李 建
(重慶工程職業(yè)技術(shù)學(xué)院地質(zhì)與測(cè)繪工程學(xué)院,重慶 402260)
礦山開(kāi)采沉陷是指在礦體被開(kāi)采后,巖層和地表原有的受力狀態(tài)被破壞,引起巖層和地表發(fā)生應(yīng)力和應(yīng)變變化的過(guò)程,是一個(gè)涉及范圍廣、持續(xù)時(shí)間長(zhǎng)的復(fù)雜問(wèn)題[1-3]。對(duì)開(kāi)采沉陷變形進(jìn)行精確預(yù)計(jì)是進(jìn)一步研究沉陷機(jī)理、減少沉陷對(duì)礦區(qū)及其鄰區(qū)環(huán)境破壞的重要措施[4-5]。近年來(lái),大量學(xué)者對(duì)開(kāi)采沉陷進(jìn)行了大量卓有成效的研究[6-8],其中Knothe時(shí)間函數(shù)模型是目前我國(guó)應(yīng)用最廣泛的沉陷預(yù)計(jì)方法之一[9-11]。大量研究和實(shí)測(cè)數(shù)據(jù)表明,Knothe時(shí)間函數(shù)模型對(duì)沉陷的預(yù)計(jì)結(jié)果與礦區(qū)沉陷發(fā)展的實(shí)際情況不完全符合[12-13]。本研究對(duì)該模型的不足進(jìn)行分析,結(jié)合河北省武安市紅旗鐵礦6300綜放工作面地表沉陷實(shí)測(cè)資料,對(duì)Knothe時(shí)間函數(shù)開(kāi)采沉陷預(yù)計(jì)模型進(jìn)行改進(jìn)。
礦區(qū)開(kāi)采引起的地表沉陷的發(fā)展過(guò)程是一個(gè)涉及到空間和時(shí)間的四維空間問(wèn)題。諸多研究表明,礦區(qū)開(kāi)采引起的地表沉陷的發(fā)展過(guò)程大致為整個(gè)過(guò)程沉陷值隨著時(shí)間的推移不斷增大,直至最后到達(dá)最大值,沉陷速度的發(fā)展過(guò)程為慢→快→慢,加速度由0發(fā)展為正值,而后由正值發(fā)展為負(fù)值,最后為0[14-17]??梢?jiàn)沉陷值隨著時(shí)間的變化應(yīng)呈現(xiàn)出類(lèi)似于“S”型曲線的變化特征,沉陷速度有一個(gè)最大值,沉陷加速度有正最大值和負(fù)最大值。Knothe時(shí)間函數(shù)模型可表示為
(1)
式中,W為地表沉陷值,mm;c為上覆蓋層的巖性參數(shù);We為地表沉陷最大值,mm;t為沉陷持續(xù)時(shí)間,d;V為沉陷速度,mm/d;a為沉陷加速度,mm/d2。
分析式(1)可知:當(dāng)t=0時(shí),V=Wcc,W=0,a=-Wcc2;當(dāng)t=+∞時(shí),V=0,W=We,a=0??梢?jiàn),由Knothe時(shí)間函數(shù)模型得出的沉陷過(guò)程為加速度a由最大值 -Wcc2減小至0,速度V由最大值Wec減小至0的過(guò)程,該過(guò)程是一個(gè)遞減的過(guò)程,與礦區(qū)沉陷實(shí)際發(fā)展過(guò)程(非線性過(guò)程)不完全相符[18-20]。為此,本研究將地表開(kāi)采沉陷過(guò)程劃分為2個(gè)階段,以沉陷速度最大時(shí)的時(shí)間t0為分界,對(duì)Knothe時(shí)間函數(shù)模型進(jìn)行了改進(jìn),
(2)
對(duì)式(2)分別求解一階導(dǎo)數(shù)、二階導(dǎo)數(shù),可得沉陷速度V和沉陷加速度a的計(jì)算模型
(3)
(4)
本研究采用Matlab軟件分別繪制了We、V、a隨著時(shí)間t的變化曲線,如圖1所示。
圖1 最大沉陷值、沉陷速度、沉陷加速度隨時(shí)間的變化特征
由圖1可知:①We隨著t的變化呈S型變化,當(dāng)t=0時(shí),W=0;當(dāng)t=+∞時(shí),沉陷值即為We;沉陷最小值為0,最大值為We,且c值越大,沉陷值增大越快;②V值隨著t的變化先增大后減小,在某一刻達(dá)到最大值,當(dāng)t=0或t=+∞時(shí),V=0;③a的絕對(duì)值隨著t的變化先增大后減小,當(dāng)t=0或t=+∞,a=0,在某個(gè)時(shí)刻a的絕對(duì)值達(dá)到最大??梢?jiàn)本研究改進(jìn)Knothe時(shí)間函數(shù)模型的沉陷值、沉陷速度和沉陷加速度隨時(shí)間的變化特征與沉陷實(shí)際發(fā)展情況相符。
