亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        海藻糖代謝及其調(diào)控昆蟲(chóng)幾丁質(zhì)合成研究進(jìn)展

        2018-03-10 06:06:12唐斌張露熊旭萍汪慧娟王世貴
        關(guān)鍵詞:途徑

        唐斌,張露,熊旭萍,汪慧娟,王世貴

        (杭州師范大學(xué)生命與環(huán)境科學(xué)學(xué)院,杭州 310036)

        海藻糖為一種非還原性糖,廣泛存在于細(xì)菌、真菌、植物和無(wú)脊椎動(dòng)物中,海藻糖不僅是昆蟲(chóng)血淋巴中的重要糖類(lèi)和能量物質(zhì),而且在昆蟲(chóng)的生長(zhǎng)、發(fā)育、蛻皮變態(tài)等一系列生命活動(dòng)活動(dòng)中具有重要作用,因此被稱(chēng)為昆蟲(chóng)的“血糖”[1-3]。昆蟲(chóng)通過(guò)海藻糖合成酶及海藻糖酶來(lái)合成和降解海藻糖,為其進(jìn)行的一系列生命活動(dòng)提供能源。海藻糖不僅是能量來(lái)源物質(zhì),而且是一種重要的抗逆物質(zhì),在各種環(huán)境壓力條件下保護(hù)機(jī)體免受損傷[4-7]。昆蟲(chóng)的外骨骼主要由幾丁質(zhì)構(gòu)成,其幼蟲(chóng)每生長(zhǎng)到一定的階段都需要蛻掉舊的表皮,形成新的表皮,這個(gè)過(guò)程由幾丁質(zhì)合成通路及幾丁質(zhì)降解途徑來(lái)共同完成[8]。海藻糖酶是昆蟲(chóng)幾丁質(zhì)合成通路的第一個(gè)酶,研究表明海藻糖的合成和降解都能通過(guò)控制幾丁質(zhì)合成通路從而影響昆蟲(chóng)發(fā)育[9-11]。而海藻糖合成酶為海藻糖合成的限速酶,同時(shí)考慮到包括人類(lèi)在內(nèi)的高等哺乳動(dòng)物不能自身合成海藻糖[12],海藻糖合成途徑具有作為相對(duì)安全的控制靶標(biāo)的潛力[13]。然而,昆蟲(chóng)海藻糖代謝能否且又是如何調(diào)控幾丁質(zhì)合成途徑的?通過(guò)昆蟲(chóng)海藻糖代謝相關(guān)基因的功能研究,越來(lái)越多的研究結(jié)果表明當(dāng)海藻糖供給平衡被打破會(huì)導(dǎo)致昆蟲(chóng)幾丁質(zhì)合成受阻,通路相關(guān)基因的表達(dá)顯著降低、幾丁質(zhì)含量顯著下降并產(chǎn)生高死亡率[9,14-16],這表明海藻糖代謝途徑適合作為害蟲(chóng)的控制靶標(biāo)[17-18]。

        1 昆蟲(chóng)幾丁質(zhì)合成與海藻糖代謝

        1.1 昆蟲(chóng)幾丁質(zhì)

        幾丁質(zhì)又稱(chēng)甲殼素,是一種存在于昆蟲(chóng)和其他節(jié)肢動(dòng)物表皮、氣管系統(tǒng)、生殖器導(dǎo)管和各種皮膚腺體中的天然多糖[19-21],約占昆蟲(chóng)蟲(chóng)蛻干物質(zhì)的40%[22]。幾丁質(zhì)是昆蟲(chóng)外骨骼和圍食膜的主要成分,它的合成、轉(zhuǎn)化和修飾與昆蟲(chóng)的生長(zhǎng)發(fā)育聯(lián)系緊密[8,21,23]。昆蟲(chóng)幼蟲(chóng)每生長(zhǎng)到一定的階段都需要蛻掉舊表皮,形成新表皮,這個(gè)過(guò)程由幾丁質(zhì)合成通路及幾丁質(zhì)降解途徑共同完成[23-32],且部分表皮蛋白也參與其中[33-35]。除表皮外,昆蟲(chóng)的氣管及中腸圍食膜等結(jié)構(gòu)的重要組成成分也為幾丁質(zhì)[8]。

        1.2 海藻糖的合成

        從植物到無(wú)脊椎動(dòng)物,海藻糖的合成途徑并不完全相同,現(xiàn)有包括 TPS/TPP(trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase)、TS(trehalose synthase)、TreY/TreZ(maltooligosyl trehalose synthase/maltooligosyl trehalose trehalohydrolase)、TreP(trehalose phosphorylase)和 TreT(trehalose glycosyltransferring synthase)途徑在內(nèi)的5種不同的海藻糖合成途徑被廣泛研究[36]。在昆蟲(chóng)體內(nèi),相關(guān)研究報(bào)道顯示海藻糖主要通過(guò)TPS/TPP途徑,即海藻糖合成酶和海藻糖磷酸化酶在脂肪體中合成[6,11],海藻糖合成酶催化葡萄糖-6-磷酸與 UDP-葡萄糖結(jié)合生成海藻糖-6-磷酸,而海藻糖磷酸化酶則負(fù)責(zé)繼續(xù)催化使之脫磷酸化形成海藻糖和磷酸[13,37],再將海藻糖釋放到血淋巴中,通過(guò)淋巴循環(huán)輸送到各個(gè)組織中發(fā)揮功能[14,38-39]。

        目前,超過(guò) 50種昆蟲(chóng)的海藻糖合成酶基因被克隆,其包含了TPS和TPP兩個(gè)保守的結(jié)構(gòu)域,能夠單獨(dú)催化合成海藻糖[13]。2003年,科學(xué)家將果蠅的TPS導(dǎo)入人類(lèi)HEK-293細(xì)胞,發(fā)現(xiàn)該細(xì)胞能夠合成海藻糖并且通過(guò)減少蛋白聚集從而提高低氧條件下的存活能力[40-41]。同樣,采用家蠶桿狀病毒系統(tǒng)表達(dá)棉鈴蟲(chóng)(Helicoverpa armigera)的TPS,能夠大量提高海藻糖含量[42]。在某些物種體內(nèi)已發(fā)現(xiàn)TPP[3],但僅含有TPS一條基因的昆蟲(chóng)居多。因此,根據(jù)這些結(jié)果筆者推測(cè)昆蟲(chóng)的海藻糖應(yīng)該存在兩種不同的合成途徑,一條是通過(guò)TPS/TPP途徑來(lái)完成;另外一條則是直接通過(guò)TPS單獨(dú)完成[13]。研究結(jié)果顯示,海藻糖合成酶蛋白N-末端的TPS保守結(jié)構(gòu)域能夠催化葡萄糖-6磷脂和 UDP-葡萄糖合成海藻糖-6-磷酸;而C-末端的TPP結(jié)構(gòu)域則催化海藻糖-6-磷酸轉(zhuǎn)變?yōu)楹T逄荹43-44]。對(duì)此,綜合前人的相關(guān)研究,提出了昆蟲(chóng)海藻糖合成的潛在途徑及與幾丁質(zhì)合成代謝的關(guān)聯(lián)圖(圖1)[13]。

        圖1 昆蟲(chóng)海藻糖供給與幾丁質(zhì)代謝路徑Fig. 1 The pathway of trehalose providing and chitin metabolism in insects[13]

        不僅如此,在褐飛虱(Nilaparvata lugens)和德國(guó)小蠊(Blattella germanica)中發(fā)現(xiàn)和克隆出兩個(gè)不同的TPS,分別命名為T(mén)PS1和TPS2[11,45],采用RNAi技術(shù)對(duì)昆蟲(chóng)TPS的基因功能研究發(fā)現(xiàn),TPS的表達(dá)下降能夠引起昆蟲(chóng)蛻皮困難,并導(dǎo)致一定的死亡率[11,14,46]。同樣,在 NCBI數(shù)據(jù)庫(kù)中,發(fā)現(xiàn)赤擬谷盜(Tribolium castaneum)存在兩個(gè)不同的 TPS(XM970683和EFA02222)。隨著基因組測(cè)序等技術(shù)的發(fā)展,在褐飛虱中發(fā)現(xiàn)了第3條TPS,且通過(guò)序列比對(duì)分析發(fā)現(xiàn)搖蚊Clunio marinus(CRK87178)與前面兩條TPS蛋白序列相差較大,單獨(dú)成一分支,因此命名為T(mén)PS3[13,47]。與其他無(wú)脊椎動(dòng)物,如秀麗隱桿線(xiàn)蟲(chóng)(Caenorhabditis elegans)和麥長(zhǎng)管蚜(Apelenchus avenae)等物種較為相似,均含有兩條及以上的TPS[48-49]。這些研究意味著昆蟲(chóng)的海藻糖合成進(jìn)化途徑更加多樣化,不同昆蟲(chóng)的海藻糖合成途徑及同一物種中不同的海藻糖合成酶基因的功能需要更加深入的研究和探索。

