王洪洋 秦麗娟 唐唯 田振東
(1. 云南師范大學(xué)生命科學(xué)學(xué)院,昆明 650500;2. 云南省芒市植保植檢站,芒市 678400;3. 農(nóng)業(yè)部馬鈴薯生物學(xué)與生物技術(shù)重點(diǎn)實(shí)驗(yàn)室華中農(nóng)業(yè)大學(xué),武漢 430070)
馬鈴薯(Solanum tuberosumL.)是繼水稻、小麥、玉米之后全球第四大重要糧食作物,在全世界158個國家廣泛種植(http://www.fao.org/statistics/zh/)。由致 病疫霉 菌(Phytophthora infestans(Mont.)de Bary)引起的馬鈴薯晚疫病嚴(yán)重威脅著全球馬鈴薯生產(chǎn)安全[1]。在長期自然進(jìn)化中,馬鈴薯形成了一套有效的免疫體系來抵擋各種病原菌人侵。同時病原菌為了侵染寄主,也形成了多種機(jī)制來克服馬鈴薯的防御反應(yīng)。P. infestans能夠在馬鈴薯中成功侵染并繁衍的一個關(guān)鍵因素就是通過吸器組織向植物細(xì)胞內(nèi)分泌一類具有“RXLR”保守結(jié)構(gòu)的效應(yīng)蛋白,抑制由病原菌的病原相關(guān)分子模式分子(Pathogenassociated molecular patterns,PAMPs)激發(fā)的免疫反應(yīng)(PAMP-triggered immunity,PTI),促使植物更易感病[2-6]。然而馬鈴薯則進(jìn)化出NB-LRR類抗病基因(Resistance gene toP. infestans,Rpi),其編碼蛋白直接或間接特異識別P. infestans中RXLR效應(yīng)蛋白,產(chǎn)生效應(yīng)子激發(fā)免疫反應(yīng)(Effector-triggered immunity,ETI)[7-8]。這些被 Rpi蛋白特異識別的RXLR效應(yīng)蛋白稱為無毒蛋白(Avirulence protein,AVR)。在馬鈴薯與P. infestans這一復(fù)雜的防御與侵染互作過程中,RXLR效應(yīng)蛋白起著關(guān)鍵的作用。本文以RXLR效應(yīng)蛋白為切入點(diǎn),綜述了P.infestans的RXLR效應(yīng)子相關(guān)研究進(jìn)展,以期為RXLR效應(yīng)蛋白今后研究及P. infestans與馬鈴薯的互作機(jī)制研究提供較為系統(tǒng)而全面的參考信息。
病原菌效應(yīng)蛋白及其功能研究是寄主與病原菌互作研究領(lǐng)域的熱點(diǎn)。真核病原菌分泌效應(yīng)蛋白途徑不同于原核細(xì)菌的Ⅲ型分泌系統(tǒng),可能主要是通過內(nèi)質(zhì)網(wǎng)-高爾基(ER-Golgi)的蛋白分泌系統(tǒng)[9]。病原菌效應(yīng)子必須被分泌并轉(zhuǎn)運(yùn)到寄主細(xì)胞的特定區(qū)域才能發(fā)揮致病作用。根據(jù)效應(yīng)子在植物細(xì)胞的不同作用位置,效應(yīng)子一般分為胞質(zhì)效應(yīng)蛋白(Cytoplasmic effector)和質(zhì)外體效應(yīng)蛋白(Apoplastic effector)。致病疫霉RXLR胞質(zhì)效應(yīng)蛋白既可以作為致病因子促進(jìn)寄主植物感病,又可以作為無毒因子被抗病基因編碼蛋白識別激發(fā)寄主防御反應(yīng)[7]。RXLR效應(yīng)蛋白的主要特征是其N端含有一個15-25個疏水性氨基酸殘基組成的信號肽,信號肽后是保守的Arg-X-Leu-Arg(RXLR,X代表任意氨基酸)結(jié)構(gòu)域,以及多態(tài)性的C端效應(yīng)子功能域[10]。N端信號肽和RXLR結(jié)構(gòu)域與效應(yīng)子分泌和轉(zhuǎn)運(yùn)進(jìn)入寄主細(xì)胞有關(guān),而多態(tài)性的C端功能域則是病原菌用來調(diào)控寄主防御反應(yīng)和通過快速進(jìn)化從而躲避寄主抗病蛋白識別的關(guān)鍵區(qū)域[11]。
隨著基因組測序技術(shù)的飛快發(fā)展,2009年完成了P. infestans菌株T30-4全基因組的測序和組裝,研究發(fā)現(xiàn)P. infestans全基因組有240 Mb,預(yù)測有17 797個編碼基因,其中包含563個RXLR效應(yīng)子基因[12]。Raffaele等[13]對P. infestans的基因組骨架和基因表達(dá)譜進(jìn)行分析發(fā)現(xiàn),P. infestans基因組中有540個RXLR效應(yīng)子基因,且其中有97.4%都位于基因組轉(zhuǎn)座子區(qū),變異率非常高,這些快速變異的RXLR效應(yīng)子有助于P. infestans快速的適應(yīng)寄主植物。Cooke等[14]對P. infestans的A2交配型的生理小種06_3928A進(jìn)行了全基因組測序,并與參考菌株T30-4全基因組比較分析發(fā)現(xiàn),405個RXLR效應(yīng)子基因SNP標(biāo)記中存在278個(69%)非同義替換,作者認(rèn)為這些多態(tài)型的RXLR效應(yīng)蛋白可能是導(dǎo)致P. infestans基因型13_A2菌株快速發(fā)展成為英國優(yōu)勢致病菌株的原因。RXLR效應(yīng)蛋白的快速進(jìn)化對P. infestans克服已有馬鈴薯抗病基因起著十分重要的作用。
