fromEuphorbiapekinensisRupr[J]. Mol. Biol. Rep., 2010, 37(3):1559-1567.
[18] Liao P, Zhou W, Zhang L,etal.. Molecular cloning, characterization and expression analysis of a new gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase fromSalviamiltiorrhiza[J]. Acta Physiol. Plantarum., 2009, 31(3):565-572.
[19] Dai Z, Cui G, Zhou S F,etal.. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene fromSalviamiltiorrhizainvolved in diterpenoid tanshinone accumulation[J]. J. Plant Physiol., 2011, 168(2):148-157.
[20] Jiang J, Kai G, Cao X,etal.. Molecular cloning of a HMG-CoA reductase gene fromEucommiaulmoidesOliver[J]. Biosci. Rep., 2006, 26(2):171-181.
[21] Liao Z H, Tan Q M, Chai Y R,etal.. Cloning and characterisation of the gene encoding HMG-CoA reductase fromTaxusmediaand its functional identification in yeast [J]. Funct. Plant Biol., 2004, 31(1):73-81.
[22] Wu Q, Song J Y, Sun Y Q,etal.. Transcript profiles ofPanaxquinquefolius, from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation[J]. Physiol. Plant, 2010, 138(2):134-149.
[23] Kalita R, Patar L, Shasany A K,etal.. Molecular cloning, characterization and expression analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene fromCentellaasiaticaL.[J]. Mol. Biol. Rep., 2015, 42:1431-1439.
[24] Tiski I, Marraccini P, Pot D,etal.. Characterization and expression of two cDNA encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase isoforms in coffee (CoffeaarabicaL.)[J]. J. Integr. Biol., 2011, 15(10):719-727.
[25] Cao X Y, Li C G, Miao Q,etal.. Molecular cloning and expression analysis of a leaf-specific expressing 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase gene fromMicheliachapensisDandy[J]. J. Med. Plants Res., 2011,5(16):3868-3875.
[26] Xia R, Lu W J, Wang Z H,etal.. Cloning and characterisation of two genes for 3-hydroxy-3-methylglutaryl coenzyme A reductase and their possible roles during fruit development inDimocarpuslongan[J]. J. Hortic. Sci. Biotechnol., 2011, 86(1):25-30.
[27] Korth K L, Stermer B A, Bhattacharyya M K,etal.. HMG-CoA reductase gene families that differentially accumulate transcripts in potato tubers are developmentally expressed in floral tissues[J]. Plant Mol. Biol., 1997, 33(3):545-551.
[28] Ginzberg I, Thippeswamy M, Fogelman E,etal.. Induction of potato steroidal glycoalkaloid biosynthetic pathway by overexpression of cDNA encoding primary metabolism HMG-CoA reductase and squalene synthase [J]. Planta, 2012, 235(6):1341-1353.
[29] Genschik P, Criqui M C, Parmentier Y,etal.. Isolation and characterization of a cDNA encoding a 3-hydroxy-3-methylglutaryl coenzyme A reductase fromNicotianasylvestris[J]. Plant Mol. Biol., 1992, 20(2):337-341.
[30] Kevei Z, Lougnon G, Mergaert P,etal.. 3-hydroxy-3-methylglutaryl coenzyme A reductase1 interacts with NORK and is crucial for nodulation inMedicagotruncatula[J]. Plant Cell, 2007, 19(12):3974-3989.
[31] Lin X, Kaul S, Rounsley S,etal.. Sequence and analysis of chromosome 2 of the plantArabidopsisthaliana[J]. Nature, 1999, 402 (6763):761-768.
[32] Theologis A, Ecker J R, Palm C J,etal.. Sequence and analysis of chromosome 1 of the plantArabidopsisthaliana[J]. Nature, 2000, 408(6814):816-820.
[33] Wang Y, Guo B, Zhang F,etal.. Molecular cloning and functional analysis of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from hazel (CorylusavellanaL. Gasaway) [J]. J. Biochem. Mol. Biol., 2007, 40(6):861-869.
[34] Liang Y, Jiang X, Hu Q,etal.. Cloning and characterization of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) gene fromParisfargesiiFranch[J]. Ind. J. Biochem. Biol., 2014, 51:201-206.
[35] Kim Y J, Lee O R, Oh J Y,etal.. Functional analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase encoding genes in triterpene saponin-producing ginseng[J]. Plant Physiol., 2014, 165(1):373-387.
[36] 張 萍,劉迪秋,葛 鋒,等. 三七3-羥基-3-甲基戊二酸單酰輔酶A還原酶基因的克隆和生物信息學(xué)分析[J].中草藥,2014, 45(18):2684-2690.
[37] Ha S H, Lee S W, Kim Y M,etal.. Molecular characterization of Hmg2 gene encoding a 3-hydroxy-methylglutaryl-CoA reductase in rice[J]. Mol. Cells, 2001, 11(3):295-302.
