徐 敏,伍 鈞,張小洪,楊 剛
四川農(nóng)業(yè)大學環(huán)境學院, 成都 611130
隨著全球人口的增加及氣候變暖的加劇,糧食供應與人口的矛盾日益突出,預計到2050年全球人口將達96億[1- 2]。氣候變暖對糧食產(chǎn)量及可持續(xù)發(fā)展產(chǎn)生巨大的影響。研究表明,溫度升高會抑制作物光合作用、降低水分利用效率,從而降低作物產(chǎn)量,在一定范圍內(nèi),溫度與作物產(chǎn)量呈線性負相關(guān)關(guān)系[3]。土壤碳庫是生態(tài)系統(tǒng)中重要的碳庫和匯,其碳儲量高達27000億t,土壤碳庫的變動對全球溫室氣體有著舉足輕重的作用。氣候變暖及糧食危機對土壤固碳減排及多產(chǎn)的要求日趨增加,而氣候變暖[3- 6]及土壤退化是降低作物產(chǎn)量的主要原因[7- 10]。生物炭 (Biomass Charcoal, BC) 是指農(nóng)業(yè)廢棄物、林業(yè)廢棄物、水生生物、人類及動物排泄物、工業(yè)廢棄物等有機廢棄物[2],在250—700℃缺氧或低氧條件下,熱解炭化而成的高度芳香化的含碳物質(zhì)[7- 12]。生物炭原料來源廣泛,成本低廉,具有多孔、比表面積大、吸附能力強、碳穩(wěn)定性強等特點[13- 15],是一種經(jīng)濟、環(huán)境友好型的土壤改良劑,在土壤培肥[7,16- 19]、溫室氣體減排[7,20- 23]方面表現(xiàn)出巨大的潛力,具有較高的生態(tài)經(jīng)濟效益[13,20,24- 26]。以生物炭進行固碳減排,每年每公頃農(nóng)田能固定CO27.6t,預計到2100年,全球?qū)⒂?.5×1010t碳封存于土壤中[5],每年可抵消因人為引起的12%的C排放[6]。生物炭施用能增加土壤碳儲量,減少溫室氣體排放,緩解因高溫引起的糧食減產(chǎn)[3],同時,還能提高土壤質(zhì)量,進一步提高農(nóng)田產(chǎn)出,維持農(nóng)田可持續(xù)發(fā)展[1,4]。
本文總結(jié)前人研究,主要從生物炭減少溫室氣體排放及提高農(nóng)田產(chǎn)出兩方面進行總結(jié)歸納,闡明生物炭作用機理及影響因素,以期為生物炭應用于緩解溫室效應及提高農(nóng)田可持續(xù)發(fā)展提供理論依據(jù)。
引起溫室效應的氣體主要是CO2、CH4、N2O[5,27- 28],其中,農(nóng)田生態(tài)系統(tǒng)是重要的排放源之一,占全球溫室氣體總排放量的10%—20%,且在不斷增加[29],因此,減少農(nóng)田溫室氣體排放具有重要意義。我國絕大部分土壤有機碳含量為100t/hm2,低于世界平均水平121t/hm2,耕層土壤碳密度低于全球平均值的70%,旱地耕層土壤碳密度僅為平均值的1/3,可見,我國土壤生態(tài)系統(tǒng)具有巨大的固碳減排潛力[4,30]。
我國每年產(chǎn)生的生物質(zhì)量巨大,據(jù)統(tǒng)計,每年可利用農(nóng)林生物質(zhì)總量為6.05×108t,其中,農(nóng)業(yè)生物質(zhì)占83%,林業(yè)生物質(zhì)占17%[30- 31]。農(nóng)業(yè)生物質(zhì)主要為水稻、小麥和玉米秸稈,分別約1.1×108、1.3×108、2.3×108t,其中,1/3-1/4的秸稈被直接焚燒[11,30- 32],還有一部分直接還田。李飛躍等[30]估算得出我國作物秸稈每年因焚燒排放的總碳量為4.77×107t。以焚燒產(chǎn)生的黑炭及秸稈直接還田兩種方式還田,不穩(wěn)定性碳比例均高于生物炭,不利于碳的固定[33- 34]。與原材料相比,熱解的生物炭具有更多穩(wěn)定性碳[33- 34],因此,將農(nóng)林廢棄物以生物炭的形式封存于土壤中,更利于碳的固定。若以生物炭形式,對廢棄生物質(zhì)進行封存,我國每年緩解溫室效應總潛力為5.45×108t,凈固碳潛力約5.32×108t,其中,焚燒部分以生物炭固存,每年平均固碳量可達0.96×108t[30- 31]。生物炭施入土壤對碳的封存效果取決于多方面的因素,如生物炭性質(zhì)、土壤性質(zhì)、氣候條件、管理措施等[4,6]。Sheng等[4]研究認為,pH較低的土壤能加速土壤碳的礦化,固碳效果差,而對于酸性耕地占總耕地面積27%的中國來說,高估了其土壤固碳潛力。