已有研究顯示P. infestans能夠分泌RXLR效應(yīng)子到寄主細(xì)胞內(nèi)以干擾植物免疫反應(yīng),RXLR效應(yīng)子扮演著毒性因子的角色,但是目前絕大多數(shù)效應(yīng)子如何發(fā)揮其毒性功能還不清楚。通過轉(zhuǎn)錄組分析,研究者發(fā)現(xiàn)至少79個RXLR效應(yīng)子基因在P.infestans接種寄主后2-3 d內(nèi)表達(dá)量顯著增高[12]。這些效應(yīng)子理論上在抑制植物PTI免疫、調(diào)控轉(zhuǎn)錄因子、蛋白降解、信號傳導(dǎo)、泛素化等方面發(fā)揮著重要功能。
目前,部分P. infestans侵染前期上調(diào)表達(dá)的RXLR效應(yīng)子基因亞細(xì)胞定位、寄主標(biāo)靶及其功能已有研究報道(表 1)。McLellan等[2]研究發(fā)現(xiàn),效應(yīng)子PITG_03192的寄主靶標(biāo)是馬鈴薯轉(zhuǎn)錄因 子 StNTP1和 StNTP2,PITG_03192抑 制 StNTP1和StNTP2從內(nèi)質(zhì)網(wǎng)向細(xì)胞核的轉(zhuǎn)運(yùn),從而促進(jìn)P.infestans侵染。絲裂原活化蛋白激酶在植物免疫信號傳導(dǎo)途徑中起著重要作用[15]。King等[3]報道效應(yīng)子PexRD2可以特異結(jié)合并抑制植物絲裂原活化蛋白激酶MAPKKKε的激酶活性,進(jìn)而干擾植物免疫相關(guān)信號傳導(dǎo),致使植物更容易感?。?]。P.infestans基因組中存在數(shù)百個RXLR效應(yīng)子基因,研究發(fā)現(xiàn)RXLR效應(yīng)子具有功能冗余性,一部分RXLR效應(yīng)子執(zhí)行同樣的功能。Zheng等[4]通過在番茄原生質(zhì)體中表達(dá)33個致病疫霉RXLR效應(yīng)子,結(jié)果發(fā)現(xiàn) PITG_04097、PITG_04145、PITG_06087、PITG_09585、PITG_13628、PITG_13959、PITG_18215和PITG_20303等8個效應(yīng)子可以抑制病原相關(guān)分子模式flg22激發(fā)的早期PTI免疫反應(yīng),同樣在番茄上有3個RXLR效應(yīng)子(PITG_13628,PITG_13959,PITG_18215)能夠抑制番茄中MAP激酶活性,干擾植物抗病信號傳導(dǎo)。Dagdas等[16]利用免疫共沉淀技術(shù)在本式煙草上篩選到RXLR效應(yīng)子PexRD54(PITG_09316)的互作蛋白,發(fā)現(xiàn)PexRD54與植物自噬蛋白ATG8CL互作并加速細(xì)胞內(nèi)自噬體的形成,同時大大減弱了自噬運(yùn)輸受體Joka2介導(dǎo)的免疫反應(yīng)。Wang等[17]發(fā)現(xiàn)在本氏煙草中瞬時表達(dá)細(xì)胞核(nucleus)定位RXLR效應(yīng)子PITG_22798可以激發(fā)細(xì)胞死亡,核定位突變后PITG_22798不能誘導(dǎo)產(chǎn)生細(xì)胞死亡。該細(xì)胞死亡依賴SGT1介導(dǎo)的信號傳導(dǎo)途徑,并可以被P. infestans無毒蛋白AVR3b抑制。
植物體內(nèi)存在一類蛋白,能夠被病原菌利用并促進(jìn)病原菌侵染,即感病因子(Susceptibility factor,S factor)。在寄主植物中沉默或突變感病因子有助于增強(qiáng)植物抗病性[18-20]。Wang等[21]研究首次發(fā)現(xiàn)P. infestans細(xì)胞核定位效應(yīng)子PITG_04089可以通過與感病因子RNA結(jié)合蛋白StKRBP1互作并調(diào)控StKRBP1的積累來促進(jìn)P. infestans侵染。另外作者還發(fā)現(xiàn)細(xì)胞核定位對于效應(yīng)子PITG_04089發(fā)揮毒性功能至關(guān)重要。Boevink等[6]發(fā)現(xiàn)RXLR效應(yīng)子PITG_04314雖然可以與植物蛋白磷酸酶PP1c催化亞基產(chǎn)生互作,并促進(jìn)PP1c從核仁轉(zhuǎn)運(yùn)到核質(zhì),但是PITG_04314并沒有影響PP1c的磷酸酶活性。研究者推測效應(yīng)子PITG_04314是通過與PP1c發(fā)生互作形成PITG_04314- PP1c復(fù)合體全酶形式負(fù)調(diào)控植物防御反應(yīng)。在馬鈴薯中超量表達(dá)PITG_04314基因,JA-和SA-響應(yīng)報告基因明顯表達(dá)下調(diào)。同樣效應(yīng)子PITG_04314發(fā)揮毒性功能與其細(xì)胞核定位關(guān)聯(lián)。Yang等[5]研究發(fā)現(xiàn)RXLR效應(yīng)子PITG_02860可以與感病因子StNRL1互作調(diào)控植物免疫反應(yīng),另外只有當(dāng)PITG_02860基因在細(xì)胞質(zhì)(cytoplasm)中表達(dá)時,PITG_02860才能抑制INF1(P. infestans的PAMP)介導(dǎo)的HR反應(yīng)和促進(jìn)植物感病。