        1.3 海藻糖的水解

        海藻糖水解酶又稱(chēng)海藻糖酶(trehalase,TRE或Treh),最初由Bourquelot于1893年在黑曲霉(Aspergillus niger)中發(fā)現(xiàn),之后發(fā)現(xiàn)其廣泛存在于真菌、植物、昆蟲(chóng)和其他無(wú)脊椎動(dòng)物及脊椎動(dòng)物中[50]。海藻糖酶可專(zhuān)一地催化一分子海藻糖水解為兩分子葡萄糖,產(chǎn)物用于各種生理及生命活動(dòng)[24,51-53],并在昆蟲(chóng)飛行等行為活動(dòng)過(guò)程中供給能量[54],另外昆蟲(chóng)抗逆性適應(yīng)等各個(gè)方面也通過(guò)調(diào)控海藻糖含量來(lái)實(shí)現(xiàn)[3,55-56]。

        根據(jù)昆蟲(chóng)海藻糖酶的基因特性,其主要分為可溶性海藻糖酶(soluble trehalase,TRE1)和膜結(jié)合型海藻糖酶(membrane-bound trehalase,TRE2)兩類(lèi)[2,57]。1992年,從黃粉蟲(chóng)(Tenebrio molitor)中提取和分離出昆蟲(chóng)首個(gè) TRE1,它是一種胞質(zhì)酶,游離于細(xì)胞質(zhì)之中,負(fù)責(zé)內(nèi)源性海藻糖的分解,主要存在于循環(huán)系統(tǒng)和消化系統(tǒng)中,如血淋巴、中腸和馬氏管中[58]。膜結(jié)合型海藻糖酶被發(fā)現(xiàn)和克隆則比較晚,直至 2005年才從家蠶(Bombyx mori)中克隆得到[59]。研究發(fā)現(xiàn)TRE2為胞外酶,主要存在于微絨毛或基側(cè)膜上,與肌肉中的線(xiàn)粒體結(jié)合,負(fù)責(zé)外源性海藻糖的吸收和同化,在脂肪體、中腸和馬氏管中高表達(dá)[5,9,23,50,59-64]。

        近年來(lái)借助基因組測(cè)序技術(shù),采用高通量測(cè)序技術(shù)進(jìn)行轉(zhuǎn)錄組等研究發(fā)現(xiàn)昆蟲(chóng)TRE1不止一條編碼基因存在,如褐飛虱包含TRE1-1和TRE1-2兩條[10,65],赤擬谷盜有TRE1-1、TRE1-2、TRE1-3和TRE1-4 4條可溶性海藻糖酶基因[18,53],異色瓢蟲(chóng)(Harmonia axyridis)中存在 3條或 3條以上的 TRE1[3,66],其中TRE1已在多種昆蟲(chóng)中被克隆[5,9,55,59,66-70]。這些研究結(jié)果表明在不同昆蟲(chóng)體內(nèi),海藻糖酶基因具有種類(lèi)多樣性的特點(diǎn)。

        1.4 昆蟲(chóng)幾丁質(zhì)的合成

        昆蟲(chóng)幾丁質(zhì)合成途徑包括海藻糖酶和幾丁質(zhì)合成酶(chitin synthase,CHS)在內(nèi)的8個(gè)基因共同參與,最關(guān)鍵且最后一步由幾丁質(zhì)合成酶完成[23,29,71]。昆蟲(chóng)的幾丁質(zhì)合成通路在昆蟲(chóng)的蛻皮和幾丁質(zhì)發(fā)生中起著重要作用,幾丁質(zhì)合成酶包括幾丁質(zhì)合成酶 1(CHS1,又稱(chēng) CHSA)和幾丁質(zhì)合成酶 2(CHS2,又稱(chēng)CHSB)兩種類(lèi)型[24-25,72]。CHS1主要負(fù)責(zé)昆蟲(chóng)表皮和氣管中幾丁質(zhì)的合成[9],除豌豆蚜(Acythosiphon pisum)外已報(bào)道的相關(guān)昆蟲(chóng) CHS1存在可變剪切現(xiàn)象,兩個(gè)轉(zhuǎn)錄子分別為CHS1a和CHS1b[73-74]。另一種是CHS2,只在中腸圍食膜上負(fù)責(zé)幾丁質(zhì)的形成[9,75]。

        利用 RNAi可探究?jī)煞N幾丁質(zhì)合成酶的作用效果、階段和范圍,比如赤擬谷盜CHS1被RNAi抑制后,出現(xiàn)畸形幼蟲(chóng)、畸形蛹和畸形成蟲(chóng)以及蛻皮障礙,畸形蛹中的幾丁質(zhì)含量降低了66.9%;CHS2被RNAi抑制后,幼蟲(chóng)取食減少,蟲(chóng)體變小,中腸中的幾丁質(zhì)含量降低[23,76]。同樣,當(dāng)中華稻蝗(Oxya chinensis)的CHS1表達(dá)被抑制后,該昆蟲(chóng)蛻皮時(shí)間延遲、不能完成蛻皮或腹部皺縮死亡[25]。而在飛蝗(Locusta migratoria)中,CHS2表達(dá)被抑制后,取食量下降,中腸和胃盲囊長(zhǎng)度縮短及圍食膜損傷,雌雄死亡率高達(dá) 78%[24]。甜菜夜蛾(Spodoptera exigua)CHS1在RNAi后,昆蟲(chóng)的生長(zhǎng)發(fā)育受到抑制,出現(xiàn)蛻皮障礙、表皮幾丁質(zhì)層不能正常形成、氣管發(fā)育畸形等現(xiàn)象[23,72]。最新研究表明褐飛虱體中可能缺乏CHS2,因此CHS1是RNAi的高效目標(biāo)基因。分別向褐飛虱注射dsCHS1、dsCHS1a和dsCHS1b發(fā)現(xiàn),CHS1和CHS1a的基因干擾會(huì)導(dǎo)致褐飛虱翅畸形、細(xì)腰、表皮皺縮并最終死亡的現(xiàn)象,dsCHS1b的干擾雖也會(huì)導(dǎo)致一定的死亡率,但其他影響不明顯[74]。

        2 海藻糖代謝調(diào)控幾丁質(zhì)合成

        幾丁質(zhì)合成的通路始于海藻糖酶(TRE),途經(jīng)己糖激酶(HK)、葡萄糖-6-磷酸異構(gòu)酶(G6PI)、果糖-6-磷酸轉(zhuǎn)氨酶(GFAT)、葡萄糖胺-6-磷酸-N-乙酰轉(zhuǎn)氨酶(GNPNA)、磷乙酰氨基葡萄糖變位酶(PGM)和 UDP-N-乙酰葡糖胺焦磷酸化酶(UAP)后,終于幾丁質(zhì)合成酶(CHS)[23,77-79]。海藻糖循環(huán)路徑位于幾丁質(zhì)合成路徑的起始端,TPS通過(guò)該路徑合成海藻糖,TRE分解海藻糖,為幾丁質(zhì)的合成提供原料。研究發(fā)現(xiàn)海藻糖合成與分解都對(duì)昆蟲(chóng)幾丁質(zhì)合成有著重要的調(diào)控作用,具體見(jiàn)圖1所示。