生物炭施用于土壤是一種有效的固碳減排手段[4,35],與不施生物炭相比,施用生物炭降低了土壤N、C的礦化作用,減少土壤生態(tài)系統(tǒng)CO2、N2O等溫室氣體排放[36- 37]。其固碳減排機制主要表現(xiàn)在(表1):一是自身含碳較高,且穩(wěn)定性高[23,38- 39]。生物炭中易氧化態(tài)碳比例低,芳香化碳比例高,約占60%以上,且隨著溫度升高而增加[38],這部分不易被分解[40-42],是生物炭具有固碳減排效益的前提[41]。Wu等[21]研究表明,生物炭中的碳平均滯留時間為617—2829年,表現(xiàn)為對碳封存作用極佳,且具有長期效果[20]。二是對作物生長的促進作用,提高碳利用效率,具有固碳效應[1]。Liu等[43]認為生物炭可通過增加土壤有機質(zhì)及養(yǎng)分含量來,促進作物生長[19,37],提高土壤碳的利用效率。三是減少化肥投入,可降低生產(chǎn)化肥消耗的能源及肥料施用排放的溫室氣體[1,44]。Zhang等[44]采用平衡施肥法配以生物炭施用,能在提高玉米產(chǎn)量的同時減少N2O的排放,利于農(nóng)田的低碳可持續(xù)發(fā)展。四是生物炭抑制溫室氣體排放[1,44],主要表現(xiàn)在:1)通過調(diào)節(jié)土壤性質(zhì)及微生物活性,調(diào)節(jié)硝化及反硝化反應,抑制N2O產(chǎn)生,其一是增加了土壤的透氣性,抑制了反硝化作用[28,45];其二是提高土壤pH值,增強了N2O還原酶活性,降低N2O含量[28,46],而Ameloot等[28]研究表明,生物炭抑制了N2O的產(chǎn)生,但并未促進N2O向N2的轉(zhuǎn)化,其原因還需進一步探究。2)生物炭C/N較高,N的循環(huán)被抑制[10,47]。3)降低酶活性,抑制N礦化,有助于提高土壤N含量[10]。4)影響土壤微生物群落結(jié)構(gòu)及功能,抑制了某些微生物的活性,從而抑制對有機質(zhì)的降解[48- 49],降低了C、N的排放[50]。5)生物炭吸附C、N及有機質(zhì),生成更穩(wěn)定的物質(zhì)[20,45- 46,51],Nguye和Lee[52]及Xu等[23]研究表明,生物炭巨大的比表面積及一定的礦物質(zhì)含量(如FeOH、CaCO3等)對CO2具有較強的物理、化學固定作用,物理及化學固定作用促使生物炭與土壤及有機質(zhì)形成有機-無機復合體,生成更緊密的團聚體。孟凡榮等[53]3年田間試驗表明,生物炭的施用提高了黑土中黑炭縮合度,提高了胡敏素HA芳香性,其原因主要是:a)生物炭自身的C=C增加黑炭中C=C比例;b)生物炭的施入提高了微生物活性,分解黑炭中一部分C-C,還有一部分形成更穩(wěn)定的C=C,穩(wěn)定性增加。生物炭主要以自由有機碳儲存在土壤粘粒中,同時,能促進土壤中的有機碳由大團聚體向小團聚體轉(zhuǎn)變[6]。6)降低酶活性,抑制土壤呼吸作用[43,54],侯亞紅等[55]研究表明,與秸稈還田相比,秸稈生物炭施用降低了脫氫酶、β-糖苷酶活性,顯著降低了土壤呼吸,認為生物炭施用是一種低碳的還田模式,利于碳長期封存[54]。而Plaza等[20]及Liu等[43]研究表明,生物炭施用對土壤呼吸無影響,但仍認為生物炭固具有固碳效應,主要是因為:一方面,生物炭施用后,未刺激土壤碳的礦化,即具有固碳效應;另一方面,生物炭施用促進作物生長,提高土壤碳利用效率,具有固碳效應。
表1 生物炭對溫室氣體排放的影響及機制