表1 已報道毒性RXLR效應(yīng)子亞細(xì)胞定位及寄主靶標(biāo)
目前報道的所有P. infestans無毒蛋白(AVR)均屬于RXLR類效應(yīng)蛋白,同樣具有N端信號肽、RXLR結(jié)構(gòu)域和C-端功能域,無毒基因具有在P.infestans侵染前期上調(diào)表達(dá)的特點(diǎn)[10]。P. infestans的AVR基因與馬鈴薯Rpi基因間的互作識別符合“基因?qū)颉蹦P停?2]。當(dāng)這些AVR蛋白進(jìn)入細(xì)胞內(nèi)后,會抑制病原菌PAMP激發(fā)的PTI免疫途徑,然而當(dāng)寄主細(xì)胞內(nèi)有對應(yīng)的Rpi基因存在時,Rpi蛋白會特異識別這些AVR蛋白,從而激發(fā)ETI免疫途徑,使馬鈴薯產(chǎn)生抗病性。近年來,關(guān)于P. infestans的AVR基因的克隆、亞細(xì)胞定位、寄主靶標(biāo)及功能等方面的研究已有很好的進(jìn)展(表2)。
目前,已被克隆的P. infestans的AVR基因已有10 個, 即AVR1[23]、AVR2[24]、AVR3a[25]、AVR3-b[26]、AVR4[27]、AVR-blb1[28]、AVR-blb2[29]、AVR-vnt1[30]、AVRSmira1[31]和AVRSmira2/AVR8[31-32]。
AVR3a是第一個從P. infestans中克隆到的RXLR類無毒基因[25]。研究發(fā)現(xiàn)AVR3a可以與植物E3泛素連接酶CMPG1和GTP酶DRP2互作,從而抑制INF1和flg22介導(dǎo)的PTI免疫反應(yīng),促進(jìn)P.infestans侵染植物[33-34]。Rpi-R3a和AVR3a的識別互作模式目前尚不清楚。雖然AVR3a和Rpi-R3a可以共定位在植物細(xì)胞質(zhì)內(nèi)涵體中激發(fā)HR反應(yīng),但是酵母雙雜交和免疫共沉淀均不能證明AVR3a和Rpi-R3a直接互作[35]。另外沉默CMPG1不影響Rpi-R3a識別AVR3a激發(fā)HR反應(yīng),說明CMPG1不是Rpi-R3a識別AVR3a信號途徑中的關(guān)鍵因子[36]。
表2 已報道的P. infestans無毒基因
研究發(fā)現(xiàn),只有當(dāng)AVR1和Rpi-R1均在細(xì)胞核中表達(dá)時,Rpi-R1才能識別AVR1并激發(fā)HR反應(yīng)。當(dāng)AVR1在細(xì)胞質(zhì)中表達(dá)時,可以抑制效應(yīng)子CRN2介導(dǎo)的細(xì)胞死亡反應(yīng)[23]。通過酵母雙雜交和免疫共沉淀發(fā)現(xiàn)AVR1與蛋白復(fù)合體exocyst的一個亞基Sec5互作,可能干擾植物防御中細(xì)胞囊泡運(yùn)輸途徑。AVR1通過抑制Sec5從而導(dǎo)致病程相關(guān)蛋白PR-1分泌減少和降低P. infestans接種點(diǎn)處胼胝質(zhì)積累,使植物免疫能力下降。Sec5是否在Rpi-R1識別AVR1反應(yīng)途徑中扮演重要角色有待進(jìn)一步研究[37]。
AVR2和AVR-blb2主要在植物細(xì)胞質(zhì)膜(Plasma membrane,PM)和P. infestans侵染點(diǎn)處吸器組織內(nèi)表達(dá)[24,38-39]。AVR-blb2可通過與植物防御相關(guān)木瓜蛋白酶C14互作,抑制其在質(zhì)外體內(nèi)積累,從而干擾植物防御反應(yīng)[38]。另外,研究發(fā)現(xiàn)Rpi-blb2識別AVR-blb2激發(fā)的HR反應(yīng)依賴SGT1,不需要水楊酸、茉莉酸或者乙烯介導(dǎo)的信號傳導(dǎo)途徑[40]。馬鈴薯磷酸酶StBSL1蛋白參與油菜素內(nèi)脂信號傳導(dǎo),調(diào)控生長和發(fā)育。研究發(fā)現(xiàn)P. infestans無毒蛋白AVR2與StBSL1形成復(fù)合體進(jìn)而被抗病蛋白Rpi-R2識別、激發(fā)HR反應(yīng),Rpi-R2和AVR2識別免疫反應(yīng)符合“警戒”假說[24]?;蛐酒治霭l(fā)現(xiàn),表達(dá)AVR2的轉(zhuǎn)基因馬鈴薯中參與油菜素內(nèi)酯信號傳導(dǎo)的轉(zhuǎn)錄因子StCHL1組成型表達(dá),瞬時超量表達(dá)StCHL1和AVR2促進(jìn)植物感病,沉默StCHL1基因則增強(qiáng)馬鈴薯對P. infestans的抵抗能力。研究者指出,AVR2是通過激活植物油菜素內(nèi)酯信號傳導(dǎo)間接抑制INF1介導(dǎo)植物PTI免疫反應(yīng),促進(jìn)植物感?。?1]。
AVR3b定位在植物細(xì)胞質(zhì)和質(zhì)膜上,可以抑制flg22介導(dǎo)的早期PTI免疫反應(yīng)和番茄中MAP激酶活性,干擾植物抗病信號傳導(dǎo),促進(jìn)P. infestans侵染[4]。目前尚未發(fā)現(xiàn)AVR3b在植物體內(nèi)的寄主靶標(biāo)蛋白,其致病分子機(jī)理有待進(jìn)一步研究。PVX-agroinfection分析發(fā)現(xiàn)AVR4可以被含有Rpi-R4的馬鈴薯材料識別并激發(fā)HR反應(yīng),其C-端W基序是蛋白識別的關(guān)鍵區(qū)域[42]。同樣有關(guān)AVR4的寄主靶標(biāo)蛋白未見有報道。