        2.1 海藻糖合成酶與幾丁質(zhì)調(diào)控

        海藻糖合成酶(TPS)為海藻糖合成的關(guān)鍵酶類(lèi),它可以通過(guò)調(diào)控海藻糖含量的供給平衡,間接調(diào)控幾丁質(zhì)的合成通路中的相關(guān)基因表達(dá)[11,14]。此外,其對(duì)CHS和Cht的表達(dá)均存在一定程度的調(diào)控作用,調(diào)節(jié)幾丁質(zhì)的合成[9,11]。以甜菜夜蛾為研究對(duì)象,采用RNAi技術(shù)抑制TPS表達(dá)后36、48、 60和204 h,其存活率分別為53.95%、49.06%、34.86%和33.24%,顯著低于對(duì)照組[14]。

        同樣,在褐飛虱體中分別注射dsGFP、dsTPS1和dsTPS2,結(jié)果發(fā)現(xiàn)注射dsTPS1、dsTPS2后,TPS1與TPS2的轉(zhuǎn)錄量均減少、海藻糖含量卻在增加,糖原含量顯著降低,幾丁質(zhì)合成和降解通路中的各個(gè)酶活性均受到不同程度的影響[9,11,80]。其中 CHS1和 CHS1a的活性在48 h時(shí)抑制、72 h時(shí)增強(qiáng),CHS1b的活性在48 h和72 h時(shí)均抑制;除Cht4、Cht9的活性在72 h時(shí)增強(qiáng),其余Cht的活性都在不同程度上受到抑制。同時(shí)褐飛虱出現(xiàn)了蛻皮困難、翅畸形和近30%的蟲(chóng)體死亡率[11]。進(jìn)而在獲得褐飛虱第 3條海藻糖合成酶后,發(fā)現(xiàn) TPS3的表達(dá)被抑制后,絕大多數(shù)的幾丁質(zhì)酶表達(dá)顯著下降且伴隨著幾丁質(zhì)含量的降低[47],這與赤擬谷盜TPS表達(dá)被抑制后幾丁質(zhì)含量降低的結(jié)果一致[46]。而采用RNAi技術(shù)抑制馬鈴薯甲蟲(chóng)(Leptinotarsa decemlineata)TPS表達(dá)后,海藻糖含量下降,導(dǎo)致幼蟲(chóng)和蛹死亡,同時(shí)幾丁質(zhì)含量下降[66];此外,當(dāng)柑橘大實(shí)蠅(Bactrocera minax)TPS的dsRNA注射到3齡幼蟲(chóng)時(shí),TPS酶活性和海藻糖含量顯著下降、幾丁質(zhì)合成途徑中的3個(gè)關(guān)鍵基因表達(dá)被抑制,昆蟲(chóng)出現(xiàn)畸形并死亡的比例高達(dá)52%[81]。

        從現(xiàn)有的研究結(jié)果來(lái)看,當(dāng)昆蟲(chóng)單個(gè)TPS表達(dá)被抑制后,CHS和Cht表達(dá)降低,TPS能夠通過(guò)調(diào)控幾丁質(zhì)生物合成和降解通路中相關(guān)基因的表達(dá),抑制幾丁質(zhì)的合成并導(dǎo)致昆蟲(chóng)蛻皮困難、產(chǎn)生畸形和高死亡率[11,66,81]。

        2.2 海藻糖水解酶與幾丁質(zhì)調(diào)控

        TRE是幾丁質(zhì)合成通路中的第一個(gè)酶,TRE催化海藻糖水解成葡萄糖,葡萄糖接著通過(guò)剩余7個(gè)酶的催化最終形成幾丁質(zhì),TRE在幾丁質(zhì)合成中的重要性不言而喻。近年來(lái),通過(guò)對(duì)赤擬谷盜、甜菜夜蛾、褐飛虱、馬鈴薯甲蟲(chóng)等多種昆蟲(chóng)的海藻糖酶-幾丁質(zhì)調(diào)控通路的研究,結(jié)果均表明TRE對(duì)幾丁質(zhì)的合成與分解存在一定的調(diào)控作用[6,9,11,53,66,70]??扇苄?TRE1和膜結(jié)合型TRE2的功能還存在一些差別,TRE1與TRE2調(diào)控不同部位的幾丁質(zhì)合成[23]。利用RNAi技術(shù),注射dsRNA抑制可溶性和膜結(jié)合型TRE表達(dá)后,昆蟲(chóng)的存活率都明顯降低,同時(shí)在轉(zhuǎn)錄水平調(diào)控幾丁質(zhì)合成通路的下游基因的表達(dá)下調(diào)。TRE1的干擾對(duì)CHS1(CHSA)影響較大,對(duì)CHS2(CHSB)影響很小,因此昆蟲(chóng)表皮幾丁質(zhì)的合成受此影響較大;而TRE2對(duì)CHS2影響較大,主要影響昆蟲(chóng)中腸的幾丁質(zhì)合成[9,75]。

        在某些昆蟲(chóng)中,不同的TRE1也有細(xì)微分工。在對(duì)赤擬谷盜 5個(gè) TRE進(jìn)行 RNA干擾的試驗(yàn)中,TRE1-1、TRE1-2、TRE1-3、TRE1-4和TRE2分別被干擾,觀(guān)察到11種畸形表型,5個(gè)基因的抑制均導(dǎo)致了不同程度的死亡率,其中TRE1-1和TRE1-3的RNA干擾組中均有大量蟲(chóng)體因幾丁質(zhì)合成紊亂而死亡,TRE1-3對(duì)CHS1b、TRE2對(duì)CHS2存在著調(diào)控作用,而 TRE1-1對(duì)整個(gè)幾丁質(zhì)合成通路有影響[52]。通過(guò)飼喂dsRNA,分別抑制赤擬谷盜TRE1-4和TRE2可導(dǎo)致42%和38%的死亡率[15,53]。在另一種鞘翅目昆蟲(chóng)馬鈴薯甲蟲(chóng)的研究中,TRE1α和TRE2表達(dá)被抑制后部分幼蟲(chóng)不能正?;?,且出現(xiàn)幼蟲(chóng)極度脫水,蛻皮困難等不同表型,特別是 TRE1α低表達(dá)能夠?qū)е赂哌_(dá)80%的死亡率[66]。同樣,抑制灰飛虱(Laodelphax striatellus)TRE1和TRE2可分別導(dǎo)致38.89%和27.72%死亡率[70]。注射dsRNA干擾TRE1和TRE2表達(dá)可導(dǎo)致50%以上甜菜夜蛾死亡[9]。這些結(jié)果表明,一旦TRE的表達(dá)被抑制后,昆蟲(chóng)的蛻皮過(guò)程嚴(yán)重受到阻礙,幾丁質(zhì)含量顯著下降[56],這也是導(dǎo)致昆蟲(chóng)死亡的最根本原因。向褐飛虱蟲(chóng)體注射海藻糖酶抑制劑井岡霉素,48 h后盡管3個(gè)TRE和2個(gè)TPS的表達(dá)均增加,但是2種TRE酶活性顯著下降,GP、CHS1(包括它的2個(gè)轉(zhuǎn)錄子CHS1a和CHS1b)、6個(gè)幾丁質(zhì)酶(Cht3、Cht4、Cht5、Cht6、Cht7 和 Cht9)、HK、G6PI2、GFAT、GNPNA、PAGM1和UAP的表達(dá)均減少,同時(shí)幾丁質(zhì)的含量也顯著減少[18]。因此,無(wú)論各個(gè)TRE具有怎樣的差別,通過(guò)注射、飼喂dsTRE干擾TRE或者利用海藻糖酶抑制劑抑制酶活性,都能影響幾丁質(zhì)的合成和降解,并且造成一定的昆蟲(chóng)死亡率。