[38] Akhtar N, Gupta P, Sangwan N S,etal.. Cloning and functional characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene fromWithaniasomnifera: An important medicinal plant[J]. Protoplasma, 2013, 250(2):613-622.
[39] Villar-Martínez A D, Ma R, Paredes-López O. Molecular characterization of cDNAs encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in marigold (Tageteserecta)[J]. J. Plant Physiol., 1999, 155(2):205-211.
[40] 彭 江,孫一銘,宋 鋒,等.尾巨桉3-羥基3-甲基戊二酰CoA還原酶基因的克隆及表達(dá)分析[J].林業(yè)科學(xué),2011, 47(2):164-168.
[41] Maldonado-Mendoza I E, Vincent R M, Nessler C L. Molecular characterization of three differentially expressed members of theCamptothecaacuminata3-hydroxy-3-methylglutaryl CoA reductase (HMGR) gene family[J]. Plant Mol. Biol., 1997, 34(5):781-790.
[42] 陳小保,李帥廣,易善澤,等.陽春砂HMGR基因cDNA克隆及生物信息學(xué)分析[J].暨南大學(xué)學(xué)報(bào), 2016, 37 (4), 285-292.
[43] Shen G, Pang Y, Wu W,etal.. Cloning and characterization of a root-specific expressing gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase fromGinkgobiloba[J]. Mol. Biol. Rep., 2006, 33(2):117-127.
[44] Hemmerlin A. Post-translational events and modifications regulating plant enzymes involved in isoprenoid precursor biosynthesis[J]. Plant Sci., 2013, 203-204:41-54.
[45] Campos N, Boronat A. Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase[J]. Plant Cell, 1995, 7:2163-2174.
[46] Deenen N V, Bachmann A L, Schmidt T,etal.. Molecular cloning of mevalonate pathway genes fromTaraxacumbrevicorniculatumand functional characterisation of the key enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. Mol. Biol. Rep., 2012, 39:4337-4349.
[47] Kiran U, Ram M, Khan M A,etal.. Structural and functional characterization of HMG-COA reductase fromArtemisiaannua[J]. Bioinformation, 2010, 5(4):146-149.
[48] Ferrero S, Grados-Torrez R E, Leivar P,etal.. Proliferation and morphogenesis of the endoplasmic reticulum driven by the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase in plant cells[J]. Plant Physiol., 2015, 168:899-914.
[49] Maurey K, Wolf F, Golbeck J. 3-hydroxy-3-methylglutaryl coenzyme A reductase activity inOchromonasmalhamensis[J]. Plant Physiol., 1986, 82:523-527.
[50] Bach T J, Rogers D H, Rudney H. Detergent-solubilization, purification, and characterization of membrane-bound 3-hydroxy-3-methylglutaryl coenzyme A reductase from radish seedlings[J]. Eur. J. Biochem., 1986, 154(1):103-111.
[51] Dale S, Arró M, Becerra B,etal.. Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase (isoform HMGR1) fromArabidopsisthaliana, and its inactivation by phosphorylation at Ser577 byBrassicaoleracea3-hydroxy-3-methylglutaryl-CoA reductase kinase[J]. Eur. J. Biochem., 1995, 233(2):506-513.
[52] Bach T J, Weber T, Motel A. Some properties of enzymes involved in the biosynthesis and metabolism of 3-hydroxy-3-methylglutaryl-CoA in plants[A]. In: Biochemistry of the Mevalonic Acid Pathway to Terpenoids[M]. Springer, 1990,1-82.
[53] Wititsuwannakul R, Wititsuwannakul D, Suwanmanee P. 3-Hydroxy-3-methylglutaryl coenzyme a reductase from the latex ofHeveabrasiliensis[J]. Phytochemistry, 1990, 29(5):1401-1403.
[54] Suzuki M, Kamide Y, Nagata N,etal.. Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) inArabidopsisleads to dwarfing, early senescence and male sterility, and reduced sterol levels[J]. Plant J., 2004, 37(5):750-761.
[55] Schaller H, Grausem B, Benveniste P,etal.. Expression of theHeveabrasiliensis(HBK) Mull. Arg. 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 in tobacco results in sterol overproduction[J]. Plant Physiol., 1995, 109(3):761-770.
[56] Wang Y, Jing F, Yu S,etal.. Co-overexpression of the HMGR and FPS genes enhances artemisinin content inArtemisiaannuaL. [J]. J. Med. Plants Res., 2011, 5(15):3396-3403.
[57] Aquil S, Husaini A M, Abdin M Z,etal.. Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenicArterrdsiaannuaplants[J]. Planta Med., 2009, 75(13):1453-1458.
[58] Nafis T, Akmal M, Ram M,etal.. Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain ofArtemisiaannuaL.[J]. Plant Biotechnol. Rep., 2011, 5(1):53-60.