在P. infestans無毒蛋白(AVR)和馬鈴薯抗晚疫病蛋白(Rpi)互作識別模式研究中,AVR-blb1(IPI-O1)與Rpi-blb1符合直接互作識別模式。研究發(fā)現(xiàn)Rpi-blb1中CC結(jié)構(gòu)域是與AVR-blb1互作的重要結(jié)構(gòu)域。AVR-blb1蛋白結(jié)構(gòu)中第129位亮氨酸對Rpi-blb1識別AVR-blb1激發(fā)HR起到關(guān)鍵作用,突變第129位亮氨酸(L129P)則導(dǎo)致Rpi-blb1不能與AVR-blb1互作,也不能產(chǎn)生HR。另外AVR-blb1的毒性蛋白形式IPI-O4也可以與Rpi-blb1直接互作。研究者指出P. infestans的AVR-blb1毒性形式IPI-O4通過與IPI-O1競爭互作Rpi-blb1,使Rpiblb1處于非激活狀態(tài),進(jìn)而大大減弱植物ETI免疫反應(yīng)[43]。另外,研究發(fā)現(xiàn),AVR-blb1還可以通過細(xì)胞黏附基序RGD與擬南芥中的凝集素受體激酶LecRK-I.9發(fā)生互作。超量表達(dá)LecRK-I.9增強(qiáng)擬南芥對P. brassicae的抗性,突變LecRK-I.9和超量表達(dá)AVR-blb1導(dǎo)致病原菌接種點(diǎn)處胼胝質(zhì)的積累減弱,促使擬南芥感?。?4]。
AVR-vnt1可以被Rpi-vnt1和Rpi-phu1識別并激發(fā)抗性反應(yīng)[30,45]。研究發(fā)現(xiàn)P. infestans毒性生理小種(MP324x和MP1580)在無Rpi-phu1的馬鈴薯中侵染時還是會表達(dá)AVR-vnt1,只是在含Rpi-phu1的馬鈴薯上會通過基因沉默等方式不表達(dá)AVR-vnt1以躲避Rpi-phu1等抗病蛋白的識別以達(dá)到致病目的[45]。另外,通過效應(yīng)子組學(xué)策略研究發(fā)現(xiàn),部分RXLR效應(yīng)子可以作為候選無毒蛋白被辣椒、龍葵識別并激發(fā)HR反應(yīng),參與了P. infestans的非寄主抗性免疫途徑[46-47]。
P. infestans生理小種的變化和區(qū)域分布是影響馬鈴薯品種抗病性能否持久的主要因素之一,了解AVR基因在小種間的變化不僅有助于揭示AVR基因進(jìn)化變異的過程,同時也可以檢測生理小種的變化,為選育抗病品種以及生產(chǎn)中抗病品種/抗源合理利用提供依據(jù)。P. infestans數(shù)百個RXLR效應(yīng)子基因中,AVR基因可以通過基因缺失、序列多態(tài)性或者轉(zhuǎn)錄調(diào)控表達(dá)等變異機(jī)制來幫助P. infestans躲避對應(yīng)抗病蛋白的識別(表3)。
AVR基因缺失,主要表現(xiàn)在基因編碼序列的全部與部分缺失,基因上下游序列的全部與部分缺失[51]。通過與參考菌株T30-4基因組比對,Pais等[52]發(fā)現(xiàn)P. infestans菌株 P13527中有 62個基因缺失,菌株P(guān)13626中有60個基因缺失。AVR1、AVR2、AVR3b和AVR-blb1在P. infestans不同生理小種中均存在基因缺失[23,53-55]。研究發(fā)現(xiàn),能夠克服Rpi-R1的一個P. infestans毒性菌株中缺失AVR1基因,但是在相同位置上存在一個AVR1-like基因。AVR1-like蛋白同樣是RXLR效應(yīng)子,AVR1-like的C端缺失38個氨基酸,導(dǎo)致了AVR1-like不能被Rpi-R1識別[23]。通過在29個P. infestans生理小種中擴(kuò)增AVR2基因,測序分析發(fā)現(xiàn)12個克服Rpi-R2的毒性菌株中有9個菌株缺失AVR2,在剩余3株毒性菌株和17株無毒菌株中AVR2存在序列多態(tài)性變異。另外在毒性菌株中克隆出AVR2-like,經(jīng)氨基酸序列比對發(fā)現(xiàn)AVR2-like與AVR2存在13個氨基酸差異,且AVR2-like不能被Rpi-R2識別。研究者指出毒性P. infestans菌株中AVR2主要通過缺失、差異表達(dá)及序列多態(tài)性變異逃避Rpi-R2識別致使植物感?。?3]。對多個P. infestans菌株中編碼的AVR-blb1(IPI-O)基因家族進(jìn)行測序與分析,發(fā)現(xiàn)16種IPI-O蛋白變異型。根據(jù)氨基酸序列差異比對,將這16個差異蛋白可分成3組,其中第一組和第二組的變異型可以被Rpi-blb1識別,第三組的IPI-O4不能被Rpi-blb1識別,而且還與IPI-O1競爭互作Rpi-blb1,從而阻斷 Rpi-blb1 介導(dǎo)的抗病免疫反應(yīng)[43,54,56]。