圖2 紅旗鐵礦6300綜放工作面測(cè)點(diǎn)布置示意
測(cè)點(diǎn)編號(hào)We/mmVmax/(mm/d)t0/dX/mA#116713461620A#21741925170540A#325129851761467A#433137111873033A#534840621914050A#633630542165391A#732637992326444A#829835512657821A#926630402728541A#10239292729410314A#11145116933111583A#12080064136812690A#13066043039213446A#14039033044114607
注:X為測(cè)點(diǎn)與6300綜放工作面的距離。
本研究中,c=0.011 9。于是,紅旗鐵礦改進(jìn)Knothe時(shí)間函數(shù)開(kāi)采沉陷預(yù)計(jì)模型可表示為
(5)
式中,x,y為各測(cè)點(diǎn)的坐標(biāo)。
分析圖3、圖4及表2可知:利用本研究模型預(yù)計(jì)出的沉陷值與實(shí)測(cè)值吻合度較高,最大誤差小于60 mm、最小誤差小于7 mm、平均相對(duì)誤差小于5%。
圖3 實(shí)測(cè)沉陷值與預(yù)計(jì)值對(duì)比
圖4 6300綜放工作面走向沉陷預(yù)計(jì)值與實(shí)測(cè)值對(duì)比
表2 模型開(kāi)采沉陷預(yù)計(jì)誤差
表3 各模型開(kāi)采沉陷預(yù)計(jì)誤差
針對(duì)Knothe開(kāi)采沉陷預(yù)計(jì)模型的不足,以河北紅旗鐵礦6300綜放工作面為例,構(gòu)建了改進(jìn)Knothe開(kāi)采沉陷預(yù)計(jì)模型。試驗(yàn)表明,該模型的開(kāi)采沉陷預(yù)計(jì)精度優(yōu)于BP神經(jīng)網(wǎng)絡(luò)模型、SVM模型以及概率積分法模型。
[1] 查劍鋒,徐孟強(qiáng).開(kāi)采沉陷預(yù)計(jì)與控制仿真試驗(yàn)教學(xué)系統(tǒng)[J].金屬礦山,2015(9):131-134.
Zha Jianfeng,Xu Mengqiang.Teaching system for mining subsidence prediction and control simulation experiment[J].Metal Mine,2015(9):131-134.
[2] 宋世杰,趙曉光,王雙明,等.覆巖巖土比對(duì)開(kāi)采沉陷的影響分析與數(shù)值模擬[J].中國(guó)煤炭,2015,41(6):63-67.
Song Shijie,Zhao Xiaoguang,Wang Shuangming,et al.Analysis and numerical simulation of influence of overlying rock and soil ratio on mining subsidence[J].China Coal,2015,41(6):63-67.
[3] 題正義,屈年華,時(shí) 星.礦山開(kāi)采沉陷可視化系統(tǒng)設(shè)計(jì)開(kāi)發(fā)及巖移參數(shù)求取[J].中國(guó)安全生產(chǎn)科學(xué)技術(shù),2015(1):97-103.
Ti Zhengyi,Qu Nianhua,Shi Xing.Design and development of mining subsidence visualization system and calculation of rock migration parameters[J].Journal of Safety Science and Technology,2015(1):97-103.