        進(jìn)一步的研究結(jié)果表明,干擾TRE表達(dá)后不僅阻斷了幾丁質(zhì)合成,也抑制了幾丁質(zhì)降解。一方面,干擾TRE后出現(xiàn)了蛻皮困難等現(xiàn)象,這與幾丁質(zhì)合成酶[72,74,82-83]、幾丁質(zhì)酶[84]、幾丁質(zhì)脫乙酰酶[85-86]、β-N-乙酰乙糖胺酶[69]等幾丁質(zhì)合成和降解通路中相關(guān)酶被RNA干擾后的現(xiàn)象十分相似[87]。無(wú)論是抑制了TRE還是幾丁質(zhì)代謝路徑中的其他酶,導(dǎo)致蛻皮困難最重要的原因是幾丁質(zhì)含量的減少。在褐飛虱幼蟲(chóng)中注射一定量的有效霉素48 h后幾丁質(zhì)含量減少了50%[18],在甜菜夜蛾體中注射dsTRE1和dsTRE2導(dǎo)致表皮幾丁質(zhì)含量顯著減少,注射dsSeTRE2導(dǎo)致中腸幾丁質(zhì)含量顯著減少[9]。另一方面,大多數(shù)昆蟲(chóng)的表皮和節(jié)肢動(dòng)物的圍食膜是通過(guò)TRE、CHS以及其他6個(gè)酶形成的通路來(lái)調(diào)控的[72,76,83,88-90],TRE可通過(guò)減少幾丁質(zhì)合成通路中一些關(guān)鍵酶的表達(dá)來(lái)調(diào)控幾丁質(zhì)的合成[9-10],例如TRE的轉(zhuǎn)錄和翻譯水平降低可導(dǎo)致 Cht的表達(dá)減少,從而導(dǎo)致蛻皮困難和較高的死亡率[18]。TRE1和TRE2可調(diào)控CHS1和CHS2[9],在褐飛虱中CHS1、CHS1a和CHS1b均在TRE調(diào)控下表達(dá)下調(diào)[10],并且同時(shí)注射3種dsTRE后己糖激酶(HK)、果糖-6-磷酸轉(zhuǎn)氨酶(GFAT)、葡萄糖胺-6-磷酸-N-乙酰轉(zhuǎn)氨酶(GNPNA)、UDP-N-乙酰葡糖胺焦磷酸化酶(UAP)和多個(gè)幾丁質(zhì)酶的含量顯著下降[10]。

        綜上所述,當(dāng)TRE表達(dá)或TRE酶活性被抑制時(shí),大多數(shù)昆蟲(chóng)發(fā)育出現(xiàn)翅發(fā)育畸形、蛻皮困難、體重減輕、幾丁質(zhì)合成減少、生長(zhǎng)受阻、飛行減少甚至死亡的現(xiàn)象[6,91]。TRE的低表達(dá)打破幾丁質(zhì)代謝平衡可能是導(dǎo)致昆蟲(chóng)蛻皮困難乃至死亡的最根本原因。

        3 結(jié)論與展望

        IWASA等[92]于1970年從某種鏈霉菌中分離得到一種海藻糖酶抑制劑有效霉素 A(又稱(chēng)井岡霉素,validamycin)。1987年,研究表明其有效成分是糖苷配基的有效胺(validoxylamine A,VAA)[93-94],它與海藻糖的構(gòu)造非常相似,但和海藻糖酶的親和力更強(qiáng),因此 VAA可通過(guò)與海藻糖“爭(zhēng)奪”海藻糖酶來(lái)實(shí)現(xiàn)對(duì)海藻糖酶的抑制作用,從而對(duì)昆蟲(chóng)產(chǎn)生各種影響[95-96]。最新研究發(fā)現(xiàn),海藻糖酶抑制劑validamycin能夠同時(shí)抑制TRE1和TRE2的蛋白活性,并通過(guò)抑制幾丁質(zhì)合成酶及幾丁質(zhì)酶在 mRNA水平上的表達(dá),從而降低幾丁質(zhì)含量引起昆蟲(chóng)蛻皮困難并大量死亡[18]。從菌類(lèi)、植物等提取出的海藻糖酶抑制劑除有效霉素A外、還有Trehazolin、Salbostatin、植物堿、Suidatrestin等,它們?cè)诓煌潭壬弦种坪T逄堑乃鈁84,97-98]。昆蟲(chóng)中海藻糖的水解與昆蟲(chóng)的生理活動(dòng)息息相關(guān),若體內(nèi)海藻糖的分解路徑被阻斷,將會(huì)影響昆蟲(chóng)變態(tài)發(fā)育、生殖和飛行等正常生理活動(dòng)[96]。海藻糖代謝與幾丁質(zhì)合成具有緊密聯(lián)系,并且兩者均在昆蟲(chóng)體內(nèi)具有舉足輕重的作用。更為重要的是海藻糖合成在脊椎動(dòng)物,特別是哺乳動(dòng)物中缺失,具有成為潛在安全性害蟲(chóng)控制靶標(biāo)途徑的潛能[12]。已有研究發(fā)現(xiàn)化合物 4-取代的 2,6-二氨基-3,5-二氰基-4H-噻喃(英文名:4-substituted 2,6-diamino-3,5-dicyano-4H-thiopyrans)能夠抑制TPS的活性,具有作為殺蟲(chóng)劑的潛能[17]。而且TPP被認(rèn)為將來(lái)在抗細(xì)菌、抗真菌和抗寄生蟲(chóng)藥物的研發(fā)中具有很大的潛力[99]。目前對(duì)TRE和TPS幾丁質(zhì)調(diào)控的研究證明,它們?cè)诶ハx(chóng)體內(nèi)的幾丁質(zhì)通路中起著重要的作用,通過(guò)RNA干擾TRE1、TRE2及TPS都可導(dǎo)致蟲(chóng)體不同程度的畸形和死亡。

        昆蟲(chóng)海藻糖合代謝途徑相關(guān)基因的進(jìn)化途徑及功能仍存在許多未被研究清楚的問(wèn)題。隨著高通量測(cè)序技術(shù)的發(fā)展,越來(lái)越多的昆蟲(chóng)基因組測(cè)序完成,某些昆蟲(chóng)發(fā)現(xiàn)了2個(gè)及以上的TPS,甚至5個(gè)以上的TRE,這些相同家族的基因除了具有共同的功能外,也可能存在組織間表達(dá)的差異性或者功能上的差異。可溶性TRE1進(jìn)化的多樣性到底是從單個(gè)到多個(gè),或是多個(gè)進(jìn)化到多個(gè)?同物種不同的TRE1功能差異性又如何?可溶性還是膜結(jié)合型TRE具有更好的調(diào)控海藻糖降解能力,哪個(gè)更加適合作為害蟲(chóng)控制的靶標(biāo)基因?此外,昆蟲(chóng)海藻糖合成途徑還有待進(jìn)一步的深入研究,TPS的多樣性和TPP的功能研究同樣值得期待。當(dāng)然,從植物害蟲(chóng)生物防治的角度出發(fā),繼續(xù)深入研究不同的海藻糖代謝途徑基因?qū)锥≠|(zhì)合成及降解的調(diào)控功能,有助于推動(dòng)以海藻糖代謝途徑相關(guān)酶基因?yàn)榘袠?biāo)的綠色農(nóng)藥開(kāi)發(fā),為今后海藻糖酶抑制劑及海藻糖合成酶抑制劑等綠色農(nóng)藥的開(kāi)發(fā)提供理論依據(jù)。

        [1] ELBEIN A D, PAN Y T, PASTUSZAK I, CARROLL D. New insights on trehalose: a multifunctional molecule. Glycobiology, 2003, 13(4):17R-27R.

        [2] 唐斌, 魏蘋(píng), 陳潔, 王世貴, 張文慶. 昆蟲(chóng)海藻糖酶的基因特性及功能研究進(jìn)展. 昆蟲(chóng)學(xué)報(bào), 2012, 55(11): 1315-1321.TANG B, WEI P, CHEN J, WANG S G, ZHANG W Q. Progress in gene features and functions of insect trehalases. Acta Entomologica Sinica, 2012, 55(11): 1315-1321. (in Chinese)

        [3] TANG B, QIN Z, SHI Z K, WANG S, GUO X J, WANG S G,ZHANG F. Trehalase in Harmonia axyridis (Coleoptera: Coccinellidae):effects on beetle locomotory activity and the correlation with trehalose metabolism under starvation conditions. Applied Entomology and Zoology, 2014, 49(2): 255-264.

        [4] IORDACHESCU M, IMAI R. Trehalose biosynthesis in response to abiotic stresses. Journal of Integrative Plant Biology, 2008, 50(10):1223-1229.

        [5] TANG B, CHEN X, LIU Y, TIAN H, LIU J, HU J, XU W H, ZHANG W Q. Characterization and expression patterns of a membrane-bound trehalase from Spodoptera exigua. BMC Molecular Biology, 2008, 9:51.

        [6] SHUKLA E, THORAT L J, NATH B B, GAIKWAD S M. Insect trehalase: physiological significance and potential applications.Glycobiology, 2015, 25(4): 357-367.