基因序列多態(tài)性包括堿基序列多態(tài)性、點(diǎn)突變等。AVR3a在P. infestans毒性菌株主要通過氨基酸點(diǎn)突變變異成毒性基因,毒性基因和無毒基因序列的差異主要在3個氨基酸位點(diǎn),其中一個位于信號肽,另外兩個位于C端功能域。攜帶 Avr3aC19K80I103的P. infestans菌株對于含有Rpi-R3a馬鈴薯表現(xiàn)無毒性,而攜帶Avr3aS19E80M103菌株表現(xiàn)為毒性。研究表明AVR3a蛋白序列中第80位、103位的氨基酸對Rpi-R3a識別AVR3a具有重要作用[25]。目前發(fā)現(xiàn)AVR4的毒性形態(tài)主要是發(fā)生了移碼突變,導(dǎo)致基因短截,從而逃避了抗病蛋白的識別[27]。利用基于SNP策略對來自23個馬鈴薯主產(chǎn)國家采集的352株P(guān). infestans菌株進(jìn)行分析,研究發(fā)現(xiàn)AVR-blb2基因家族的多態(tài)性很高,且第69位氨基酸的點(diǎn)突變(F69I)對Rpi-blb2識別激活具有關(guān)鍵作用[57]。Stefańczyk 等[45]對 4 個P. infestans強(qiáng)致病生理小種中AVR-smira1基因進(jìn)行擴(kuò)增和測序,結(jié)果發(fā)現(xiàn)AVR-smira1在這4個小種中均有非同義突變。
病原菌中無毒基因選擇性表達(dá)也是毒性變異的一種策略[58]。Pais等[52]通過對P. infestans基因組和基因表達(dá)差異分析發(fā)現(xiàn),17個基因在P13626菌株中不表達(dá),AVR-vnt1是其中之一,在含有Rpivnt1.1的轉(zhuǎn)基因馬鈴薯上接種P13626表現(xiàn)感病。研究者認(rèn)為菌株P(guān)13626中AVR-vnt1未轉(zhuǎn)錄表達(dá)避開了寄主Rpi-vnt1.1的識別而促進(jìn)植物感病。
表3 無毒基因與抗病基因的互作模式及其在毒性小種中的變異形式
RXLR效應(yīng)蛋白在致病疫霉與寄主互作中起著關(guān)鍵作用。一方面,RXLR效應(yīng)蛋白作為無毒蛋白被寄主抗病蛋白識別激發(fā)植物免疫反應(yīng);另一方面,RXLR效應(yīng)蛋白作為致病疫霉抑制寄主免疫應(yīng)答的關(guān)鍵武器,促進(jìn)植物感?。?0]。通過對RXLR效應(yīng)蛋白功能及其作用機(jī)制的研究有助于進(jìn)一步深入了解致病疫霉與寄主間互作機(jī)制,從理論上指導(dǎo)探索晚疫病防治的新策略和技術(shù)。
卵菌分泌效應(yīng)蛋白途徑不同于原核細(xì)菌的Ⅲ型分泌系統(tǒng),可能主要是通過內(nèi)質(zhì)網(wǎng)-高爾基(ERGolgi)的蛋白分泌系統(tǒng)[9]。基于卵菌基因組的研究表明,卵菌基因組中有一類數(shù)目眾多的編碼帶保守RXLR序列的分泌蛋白基因[12]。RXLR效應(yīng)子如何被分泌轉(zhuǎn)運(yùn)到植物細(xì)胞內(nèi)從而調(diào)節(jié)寄主代謝和免疫反應(yīng)呢?Kale等[61]研究RXLR效應(yīng)子轉(zhuǎn)運(yùn)機(jī)制主要是通過RXLR或RXLR-like基序與植物細(xì)胞膜3-磷酸磷脂酰肌醇分子(PI3P)結(jié)合而進(jìn)入植物細(xì)胞內(nèi)。但這一結(jié)論并不能適用于所有RXLR效應(yīng)蛋白,如效應(yīng)子AVR3a和AVR1d均是C端效應(yīng)子功能域與磷脂類分子結(jié)合,而不是RXLR結(jié)構(gòu)域[62-63]。Wawra等[64]發(fā)現(xiàn)AVR3a在被分泌、轉(zhuǎn)運(yùn)到植物細(xì)胞前,其RXLR基序就已經(jīng)被切除,研究表明RXLR基序在AVR3a蛋白修飾和分泌方面起到一定作用,但并沒有直接參與AVR3a轉(zhuǎn)運(yùn)到植物細(xì)胞的過程。Ve等[65]證明亞麻銹菌的無毒蛋白AVR-M轉(zhuǎn)運(yùn)進(jìn)入細(xì)胞內(nèi)需要N-疏水區(qū)域,而不需要可以與3-磷酸磷脂酰肌醇分子結(jié)合的C-端CC結(jié)構(gòu)域。Wang等[66]發(fā)現(xiàn)RXLR效應(yīng)子PITG_04314與質(zhì)外體效應(yīng)子EPIC1在P. infestans體內(nèi)的分泌途徑不同,即質(zhì)外體效應(yīng)子EPIC1是通過內(nèi)質(zhì)網(wǎng)-高爾基(ER-Golgi)的蛋白分泌系統(tǒng),而RXLR效應(yīng)子PITG_04314則是通過另外一種特殊分泌系統(tǒng)。另外,有的RXLR效應(yīng)子不依賴病原菌編碼機(jī)制也可以自主地進(jìn)入植物細(xì)胞內(nèi),如AVR1b[67]。RXLR效應(yīng)子的轉(zhuǎn)運(yùn)過程非常復(fù)雜,還需要更多的研究來揭示RXLR效應(yīng)蛋白是如何被轉(zhuǎn)運(yùn)到寄主細(xì)胞中的。
致病疫霉基因組中存在數(shù)百個編碼RXLR效應(yīng)子的基因,這些效應(yīng)子進(jìn)入寄主細(xì)胞后通過與寄主靶標(biāo)蛋白結(jié)合來調(diào)控寄主免疫應(yīng)答反應(yīng)[39]。有些RXLR效應(yīng)子靶標(biāo)蛋白對寄主抗性起正調(diào)控作用, 如 Sec5[37],C14[38],LecRK-I.9[44]等, 在 寄主中增強(qiáng)此類基因的表達(dá)會提高抗性;有些靶標(biāo)對寄主抗性起負(fù)調(diào)控作用,如 StNRL1[5],PP1c[6],StKRBP1[21]等,這些基因在寄主中增強(qiáng)表達(dá)會導(dǎo)致寄主抗性下降。靶標(biāo)蛋白對解析效應(yīng)子調(diào)控寄主免疫應(yīng)答機(jī)制和如何提高馬鈴薯抗性具有重要作用。但是,絕大多數(shù)RXLR效應(yīng)子在寄主植物中的互作靶標(biāo)仍然不清楚。系統(tǒng)解析晚疫病菌核心效應(yīng)子如何通過操控寄主靶標(biāo)蛋白抑制寄主免疫應(yīng)答反應(yīng),可為將來通過在寄主中加強(qiáng)被效應(yīng)子抑制的正調(diào)控因子,同時抑制負(fù)調(diào)控因子作用來提高馬鈴薯持久抗性提供新思路。