[4] 徐孟強(qiáng),查劍鋒.基于三角形剖分算法的開(kāi)采沉陷預(yù)計(jì)系統(tǒng)設(shè)計(jì)[J].金屬礦山,2016(2):128-131.
Xu Mengqiang,Zha Jianfeng.Design of mining subsidence prediction system based on triangular split algorithm[J].Metal Mine,2016(2):128-131.
[5] 朱忠華,王李管,畢 林,等.基于二分迭代的傾斜條帶狀工作面開(kāi)采沉陷預(yù)計(jì)研究[J].應(yīng)用力學(xué)學(xué)報(bào),2015,32(4):664-669.
Zhu Zhonghua,Wang Liguan,BI Lin,et al.Study on mining subsidence of inclined strip-shaped working face based on dichotomy[J].Journal of Applied Mechanics,2015,32(4):664-669.
[6] 秦世界,張和生,李國(guó)棟.基于FLAC3D的煤礦開(kāi)采沉陷預(yù)計(jì)及與概率積分法的對(duì)比分析[J].煤炭工程,2014,46(6):96-98.
Qin Shijie,Zhang Hesheng,Li Guodong.Preparation of coal mining subsidence based on FLAC3Dand comparative analysis of probability integral method[J].Coal Science and Technology,2014,46(6):96-98.
[7] 孟萬(wàn)利,蔡來(lái)良,楊望山,等.礦區(qū)開(kāi)采沉陷預(yù)計(jì)的Geomagic法[J].金屬礦山,2017(1):126-131.
Meng Wanli,Cai Lailiang,Yang Wangshan,et al.Mining subsidence prediction method based on Geomagic[J].Metal Mine,2017(1):126-131.
[8] 蔡來(lái)良,莫小華,吳 侃,等.考慮底板巖層移動(dòng)的急傾斜煤層開(kāi)采沉陷預(yù)計(jì)[J].地下空間與工程學(xué)報(bào),2016,12(4):1048-1054.
Cai Liang,Mo Xiaohua,Wu Kan,et al.Steep coal seam mining subsidence prediction considering floor strata movement[J] Journal of Underground Space and Engineering,2016,12(4):1048-1054.
[9] 胡青峰,崔希民,康新亮,等.Knothe時(shí)間函數(shù)參數(shù)影響分析及其求參模型研究[J].采礦與安全工程學(xué)報(bào),2014,31(1):122-126.
Hu Qingfeng,Cui Ximin,Kang Xinliang,et al.Study on influence of Knothe time function parameters and its parametric model[J].Journal of Mining & Safety Engineering,2014,31(1):122-126.
[10] 王文學(xué),王四巍,劉海寧,等.采后覆巖裂隙巖體應(yīng)力恢復(fù)的時(shí)空特征[J].采礦與安全工程學(xué)報(bào),2017,34(1):127-133.
Wang Wenxue,Wang Siwei,Liu Haining,et al.Spatial and temporal characteristics of stress recovery in post-mining fractured rock mass[J].Journal of Mining and Safety Engineering,2017,34(1):127-133.
[11] 王軍保,劉新榮,劉小軍.開(kāi)采沉陷動(dòng)態(tài)預(yù)測(cè)模型[J].煤炭學(xué)報(bào),2015,40(3):516-521.
Wang Junbao,Liu Xinrong,Liu Xiaojun.Subsidence dynamic prediction model[J].Journal of China Coal Society,2015,40(3):516-521.
[12] 李春意,高永格,崔希民.基于正態(tài)分布時(shí)間函數(shù)地表動(dòng)態(tài)沉陷預(yù)測(cè)研究[J].巖土力學(xué),2016(S):108-116.
Li Chunyi,Gao Yongge,Cui Ximin.Study on ground surface dynamic subsidence prediction based on normal distribution time function[J].Rock and Soil Mechanics,2016(S):108-116.
[13] 崔希民,鄧喀中.煤礦開(kāi)采沉陷預(yù)計(jì)理論與方法研究評(píng)述[J].煤炭科學(xué)技術(shù),2017,45(1):160-169.
Cui Ximin,Deng Kazhong.Study on the theory and method of coal mining subsidence prediction[J].Coal Science and Technology,2017,45(1):160-169.