[59] Alam P, Abdin M. Over-expression of HMG-CoA reductase and amorpha-4, 11-diene synthase genes inArtemisiaannuaL. and its influence on artemisinin content[J]. Plant Cell Rep., 2011, 30(10):1919-1928.
[60] 劉 卉,楊錦芬,魏潔書,等. 陽春砂HMGR、DXR超表達(dá)提高相應(yīng)酶活性及光合色素含量[A]. 見:第三屆全國植物生物技術(shù)及其產(chǎn)業(yè)化大會論文摘要集[C]. 福州,2011, 142.
[61] Kim Y K, Kim J K, Kim Y B,etal.. Enhanced accumulation of phytosterol and triterpene in hairy root cultures ofPlatycodongrandiflorumby overexpression ofPanaxginseng3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. J. Agric. Food Chem., 2013, 61(8):1928-1934.
[62] Wang H, Nagegowda D A, Rawat R,etal.. Overexpression ofBrassicajunceawild-type and mutant HMG-CoA synthase 1 inArabidopsisup-regulates genes in sterol biosynthesis and enhances sterol production and stress tolerance[J]. Plant Biotechnol. J., 2012, 10:31-42.
[63] Tian G, Cheng L, Qi X,etal.. Transgenic cotton plants expressing double-stranded RNAs target HMG-CoAreductase(HMGR) gene inhibits the growth, development and survival of cotton bollworms[J]. Int. J. Biol. Sci., 2015, 11:1296-1305.
[64] Kobayashi T, Kato-Emori S, Tomita K,etal.. Detection of 3-hydroxy-3-methylglutaryl-coenzyme A reductase protein Cm-HMGR during fruit development in melon (CucumismeloL.)[J]. Theor. Appl. Genet., 2002, 104(5):779-785.
[65] Xia R, Li C, Lu W,etal.. 3-Hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) is highly associated with the cell division during the early stage of fruit development which determines the final fruit size inLitchichinensis[J].Gene, 2012, 498:28-35.
[66] Narita O J, Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening[J]. Plant Cell, 1989, 1:81-190.
[67] 張夏楠,郭 娟,申 業(yè),等. 一個新的丹參3-羥基-3-甲基戊二酰輔酶A還原酶3 基因的克隆及其表達(dá)分析[J]. 中國中藥雜志,2012, 37(16):2378-2382.
[68] 羅紅梅,宋經(jīng)元,李雪瑩,等.人參皂苷合成生物學(xué)關(guān)鍵元件HMGR基因克隆與表達(dá)分析[J].藥學(xué)學(xué)報(bào), 2013, 48 (2): 219-227.
[69] Wang Q J, Zheng L P, Zhao P F,etal.. Cloning and characterization of an elicitor-responsive gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase involved in 20-hydroxyecdysone production in cell cultures ofCyanotisarachnoidea[J]. Plant Physiol. Biochnol., 2014, 84:1-9.
[70] Li W, Liu W, Wei H,etal.. Species-specific expansion and molecular evolution of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene family in plants[J]. PLoS ONE, 2014, 9(4),e94172:1-10.
[71] Sando T, Takaoka C, Mukai Y,etal.. Cloning and characterization of mevalonate pathway genes in a natural rubber producing plant,Heveabrasiliensis[J]. Biosci. Biotechnol. Biochem., 2008, 72(8):2049-2060.
[72] 郭茜茜,馬小軍,白隆華,等. 羅漢果內(nèi)參基因篩選和3-羥基3-甲基戊二酰輔酶A還原酶時空表達(dá)分析[J]. 中草藥,2014, 45(15):2224-2229.
[73] Yukimune Y, Tabata H, Higashi Y,etal.. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures[J]. Nat. Biotechnol., 1996, 14(9):1129-1132.
[74] Learned R M, Connolly E L. Light modulates the spatial patterns of 3‐hydroxy-3-methylglutaryl coenzyme A reductase gene expression inArabidopsisthaliana[J]. Plant J., 1997, 11(3):499-511.
[75] Kondo K, Uritani I, Oba K. Induction mechanism of 3-hydroxy-3-methylglutaryl-CoA reductase in potato tuber and sweet potato root tissues[J]. Biosci. Biotech. Biochem., 2003, 67(5):1007-1017.
[76] Wentzinger L F, Bach T J, Hartmann M A. Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase[J]. Plant Physiol., 2002, 130(1):334-346.
[77] Song J, Jiang L, Jameson P E. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat[J]. BMC Plant Biol., 2012, 12: 1-16.
[78] Zalewski W, Galuszka P, Gasparis S,etal.. Silencing of theHvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity[J]. J. Exp. Bot., 2010, 61(6):1839-1851.
[79] Chen L, Hao L, Condon A G,etal.. Exogenous GA3application can compensate the morphogenetic effects of the GA-responsive dwarfing geneRht12 in bread wheat[J]. PLoS ONE, 2014, 9(1): e86431.