近年來,由于效應(yīng)子組學(xué)策略的發(fā)展和應(yīng)用,大大加速了P. infestans的AVR和馬鈴薯Rpi基因的克?。?8],但是P. infestans中的AVR蛋白與馬鈴薯Rpi蛋白之間的精細(xì)互作機(jī)制報道很少。迄今為止只有兩篇相關(guān)報道,即Rpi-blb1直接互作識別AVR-blb1,Rpi-R2 間接識別 AVR2[24,43]。另外有關(guān) RXLR效應(yīng)子直接或間接抑制效應(yīng)子激發(fā)免疫反應(yīng)(ETI)的研究報道也不多[7,39]。因此,對已克隆的AVR和對應(yīng)Rpi的互作機(jī)制還需要更深入研究。同時,如何將P. infestans與馬鈴薯互作機(jī)理的研究成果應(yīng)用于P. infestans群體組成、小種變化動態(tài)監(jiān)測、指導(dǎo)抗病品種選育,抗源合理布局及延長抗性品種使用年限等,還有待更深入系統(tǒng)的研究。
[1]謝從華. 馬鈴薯產(chǎn)業(yè)的現(xiàn)狀與發(fā)展[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報:社會科學(xué)版, 2012, (1):1-4.
[2]McLellan H, Boevink PC, Armstrong MR, et al. An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus[J]. PLoS Pathog, 2013, 9(10):e1003670.
[3]King SR, McLellan H, Boevink PC, et al. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKK epsilon to suppress plant immune signaling[J]. Plant Cell, 2014, 26(3):1345-1359.
[4]Zheng X, McLellan H, Fraiture M, et al. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity[J]. PLoS Pathog, 10(4):e1004057.
[5]Yang L, McLellan H, Naqvi S, et al. Potato NPH3/RPT2-Like protein StNRL1, targeted by a Phytophthora infestans RXLR effector, is a susceptibility factor[J]. Plant Physiol, 2016, 171(1):645-657.
[6]Boevink PC, Wang X, McLellan H, et al. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease[J]. Nat Commun, 2016, 7:10311.
[7]Hein I, Gilroy EM, Armstrong MR, et al. The zig-zag-zig in oomyceteplant interactions[J]. Mol Plant Pathol, 2009, 10(4):547-562.
[8]Franceschetti M, Maqbool A, Jimenez-Dalmaroni MJ, et al. Effectors of filamentous plant pathogens:commonalities amid diversity[J].Microbiol Mol Biol Rev, 2017, 81(2):e00066-16.
[9]Petre B, Kamoun S. How do filamentous pathogens deliver effector proteins into Plant Cells?[J]. PLoS Biol, 2014, 12(2):e1001801.
[10]Vleeshouwers VG, Raffaele S, Vossen JH, et al. Understanding and exploiting late blight resistance in the age of effectors[J]. Annu Rev Phytopathol, 2011, 49:507-531.
[11]Birch PR, Boevink PC, Gilroy EM, et al. Oomycete RXLR effectors:delivery, functional redundancy and durable disease resistance[J]. Curr Opin Plant Biol, 2008, 11(4):373-379.
[12]Haas BJ, Kamoun S, Zody MC, et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans[J].Nature, 2009, 461(7262):393-398.