        [7] LIU J H, SHANG X D, LIU J Y, TAN Q. Changes in trehalose content,enzyme activity and gene expression related to trehalose metabolism in Flammulina velutipes under heat shock. Microbiology, 2016, 162(8):1274-1285.

        [8] ZHU K Y, MERZENDORFER H, ZHANG W Q, ZHANG J Z,MUTHUKRISHNAN S. Biosynthesis, turnover, and functions of chitin in insects. Annual Review of Entomology, 2016, 61: 177-196.

        [9] CHEN J, TANG B, CHEN H X, YAO Q, HUANG X F, CHEN J,ZHANG D W, ZHANG W Q. Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS ONE, 2010, 5(4): e10133.

        [10] ZHAO L N, YANG M M, SHEN Q D, SHI Z K, WANG S G, TANG B. Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Scientific Reports, 2016, 6: 27841.

        [11] YANG M M, ZHAO L N, SHEN Q D, XIE G Q, WANG S G, TANG B. Knockdown of two trehalose-6-phosphate synthases severely affects chitin metabolism gene expression in the brown planthopper Nilaparvata lugens. Pest Management Science, 2017, 73(1): 206-216.

        [12] ARGüELLES J C. Why can’t vertebrates synthesize trehalose?Journal of Molecular Evolution, 2014, 79(3/4): 111-116.

        [13] TANG B, WANG S, WANG S G, WANG H J, ZHANG J Y, CUI S Y. Invertebrate trehalose-6-phosphate synthase gene: genetic architecture, biochemistry, physiological function, and potential applications. Frontiers in Physiology, 2018, 9: 30.

        [14] TANG B, CHEN J, YAO Q, PAN Z Q, XU W H, WANG S G,ZHANG W Q. Characterization of a trehalose-6-phosphate synthase gene from Spodoptera exigua and its function identification through RNA interference. Journal of Insect Physiology, 2010, 56(7): 813-821.

        [15] TANG B, WEI P, ZHAO L N, SHI Z K, SHEN Q D, YANG M M,XIE G Q, WANG S G. Knockdown of five trehalase genes using RNA interference regulates the gene expression of the chitin biosynthesis pathways in Tribolium castaneum. BMC Biotechnology,2016, 16: 67.

        [16] CHEN J, ZHANG D W, YAO Q, ZHANG J Q, DONG X L, TIAN H G, CHEN J, ZHANG W Q. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper,Nilaparvata lugens. Insect Molecular Biology, 2010, 19(6): 777-786.

        [17] KERN C, WOLF C, BENDER F, BERGER M, NOACK S,SCHMALZ S, ILG T. Trehalose-6-phosphate synthase from the cat flea Ctenocephalides felis and Drosophila melanogaster: gene identification, cloning, heterologous functional expression and identification of inhibitors by high throughput screening. Insect Molecular Biology, 2012, 21(4): 456-471.

        [18] TANG B, YANG M M, SHEN Q D, XU Y X, WANG H J, WANG S G. Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pesticide Biochemistry and Physiology, 2017, 137: 81-90.

        [19] SNELLING E P, SEYMOUR R S, RUNCIMAN S. Molting of insect tracheae captured by light and electron-microscopy in the metathoracic femur of a third instar locust Locusta migratoria. Journal of Insect Physiology, 2011, 57(9): 1312-1316.

        [20] ZHONG H Y, WEI C, ZHANG Y L. Gross morphology and ultrastructure of salivary glands of the mute cicada Karenia caelatata Distant (Hemiptera: Cicadoidea). Micron, 2013, 45: 83-91.

        [21] 張建珍. 昆蟲(chóng)幾丁質(zhì)代謝與植物保護(hù). 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(7):1301-1302.ZHANG J Z. Insect chitin metabolism and plant protection. Scientia Agricultura Sinica, 2014, 47(7): 1301-1302. (in Chinese)

        [22] KRAMER K J, HOPKINS T L, SCHAEFER J. Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochemistry and Molecular Biology, 1995, 25(10): 1067-1080.

        [23] 張文慶, 陳曉菲, 唐斌, 田宏剛, 陳潔, 姚瓊. 昆蟲(chóng)幾丁質(zhì)合成及其調(diào)控研究前沿. 應(yīng)用昆蟲(chóng)學(xué)報(bào), 2011, 48(3): 475-479.ZHANG W Q, CHEN X F, TANG B, TIAN H G, CHEN J, YAN Q.Insect chitin biosynthesis and its regulation. Chinese Journal of Applied Entomology, 2011, 48(3): 475-479. (in Chinese)

        [24] 劉曉健, 崔淼, 李大琪, 張歡歡, 楊美玲, 張建珍. 飛蝗幾丁質(zhì)合成酶2基因的表達(dá)特性、功能及調(diào)控. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(7):1330-1340.LIU X J, CUI M, LI D Q, ZHANG H H, YANG M L, ZHANG J Z.Expression, function and regulation of chitin synthase 2 gene in Locusta migratoria. Scientia Agricultura Sinica, 2014, 47(7):1330-1340. (in Chinese)

        [25] 余志濤, 劉曉健, 馬恩波, 郭亞平, 張建珍. 中華稻蝗幾丁質(zhì)合成酶 1基因的 mRNA表達(dá)及功能. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(5):877-884.YU Z T, LIU X J, MA E B, GUO Y P, ZHANG J Z. mRNA expression and physiological function of chitin synthase1 from Oxya chinensis(Thunberg). Scientia Agricultura Sinica, 2012, 45(5): 877-884. (in Chinese)

        [26] 李大琪, 杜建中, 張建琴, 郝耀山, 劉曉健, 王亦學(xué), 馬恩波, 張建珍, 孫毅. 東亞飛蝗幾丁質(zhì)酶家族基因的表達(dá)特性與功能研究. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44(3): 485-492.LI D Q, DU J Z, ZHANG J Q, HAO Y S, LIU X J, WANG Y X, MA E B, ZHANG J Z, SUN Y. Study on expression characteristics and functions of chitinase family genes from Locusta migratoria manilensis (Meyen). Scientia Agricultura Sinica, 2011, 44(3):485-492. (in Chinese)

        [27] 李大琪, 王燕, 張建琴, 李濤, 孫毅, 張建珍. 中華稻蝗幾丁質(zhì)酶基因10 (OcCht10)的分子特性及功能. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(7):1313-1320.LI D Q, WANG Y, ZHANG J Q, LI T, SUN Y, ZHANG J Z.Molecular characterization and function of chitinase 10 gene(OcCht10) from Oxya chinensis. Scientia Agricultura Sinica, 2014,47(7): 1313-1320. (in Chinese)

        [28] 張歡歡, 張學(xué)堯, 劉曉健, 馬恩波, 張建珍. 飛蝗葡萄糖胺-6-磷酸-N-乙酰轉(zhuǎn)移酶的特性及生物學(xué)功能. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45(12):2393-2403.ZHANG H H, ZHAGN X Y, LIU X J, MA E B, ZHANG J Z. The characteristics and biological fuction of glucosamine-6-phosphate-N-acetyltransferase in Locusta migratoria. Scientia Agricultura Sinica,2012, 45(12): 2393-2403. (in Chinese)

        [29] 陳潔, 陳宏鑫, 姚瓊, 張文慶. 甜菜夜蛾UAP的克隆、時(shí)空表達(dá)及RNAi研究. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(7): 1351-1361.CHEN J, CHEN H X, YAO Q, ZHANG W Q. Molecular cloning,expression patterns and RNAi of UDP-N-acetylglucosamine pyrophosphorylase in Spodoptera exigua. Scientia Agricultura Sinica,2014, 47(7): 1351-1361. (in Chinese)

        [30] 于榮榮, 丁國(guó)偉, 郭亞平, 馬恩波, 張建珍. 中華稻蝗幾丁質(zhì)脫乙?;?2基因的分子特性和生物學(xué)功能. 中國(guó)農(nóng)業(yè)科學(xué), 2014,47(7): 1321-1329.YU R R, DING G W, GUO Y P, MA E B, ZHANG J Z. Molecular characterization and functional analysis of chitin deacetylase 2 gene in Oxya chinensis. Scientia Agricultura Sinica, 2014, 47(7): 1321-1329.(in Chinese)