[14] 郭博婷,胡海峰,廉旭剛.基于Knothe模型的山區(qū)開(kāi)采地表動(dòng)態(tài)下沉預(yù)計(jì)方法[J].煤礦安全,2016,47(3):190-193.
Guo Boting,Hu Haifeng,Lian Xugang.Optimization method of dynamic subsidence in mountainous area based on Knothe model[J].Coal Mine Safety,2016,47(3):190-193.
[15] 劉偉韜,謝祥祥,劉 歡,等.多煤層開(kāi)采沉陷動(dòng)態(tài)預(yù)計(jì)分析[J].煤礦安全,2016,47(10):228-230.
Liu Weitao,Xie Xiangxiang,Liu Huan,et al.Analysis of multi-seam mining subsidence dynamic prediction[J].Coal Mine Safety,2016(10):228-230.
[16] 肖 武,胡振琪,李太啟,等.采區(qū)地表動(dòng)態(tài)沉陷模擬與復(fù)墾耕地率分析[J].煤炭科學(xué)技術(shù),2013,41(8):126-128.
Xiao Wu,Hu Zhenqi,Li Taiqi,et al.Characteristics of dynamic subsidence simulation and reclamation of cultivated land in mining area[J].Coal Science and Technology,2013,41(8):126-128.
[17] 陸垂裕,陸春輝,李 慧,等.淮南采煤沉陷區(qū)積水過(guò)程地下水作用機(jī)制[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):122-131.
Lu Cuiyu,Lu Chunhui,Li Hui,et al.Groundwater influencing mechanism in water-ponding process of Huainan mining subsidence area[J].Journal of Agricultural Engineering,2015,31(10):122-131.
[18] 張 兵,崔希民.開(kāi)采沉陷動(dòng)態(tài)預(yù)計(jì)的分段Knothe時(shí)間函數(shù)模型優(yōu)化[J].巖土力學(xué),2017,38(2):541-548.
Zhang Bing,Cui Ximin.Study on segmented Knothe time function model for mining subsidence prediction[J].Rock and Soil Mechanics,2017,38(2):541-548.
[19] 王 磊,張鮮妮,郭廣禮,等.固體密實(shí)充填開(kāi)采地表沉陷預(yù)計(jì)模型研究[J].巖土力學(xué),2014,35(7):1973-1978.
Wang Lei,Zhang Xianni,Guo Guangli,et al.Study on prediction model of surface subsidence in solid compact filling and mining[J].Rock and Soil Mechanics,2014,35(7):1973-1978.
[20] 蔡征龍,徐衛(wèi)亞,石 崇,等.基于簡(jiǎn)化Bishop積分法降雨滑坡失效概率模型研究[J].四川大學(xué)學(xué)報(bào):工程科學(xué)版,2016,48(3):64-70.
Cai Zhenglong,Xu Weiya,Shi Chong,et al.Study on failure probability model of rainfall landslide based on simplified Bishop integral method[J].Journal of Sichuan University:Engineering Science Edition,2016,48(3):64-70.
[21] 趙忠明,施天威,董 偉,等.灰色關(guān)聯(lián)分析與 BP神經(jīng)網(wǎng)絡(luò)的概率積分法參數(shù)預(yù)測(cè)[J].測(cè)繪科學(xué),2017,42(7):36-40.
Zhao Zhongming,Shi Tianwei,Dong Wei,et al.The prediction of probability-integral method parameters based on grey relational analysis and BP neural network[J].Science and Surveying and Mapping,2017,42(7):36-40.
[22] 趙 飛.基于支持向量機(jī)的煤礦開(kāi)采沉陷預(yù)測(cè)模型研究[J].礦山測(cè)量,2015(6):27-29.
Zhao Fei.Study on coal mining subsidence prediction model based on support vector machine[J].Mine Surveying,2015(6):27-29.
[23] 徐 翀,黃 暉.基于概率積分模型的開(kāi)采沉陷預(yù)計(jì)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J].煤田地質(zhì)與勘探,2012,40(3):59-61.
Xu Chong,Huang Hui.Design and implementation of mining subsidence prediction system based on probabilistic integral model[J].Coal Geology & Exploration,2012,40(3):59-61.