[13]Raffaele S, Win J, Cano LM, et al. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans[J]. BMC genomics, 2010,11:637.
[14]Cooke DE, Cano LM, Raffaele S, et al. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen[J]. PLoS Pathog, 2012, 8(10):e1002940.
[15]Segonzac C, Feike D, Gimenez-Ibanez S, et al. Hierarchy and roles of pathogen-associated molecular pattern-induced responses in Nicotiana benthamiana[J]. Plant Physiol, 2011, 156(2):687-699.
[16]Dagdas YF, Belhaj K, Maqbool A, et al. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor[J]. Elife, 2016, 5 :e10856.
[17]Wang H, Ren Y, Zhou J, et al. The cell death triggered by the nuclear localized RxLR effector PITG_22798 from Phytophthora infestans is suppressed by the effector AVR3b[J]. Int J Mol Sci,2017, 18(2):E409.
[18]Boevink PC, McLellan H, Gilroy EM, et al. Oomycetes seek help from the plant:Phytophthora infestans effectors target host susceptibility factors[J]. Mol Plant, 2016, 9(5):636-638.
[19]Sun K, Wolters AM, Loonen AE, et al. Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broadspectrum resistance to late blight and powdery mildew[J].Transgenic Res, 2016, 25(2):123-138.
[20]Sun K, Wolters AM, Vossen JH, et al. Silencing of six susceptibility genes results in potato late blight resistance[J]. Transgenic Res,2016, 25(5):731-742.
[21]Wang X, Boevink P, McLellan H, et al. A Host KH RNA-binding protein is a susceptibility factor targeted by an RXLR effector to promote late blight disease[J]. Mol Plant, 2015, 8(9):1385-1395.
[22]Flor H. Current status of the gene-for-gene concept[J]. Annu Rev Phytopathol, 1971, 9:275-296.
[23]Du Y, Berg J, Govers F, et al. Immune activation mediated by the late blight resistance protein R1 requires nuclear localization of R1 and the effector AVR1[J]. New Phytol, 2015, 207(3):735-747.
[24]Saunders DG, Breen S, Win J, et al. Host protein BSL1 associates with Phytophthora infestans RXLR effector AVR2 and the Solanum demissum immune receptor R2 to mediate disease resistance[J].Plant Cell, 2012, 24(8):3420-3434.
[25]Armstrong MR, Whisson SC, Pritchard L, et al. An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm[J]. Proc Natl Academy of Sciences, 2005, 102(21):7766-7771.
[26]Li G, Huang S, Guo X, et al. Cloning and characterization of R3b;members of the r3 superfamily of late blight resistance genes show sequence and functional divergence[J]. Mol Plant Microbe Interact, 2011, 24(10):1132-1142.
[27]van Poppel PM, Guo J, van de Vondervoort PJ, et al. The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector[J]. Mol Plant Microbe Interact, 2008, 21(11):1460-1470.
[28]Vleeshouwers VG, Rietman H, Krenek P, et al. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes[J]. PLoS One, 2008, 3(8):e2875.
[29]Oh SK, Young C, Lee M, et al. In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes,including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2[J]. Plant Cell, 2009, 21(9):2928-2947.
[30]Pel M. Mapping, isolation and characterization of genes responsible for late blight resistance in potato[D]. Wageningen:Wageningen University, 2010.
[31]Rietman H, Bijsterbosch G, Cano LM, et al. Qualitative and quantitative late blight resistance in the potato cultivar Sarpo Mira is determined by the perception of five distinct RXLR effectors[J]. Mol Plant Microbe Interact, 2012, 25(7):910-919.
[32]Vossen JH, van Arkel G, Bergervoet M, et al. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties[J].Theor Appl Genet, 2016, 129(9):1785-1796.
[33]Bos JI, Armstrong MR, Gilroy EM, et al. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1[J]. Proc Natl Academy of Sciences, 2010, 107(21):9909-9914.
[34]Chaparro-Garcia A, Schwizer S, Sklenar J, et al. Phytophthora infestans RXLR-WY effector AVR3a associates with Dynamin-related protein 2 required for endocytosis of the plant pattern recognition receptor FLS2[J]. PLoS One, 2015, 10(9):e0137071.
[35]Engelhardt S, Boevink PC, Armstrong MR, et al. Relocalization of late blight resistance protein R3a to endosomal compartments is associated with effector recognition and required for the immune response[J]. Plant Cell, 2012, 24(12):5142-5158.
[36]Gilroy EM, Taylor RM, Hein I, et al. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a[J]. New Phytol, 2011, 190(3):653-666.
[37]Du Y, Mpina MH, Birch PR, et al. Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity[J]. Plant Physiol, 2015, 169(3):1975-1990.
[38]Bozkurt TO, Schornack S, Win J, et al. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface[J]. Proc Natl Academy of Sci, 2011, 108(51):20832-20837.
[39]Whisson SC, Boevink PC, Wang S, et al. The cell biology of late blight disease[J]. Curr Opin Microbiol, 2016, 34:127-135.
[40]Oh SK, Kwon SY, Choi D. Rpi-blb2-mediated hypersensitive cell death caused by Phytophthora infestans AVRblb2 requires SGT1,but not EDS1, NDR1, salicylic acid-, jasmonic Acid-, or ethylenemediated signaling[J]. Plant Pathol J, 2014, 30(3):254-260.
[41]Turnbull D, Yang L, Naqvi S, et al. RXLR effector AVR2 upregulates a brassinosteroid-responsive bHLH transcription factor to suppress immunity[J]. Plant Physiol, 2017, 174(1):356-369.