        [31] 閆曉平, 趙丹, 郭巍, 王偉, 張雅昆, 郝玉杰, 趙坤莉. 美國(guó)白蛾幾丁質(zhì)脫乙酰酶的克隆、表達(dá)及酶學(xué)性質(zhì). 中國(guó)農(nóng)業(yè)科學(xué), 2017,50(5): 849-858.YAN X P, ZHAO D, GUO W, WANG W, ZHANG Y K, HAO Y J,ZHAO K L. Cloning, expression and enzymatic characterization of chitin deacetylases from Hyphantria cunea. Scientia Agricultura Sinica, 2017, 50(5): 849-858. (in Chinese)

        [32] 趙盼, 張學(xué)堯, 劉曉健, 趙小明, 于榮榮, 董瑋, 馬恩波, 張建珍,張敏. 飛蝗幾丁質(zhì)脫乙酰基酶的真核表達(dá)、親和純化及酶活性. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(6): 1057-1066.ZHAO P, ZHANG X Q, LIU X J, ZHAO X M, YU R R, DONG W,MA E B, ZHANG J Z, ZHANG M. Eukaryotic expression, affinity purification and enzyme activity of chitin deacetylase in Locusta migratoria. Scientia Agricultura Sinica, 2017, 50(6): 1057-1066. (in Chinese)

        [33] 王燕, 李大琪, 劉曉健, 李濤, 馬恩波, 范仁俊, 張建珍. 飛蝗表皮蛋白Obstructor家族基因的分子特性及基于RNAi的功能分析. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(1): 73-82.WANG Y, LI D Q, LIU X J, MA E B, FAN R J, ZHANG J Z.Molecular characterization and RNAi-based functional analysis of Obstructor family genes in Locusta migratoria. Scientia Agricultura Sinica, 2015, 48(1): 73-82. (in Chinese)

        [34] 趙小明, 賈盼, 勾昕, 劉衛(wèi)敏, 馬恩波, 張建珍. 飛蝗內(nèi)表皮蛋白基因 LmAbd-5的表達(dá)與功能分析. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(10):1817-1826.ZHAO X M, JIA P, GOU X, LIU W M, MA E B, ZHANG J Z.Expression and functional analysis of endocuticle structural glycoprotein gene LmAbd-5 in Locusta migratoria. Scientia Agricultura Sinica, 2017, 50(10): 1817-1826. (in Chinese)

        [35] 張薇薇, 董照明, 張艷, 趙曉璐, 張守亞, 趙萍. 家蠶表皮蛋白BmCPAP3-G的表達(dá)特征及其與幾丁質(zhì)的結(jié)合特性. 中國(guó)農(nóng)業(yè)科學(xué),2017, 50(9): 1723-1733.ZHANG W W, DONG Z M, ZHANG Y, ZHAO X L, ZHANG S Y,ZHAO P. Expression pattern and chitin-binding mode analyses of cuticle protein BmCPAP3-G in the silkworm (Bombyx mori). Scientia Agricultura Sinica, 2017, 50(9): 1723-1733. (in Chinese)

        [36] AVONCE N, MENDOZA-VARGAS A, MORETT E, ITURRIAGA G. Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 2006, 6: 109.

        [37] STR?M A R, KAASEN I. Trehalose metabolism in Escherichia coli:stress protection and stress regulation of gene expression. Molecular Microbiology, 1993, 8(2): 205-210.

        [38] THOMPSON S N. Trehalose - The insect ‘blood’ sugar. Advances in Insect Physiology, 2003, 31: 205-285.

        [39] GOU Q, HAO Y J, LI Y, ZHANG, Y J, REN S, SI F L, CHEN B.Gene cloning, characterization and expression and enzymatic activities related to trehalose metabolism during diapauses of the onion maggot Delia antique (Diptera: Anthomyiidae). Gene, 2015,565(1): 106-115.

        [40] CHEN Q, MA E, BEHAR K L, XU T, HADDAD G G. Role of trehalose phosphate synthase in anoxia tolerance and development in Drosophila melanogaster. Journal of Biological Chemistry, 2002,277(5): 3274-3279.

        [41] CHEN Q, BEHAR K L, XU T, FAN C, HADDAD G G. Expression of Drosophila trehalose-phosphate synthase in HEK-293 cells increases hypoxia tolerance. Journal of Biological Chemistry, 2003,278(49): 49113-49118.

        [42] XU J, BAO B, ZHANG Z F, YI Y Z, XU W H. Identification of a novel gene encoding the trehalose phosphate synthase in the cotton bollworm, Helicoverpa armigera. Glycobiology, 2009, 19(3):250-257.

        [43] MATSUDA H, YAMADA T, YOSHIDA M, NISHIMURA T. Flies without trehalose. Journal of Biological Chemistry, 2015, 290(2):1244-1255.

        [44] YASUGI T, YAMADA T, NISHIMURA T. Adaptation to dietary conditions by trehalose metabolism in Drosophila. Scientific Reports,2017, 7: 1619.

        [45] 陳靜, 張道偉. 德國(guó)小蠊兩個(gè)海藻糖合成酶基因的克隆、組織分布及誘導(dǎo)表達(dá)分析. 昆蟲(chóng)學(xué)報(bào), 2015, 58(10): 1046-1053.CHEN J, ZHANG D W. Molecular cloning, tissue distribution and temperature-induced expression of two trehalose-6-phosphate synthase genes in Blattella germanica (Blattodea: Blattellidae). Acta Entomology Sinica, 2015, 58(10): 1046-1053. (in Chinese)

        [46] CHEN Q W, JIN S, ZHANG L, SHEN Q D, WEI P, WEI C M,WANG S G, TANG B. Regulatory functions of trehalose-6-phosphate synthase in the chitin biosynthesis pathway in Tribolium castaneum(Coleoptera: Tenebrionidae) revealed by RNA interference. Bulletin of Entomological Research, 2017, 18: 1-12.

        [47] 沈祺達(dá). 褐飛虱 TPS3基因特性、功能鑒定與調(diào)控分析[D]. 杭州:杭州師范大學(xué), 2017.SHEN Q D. Genetic characteristics, functional identification and regulation analysis of trehalose-6-phosphate synthase 3 in Nilaparvata lugens[D]. Hangzhou: Hangzhou Normal University, 2017. (in Chinese)

        [48] PELLERONE F I, ARCHER S K, BEHM C A, GRANT W N,LACERY M J, SOMERVILLE A C. Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes. International Journal for Parasitology, 2003, 33(11): 1195-1206.

        [49] GOYAL K, BROWNE J A, BURNELL A M, TUNNACLIFFE A.Dehydration-induced tps gene transcripts from an anhydrobiotic nematode contain novel spliced leaders and encode atypical GT-20 family proteins. Biochimie, 2005, 87: 565-574.

        [50] 王軍娥, 劉靜. 昆蟲(chóng)海藻糖酶的研究進(jìn)展. 貴州農(nóng)業(yè)科學(xué), 2009,37(4): 88-90.WANG J E, LIU J. Research progress of insect trehalase. Guizhou Agricultural Sciences, 2009, 37(4): 88-90. (in Chinese)

        [51] UJITA M, YAMANAKA M, MAENO Y, YOSHIDA K, OHSHIO W,UENO Y, BANNO Y, FUJII H, OKUMURA H. Expression of active and inactive recombinant soluble trehalase using baculovirussilkworm expression system and their glycan structures. Journal of Bioscience and Bioengineering, 2011, 111(1): 22-25.

        [52] 褚亞平. 氟鈴脲對(duì)斜紋夜蛾海藻糖酶活性及基因表達(dá)的影響[D].泰安: 山東農(nóng)業(yè)大學(xué), 2013.ZHU Y P. Effects of hexaflumuron on trehalase activity and expression of trehalase gene from Spodoptera litura Fabricius[D].Taian: Shandong Agricultural University, 2013. (in Chinese)

        [53] 魏蘋(píng). 赤擬谷盜海藻糖酶基因調(diào)控幾丁質(zhì)合成及能量代謝的功能研究[D]. 杭州: 杭州師范大學(xué), 2013.WEI P. Regulating functions of trehalase in the pathway of energy metabolism and chitin biosynthesis in Tribolium castaneum revealed by RNA interference[D]. Hangzhou: Hangzhou Normal University,2013. (in Chinese)

        [54] CLEGG J S, EVANS D R. Blood trehalose and flight metabolism in the blowfly. Science, 1961, 134(3741): 54-55.