[42]VAN Poppel PM, Jiang RH, Sliwka J, et al. Recognition of Phytophthora infestans Avr4 by potato R4 is triggered by C-terminal domains comprising W motifs[J]. Mol Plant Pathol, 2009, 10(5):611-620.
[43]Chen Y, Liu Z, Halterman DA. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPIO[J]. PLoS Pathog, 2012, 8(3):e1002595.
[44]Bouwmeester K, de Sain M, Weide R, et al. The lectin receptor kinase LecRK-I. 9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector[J]. PLoS Pathog,2011, 7(3):e1001327.
[45]Stefańczyk E, Sobkowiak S, Brylinska M, et al. Expression of the potato late blight resistance gene Rpi-phu1 and Phytophthora infestans effectors in the compatible and incompatible interactions in potato[J]. Phytopathology, 2017, 107(6):740-748.
[46]Lee HA, Kim SY, Oh SK, et al. Multiple recognition of RXLR effectors is associated with nonhost resistance of pepper against Phytophthora infestans[J]. New Phytol, 2014, 203(3):926-938.
[47]董冉. 馬鈴薯晚疫病菌四個RxLR基因的功能鑒定[D]. 泰安:山東農(nóng)業(yè)大學(xué), 2016.
[48]Guo J. Phytophthora infestans avirulence genes;mapping,cloning and diversity in field isolates[D]. Wageningen, The Netherlands:Wageningen University, 2008.
[49]Lokossou AA, Park TH, van Arkel G, et al. Exploiting knowledge of R/Avr genes to rapidly clone a new LZ-NBS-LRR family of late blight resistance genes from potato linkage group IV[J]. Mol Plant Microbe Interact, 2009, 22(6):630-641.
[50]Lenman M, Ali A, Muhlenbock P, et al. Effector-driven marker development and cloning of resistance genes against Phytophthora infestans in potato breeding clone SW93-1015[J]. Theor Appl Genet, 2016, 129(1):105-115.
[51]姜華, 余歡, 王艷麗, 等. 稻瘟病菌無毒基因序列變異研究進(jìn)展[J]. 浙江農(nóng)業(yè)學(xué)報, 2015, 27(3):512-520.
[52]Pais M, Yoshida K, Giannakopoulou A, et al. Gene expression polymorphism underpins evasion of host immunity in an asexual lineage of the Irish potato famine pathogen[J]. BioRxiv, 2017,116012.
[53]Gilroy EM, Breen S, Whisson SC, et al. Presence/absence,differential expression and sequence polymorphisms between PiAVR2 and PiAVR2-like in Phytophthora infestans determine virulence on R2 plants[J]. New Phytol, 2011, 191(3):763-776.
[54]Champouret N, Bouwmeester K, Rietman H, et al. Phytophthora infestans isolates lacking class I ipiO variants are virulent on Rpiblb1 potato[J]. Mol Plant Microbe Interact, 2009, 22(12):1535-1545.
[55]Yoshida K, Schuenemann VJ, Cano LM, et al. The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine[J]. Elife, 2013, 2:e00731.
[56]Halterman DA, Chen Y, Sopee J, et al. Competition between Phytophthora infestans effectors leads to increased aggressiveness on plants containing broad-spectrum late blight resistance[J].PLoS One, 2010, 5(5):e10536.
[57]Oliva RF, Cano LM, Raffaele S, et al. A recent expansion of the RXLR effector gene Avrblb2 is maintained in global populations of Phytophthora infestans indicating different contributions to virulence[J]. Mol Plant Microbe Interact, 2015, 28(8):901-912.
[58]Qutob D, Tedman-Jones J, Dong S, et al. Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a[J]. PLoS One, 2009, 4(4):e5066.
[59]Bos JI, Kanneganti TD, Young C, et al. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana[J]. Plant J, 2006, 48(2):165-176.
[60]Birch PR, Armstrong M, Bos J, et al. Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans[J]. J Exp Bot, 2009, 60(4):1133-1140.
[61]Kale SD, Gu B, Capelluto DG, et al. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells[J]. Cell, 2010, 142(2):284-295.
[62]Wawra S, Agacan M, Boddey JA, et al. Avirulence protein 3a(AVR3a)from the potato pathogen Phytophthora infestans forms homodimers through its predicted translocation region and does not specifically bind phospholipids[J]. J Biol Chem, 2012, 287(45):38101-38109.
[63]Na R, Yu D, Qutob D, et al. Deletion of the Phytophthora sojae avirulence gene Avr1d causes gain of virulence on Rps1d[J]. Mol Plant Microbe Interact, 2013, 26(8):969-976.
[64]Wawra S, Trusch F, Matena A, et al. The RxLR Motif of the host targeting effector AVR3a of Phytophthora infestans is cleaved before secretion[J]. Plant Cell, 2017, 29(6):1184-1195.
[65]Ve T, Williams SJ, Catanzariti AM, et al. Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity[J]. Proc Natl Academy of Sci, 2013, 110(43):17594-17599.
[66]Wang S, Boevink PC, Welsh L, et al. Delivery of cytoplasmic and apoplastic effectors from Phytophthora infestans haustoria by distinct secretion pathways[J]. New Phytol, 2017, 216(1):205-215.
[67]Dou D, Kale SD, Wang X, et al. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery[J]. Plant Cell, 2008, 20(7):1930-1947.
[68]Vleeshouwers VG, Oliver RP. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens[J]. Mol Plant Microbe Interact,2014, 27(3):196-206.