        [55] TATUN N, SINGTRIPOP T, TUNGJITAYAKUL J, SAKURAI S.Regulation of soluble and membrane-bound trehalase activity and expression of the enzyme in the larval midgut of the bamboo borer Omphisa fuscidentalis. Insect Biochemistry and Molecular Biology,2008, 38(8): 788-795.

        [56] 張露, 朱世城, 鄭好, 沈祺達(dá), 王世貴, 唐斌. 褐飛虱海藻糖酶基因在表皮幾丁質(zhì)代謝中的調(diào)控作用. 中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(6):1047-1056.ZHANG L, ZHU S C, ZHENG H, SHEN Q D, WANG S G, TANG B.Regulatory function of trehalase genes on chitin metabolism in the cuticle of Nilaparvata lugens. Scientia Agricultura Sinica, 2017, 50(6):1047-1056. (in Chinese)

        [57] 劉曉健, 張歡歡, 李大琪, 崔淼, 馬恩波, 張建珍. 飛蝗可溶型海藻糖酶基因的序列分析及 mRNA表達(dá)特性. 昆蟲(chóng)學(xué)報(bào), 2012,55(11): 1264-1271.LIU X J, ZHANG H H, LI D Q, CUI M, MA E B, ZHANG J Z.Sequence characterization and mRNA expression profiling of a soluble trehalase gene in Locusta migratoria (Orthoptera: Acrididae).Acta Entomologica Sinica, 2012, 55(11): 1264-1271. (in Chinese)

        [58] TAKIGUCHI M, NIIMI T, SU Z H, YAGINUMA T. Trehalase from male accessory gland of an insect, Tenebrio molitor. cDNA sequencing and developmental profile of the gene expression. The Biochemical Journal, 1992, 288(1): 19-22.

        [59] MITSUMASU K, AZUMA M, NIIMI T, YAMASHITA O,YAGINUMA T. Membrane-penetrating trehalase from silkworm Bombyx mori. Molecular cloning and localization in larval midgut.Insect Molecular Biology, 2005, 14(5): 501-508.

        [60] BECKER A, SCHL?DER P, STEELE J E, WEGENER G. The regulation of trehalose metabolism in insects. Experientia, 1996, 52(5):433-439.

        [61] MüLLER J, AESCHBACHER R A, WINGLER A, BOLLER T,WIEMKEN A. Trehalose and trehalase in Arabidopsis. Plant Physiology, 2001, 125(2): 1086-1093.

        [62] SILVA M C, TERRA W R, FERREIRA C. The role of carboxyl,guanidine and imidazole groups in catalysis by a midgut trehalase purified from an insect larvae. Insect Biochemistry and Molecular Biology, 2004, 34(10): 1089-1099.

        [63] DE ALMEIDA F M, BONINI B M, BETON D, JORGE J A,TERENZI A M, DA SILVA A M. Heterologous expression in Escherichia coli of Neurospora crassa neutral trehalase as an active enzyme. Protein Expression and Purification, 2009, 65(2): 185-189.

        [64] 馬龍. 棉鈴蟲(chóng)幾丁質(zhì)合成相關(guān)基因特性及昆蟲(chóng)生長(zhǎng)調(diào)節(jié)劑對(duì)其影響研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2014.MA L. Characterization of genes related to chitin biosynthesis and influence of insect growth regulators on genes in cotton bollworm,Helicoverpa armigera[D]. Yangling: Northwest A&F University, 2014.(in Chinese)

        [65] 趙麗娜. 海藻糖酶和海藻糖合成酶基因?qū)诛w虱海藻糖代謝途徑關(guān)鍵基因的調(diào)控研究[D]. 杭州: 杭州師范大學(xué), 2014.ZHAO L N. Regulating effects of trehalase and TPS on the key genes in the pathway of trehalose metabolic in Nilaparvata lugens[D].Hangzhou: Hangzhou Normal University, 2014. (in Chinese)

        [66] SHI Z K, LIU X, XU Q, QIN Z, WANG S, ZHANG F, WANG S G,TANG B. Two novel soluble trehalase genes cloned from Harmonia axyridis and regulation of the enzyme in a rapid changing temperature.Comparative Biochemistry and Physiology, 2016, 198: 10-18.

        [67] PARKINSON N M, CONYERS C M, KEEN J N, MACNICOLL A D,SMITH I, WEAVER R J. cDNAs encoding large venom proteins from the parasitoid wasp Pimpla hypochondriaca identified by random sequence analysis. Comparative Biochemistry and Physiology, 2003,134(4): 513-520.

        [68] LEE J H, SAITO S, MORI H, NISHIMOTO M, OKUYAMA M, KIM D, WONGCHAWALIT J, KIMURA A, CHIBA S. Molecular cloning of cDNA for trehalase from the European honeybee, Apis mellifera L.and its heterologous expression in Pichia pastoris. Bioscience,Biotechnology and Biochemistry, 2007, 71(9): 2256-2265.

        [69] TATUN N, SINGTRIPOP T, SAKURAI S. Dual control of midgut trehalase activity by 20-hydroxyecdysone and an inhibitory factor in the bamboo borer Omphisa fuscidentalis Hampson. Journal of Insect Physiology, 2008, 54(2): 351-357.

        [70] 張倩, 魯鼎浩, 蒲建, 吳敏, 韓召軍. 灰飛虱海藻糖酶基因的克隆及RNA干擾效應(yīng). 昆蟲(chóng)學(xué)報(bào), 2012, 55(8): 911-920.ZHANG Q, LU D H, PU J, WU M, HAN Z J. Cloning and RNA interference effects of trehalase genes in Laodelphax striatellus(Homoptera: Delphacidae). Acta Entomologica Sinica, 2012, 55(8):911-920. (in Chinese)

        [71] 劉曉健, 孫亞文, 崔淼, 馬恩波, 張建珍. 飛蝗海藻糖酶基因的分子特性及功能. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(22): 4375-4386.LIU X J, SUN Y W, CUI M, MA E B, ZHANG J Z. Molecular characteristics and functional analysis of trehalase genes in Locusta migratoria. Scientia Agricultura Sinica, 2016, 49(22): 4375-4386. (in Chinese)

        [72] CHEN X F, TIAN H G, ZOU L Z, TANG B, HU J, ZHANG W Q.Disruption of Spodoptera exigua larval development by silencing chitin synthase gene A with RNA interference. Bulletin of Entomological Research, 2008, 98(6): 613-619.

        [73] CHEN X F, YANG X, KUMAR N S, TANG B, SUN X J, QIU X M,HU J, ZHANG W Q. The class A chitin synthase gene of Spodoptera exigua: Molecular cloning and expression patterns. Insect Biochemistry and Molecular Biology, 2007, 37(5): 409-417.

        [74] WANG Y, FAN H W, HUANG H J, XUE J, WU W J, BAO Y Y, XU H J, ZHU Z R, CHENG J A, ZHANG C X. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects,Nilaparvata lugens and Laodelphax striatellus (Hemiptera:Delphacidae). Insect Biochemistry and Molecular Biology, 2012,42(9): 637-646.

        [75] MERZENDORFER H, ZIMOCH L. Chitin metabolism in insects:structure, function and regulation of chitin synthases and chitinase.The Journal of Experimental Biology, 2005, 206(24): 4393-4412.

        [76] ARAKANE Y, HOGENKAMP D G, ZHU Y C, KRAMER K J,SPECHT C A, BEEMAN R W, KANOST MR, MUTHUKRISHNAN S. Characterization of two chitin synthase genes of the red fl our beetle,Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochemistry and Molecular Biology,2004, 34(3): 291-304.

        [77] CANDY D J, KILBY B A. Studies on chitin synthesis in the desert locust. Journal of Experimental Biology, 1962, 39: 129-140.

        [78] KRAMER K J, DZIADIK-TURNER C, KOGA D. Chitin metabolism in insects. Comprehensive Insect Physiology Biochemistry Pharmacology,1985, 3: 75-115.

        [79] KRAMER K J, MUTHUKRISHNAN S. Chitin metabolism in insects//GILBERT L I, IATROU K, GILL S S. Comprehensive Molecular Insect Science. Elsevier, Oxford, 2005, 4: 111-144.

        [80] ZHANG L, WANG H J, CHEN, J Y, SHEN Q D, WANG S G, XU H X, TANG B. Glycogen phosphorylase and glycogen synthase: gene cloning and expression analysis reveal their role in trehalose metabolism in the brown planthopper, Nilaparvata lugens St?l(Hemiptera: Delphacidae). Journal of Insect Science, 2017, 17(2): 42.

        [81] XIONG K C, WANG J, LI J H, DENG Y Q, PU P, FAN H, LIU Y H.RNA interference of a trehalose-6-phosphate synthase gene reveals its role during larval-pupal metamorphosis in Bactrocera minax (Diptera:Tephritidae). Journal of Insect Physiology, 2016, 91/92: 84-92.

        [82] TIAN H G, PENG H, YAO Q, CHEN H X, XIE Q, TANG B, ZHANG W Q. Developmental regulation of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS ONE, 2009, 4(7): e6225.

        [83] ARAKANE Y, SPECHT C A, KRAMER K J, MUTHUKRISHNAN S,BEEMAN R W. Chitin synthases are required for survival, fecundity and egg hatch in the red fl our beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2008, 38(10): 959-962.

        [84] 楊艷, 陳玲玲, 曾憲垠, 張紅雨. 海藻糖酶抑制劑 —— 一種新型農(nóng)藥先導(dǎo)結(jié)構(gòu). 生命的化學(xué), 2005, 25(3): 196-198.YANG Y, CHEN L L, ZENG X G, ZHANG H Y. Trehalose inhibitor -A new pesticide pilot structure. Chemistry of Life, 2005, 25(3):196-198. (in Chinese)

        [85] 席羽. 褐飛虱幾丁質(zhì)降解酶系基因家族分析[D]. 杭州: 浙江大學(xué),2014.XI Y. Analyses of chitinolytic enzyme gene families in Nilaparata lugens[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)

        [86] ARAKANE Y, DIXIT R, BEGUM K, PARK Y, SPECHT C A,MERZENDORFER H, KRAMER K J, MUTHUKRISHNAN S,BEEMAN R W. Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2009, 39(5/6): 355-365.

        [87] XI Y, PAN P L, ZHANG C X. The β-N-acetylhexosaminidase gene family in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 2015, 24(6): 601-610.

        [88] ARAKANE Y, MUTHUKRISHNAN S, KRAMER K J, SPECHT C A, TOMOYASU Y, LORENZEN M D, KANOST M, BEEMAN R W.The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Molecular Biology, 2005, 14(5): 453-463.

        [89] DEVINE W P, LUBARSKY B, SHAW K, LUSCHNIG S, MESSINA L, KRASNOW M A. Requirement for chitin biosynthesis in epithelial tube morphogenesis. Proceedings of the National Academy of Sciences United States of America, 2005, 102(47): 17014-17019.

        [90] QU M, YANG Q. A novel alternative splicing site of class A chitin synthase from the insect Ostrinia furnacalise-gene organization,expression pattern and physiological signi fi cance. Insect Biochemistry and Molecular Biology, 2011, 41(12): 923-931.

        [91] ZHANG L, QIU L Y, YANG H L, WANG H J, ZHOU M, WANG S G,TANG B. Study on the effect of wing bud chitin metabolism and its developmental network genes in the brown planthopper, Nilaparvata lugens by knockdown TRE gene. Frontiers in Physiology, 2017, 8:750.

        [92] IWASA T, YAMAAMOTO H, SHIBATA M. Studies on validamycins,new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var.,validamycin-producing organism. The Japanese Journal of Antibiotics,1970, 23(6): 595-602.

        [93] ASANO N, YAMAGUCHI T, KAMEDA Y, MATSUI K. Effect of validamycins on glycohydrolases of Rhizoctonia solania. The Journal of Antibiotics, 1987, 40(4): 526-532.

        [94] KAMEDA Y, ASANO N, YAMAGUCHI T, MATSUI K.Validoxylamines as trehalase inhibitor. The Journal of Antibiotics,1987, 40(4): 563-565.

        [95] 申屠旭萍, 俞曉平, 呂仲賢, 陳建明, 鄭許松, 徐紅星, 張玨鋒, 陳列忠. 海藻糖酶抑制劑——井岡霉亞基胺A的研究進(jìn)展//當(dāng)代昆蟲(chóng)學(xué)研究—中國(guó)昆蟲(chóng)學(xué)會(huì)成立60周年紀(jì)念大會(huì)暨學(xué)術(shù)討論會(huì)論文集,2004.SHENTU X P, YU X P, Lü Z X, CHEN J M, ZHENG X S, XU H X,ZHANG J F, CHEN L Z. Research progress of trehalosidase inhibitors- validoxylamine A//Contemporary Entomological Research - The 60th Anniversary of the Chinese Entomological Society and the Proceedings of the Symposium, 2004. (in Chinese)

        [96] 池明姬. 海藻糖酶—?dú)⑾x(chóng)劑的作用靶標(biāo). 世界農(nóng)藥, 2003, 25(5):34-36.CHI M J. Trehalase-insecticide target. World Pesticides, 2003, 25(5):34-36. (in Chinese)

        [97] RHINEHART B L, ROBINSON K M, LIU P S, PAYNE A J,WHEATLEY M E, WAGNER S R. Inhibition of intestinal disaccharidases and suppression of blood glucose by a new alphaglucohydrolase inhibitor-MDL 25,637. The Journal of Pharmacology and Experimental Therapeutics, 1987, 241(3): 915-920.

        [98] ANDO O, SATAKE H, ITOIi K, SATO A, NAKAJIMA M,TAKAHASHI S, HARUYAMA H, OHKUMA Y, KINOSHITA T,ENOKITA R. Trehazolin, a new trehalase inhibitor. The Journal of Antibiotics, 1991, 44(10): 1165-1168.

        [99] LIU C L, DUNAWAY-MARIANO D, MARIANO P S. Rational design of reversible inhibitors for trehalose-6-phosphate phosphatases.European Journal of Medicinal Chemistry, 2017, 128: 274-286.

        猜你喜歡
        途徑
        求解不等式恒成立問(wèn)題的三種途徑
        求解含參不等式恒成立問(wèn)題的三種途徑
        構(gòu)造等腰三角形的途徑
        多種途徑理解集合語(yǔ)言
        減少運(yùn)算量的途徑
        成功的途徑
        醫(yī)?;稹翱沙掷m(xù)”的三條途徑
        立法人民性的四條實(shí)現(xiàn)途徑
        分級(jí)診療有三個(gè)可行途徑
        BDNF/TrkB信號(hào)途徑與抗腫瘤治療
        国产精品久久久久aaaa| 亚洲av色香蕉一区二区三区软件| 二区视频在线免费观看| 真实国产乱子伦精品视频| 亚洲小说区图片区另类春色| 成人国产精品一区二区网站| 一本大道久久香蕉成人网| 中文人妻无码一区二区三区| 狼人狠狠干首页综合网| 国产亚洲精品熟女国产成人| 国产台湾无码av片在线观看| 日韩欧美中文字幕公布| 日韩精品免费一区二区中文字幕| 在线播放av不卡国产日韩| 又色又爽又黄还免费毛片96下载| 亚洲第一网站免费视频| 日本经典中文字幕人妻| 国内精品亚洲成av人片| 久久9精品区-无套内射无码| 五月天久久国产你懂的| 国产精品国产三级厂七| 91中文人妻熟女乱又乱| 97se亚洲精品一区| 亚洲无码a∨在线视频| 久久久国产精品三级av| 国产成人无码a区在线观看导航 | 又爆又大又粗又硬又黄的a片| 日韩免费高清视频网站| 激情都市亚洲一区二区| 影视av久久久噜噜噜噜噜三级 | 久久久久麻豆v国产精华液好用吗| 亚洲国产日韩在线精品频道| 激情五月天在线观看视频| 最新国产精品久久精品| 精品五月天| 精品国产3p一区二区三区| 伊人久久大香线蕉午夜av| 吸咬奶头狂揉60分钟视频| 精品黄色av一区二区三区| 中文字幕隔壁人妻欲求不满| 一边吃奶一边摸做爽视频|