也有學者研究認為生物炭施用對溫室氣體排放無影響或促進其排放(表1)[22,45]。Purakayastha等[22]研究表明,生物炭雖然增加了土壤pH、CEC,但對碳礦化作用無顯著影響,表現(xiàn)為碳中性??扇苄杂袡C質(zhì)是土壤移動性最強、生物有效性最高的部分[56],在土壤碳循環(huán)過程中占重要地位[57],可溶性有機質(zhì)含量越高,越易礦化[45]。研究表明,生物炭的施用提高了土壤孔隙水中[58]及土壤[59]可溶性有機質(zhì)含量。同時,生物炭施用也提高了土壤孔隙度[18,60- 61]及土壤含水量[62- 63],而Sun等[64]研究認為,土壤水含量為70%時,土壤碳礦化作用最強,由此,生物炭施用提高了土壤水分及可溶性有機質(zhì)含量,也可能促進碳的礦化。此外,Wang等[57]研究顯示,生物炭還會促進本土有機質(zhì)轉(zhuǎn)化為可溶性有機碳,可能是因為生物炭:a)提高了土壤pH值,增加了可溶性有機質(zhì)的釋放;b)提高了腐殖膠體表面的電負性官能團;c)增加了鹽基離子,特別是K+含量,競爭粘土及有機質(zhì)表面的陽離子交換位點,從而增加可溶性有機質(zhì)的釋放。Subedi等[45]研究還表明,2%的糞便生物炭施用增加了土壤N2O的排放,主要是因為:a)生物炭的可溶解性有機物的礦化作用[57];b)微生物數(shù)量及活性的增加,促進生物炭、土壤有機質(zhì)或動植物殘體的分解。
不同的研究結(jié)果可能與生物炭的原料[10,54]、施用量[64]、土壤因素[4- 5,54]、人為因素[44]、試驗時間[4,22]等有關(guān)(表2)。影響因素在不同條件下,占有不同的地位,如Luo等[10]研究表明1%—3%生物炭單獨施用提高了土壤pH,對土壤N礦化影響不大,表明,pH的增加不是N礦化的主要影響因素,高C/N是主要限制因素;而與尿素配施后,N礦化與pH呈顯著負相關(guān)關(guān)系,施用1%生物炭相關(guān)系數(shù)為R=-0.709 (P<0.05),施用3%生物炭相關(guān)系數(shù)為R=-0.753 (P<0.05),此時,pH是主要影響因素。
表2 影響農(nóng)田溫室氣體排放因素
1.4.1 生物炭性質(zhì)
生物炭部分不穩(wěn)定性C會被生物分解,穩(wěn)定性C則會固存于土壤[65],穩(wěn)定性碳含量多少與生物炭的制備溫度及原料密切相關(guān)[57,66- 67]。一般而言,隨著熱解溫度增加,生物炭脂肪族碳含量降低,芳香族碳含量增加,C穩(wěn)定性更高[38,68- 70],固碳減排效益越好[22]。Ahmad等[71]認為高溫制備生物炭含有更多的穩(wěn)定性碳,可在土壤中存在至少1600年。研究表明,農(nóng)林廢棄物在500—700℃條件下制備的生物炭的H/C小于0.7[71],穩(wěn)定性C含量在98%以上[68],穩(wěn)定性高。此外,高溫制備生物炭可礦化態(tài)C及N含量低[45,70],對土壤微生物數(shù)量無影響,對C、N的礦化及釋放無促進作用[71]。不同原料生物炭固碳減排效益表現(xiàn)為:木質(zhì)生物炭高于秸稈生物炭[46],這可能與木質(zhì)生物炭:a)微孔數(shù)較高 (V微孔/V總數(shù)=61.5%),吸附性能較高[72];b)C/P較低[73];c)灰分含量及不穩(wěn)定性碳含量較低[45,65]密切相關(guān)。而幾種農(nóng)業(yè)秸稈廢棄物生物炭固碳減排效益表現(xiàn)為:玉米秸稈優(yōu)于稻殼及小麥秸稈[22]。糞便及污泥生物炭含灰分較多,減排效益較弱[45,70,74]。
1.4.2 施用量
生物炭施用量也影響溫室氣體排放效果,一般而言,隨著生物炭施用量的增加,對C、N的吸附作用增強,溫室氣體排放減少[29,43,54,75];改善土壤理化性質(zhì),碳利用率更高[75]。Paneque等[75]研究認為,生物炭施用量為15t/hm2時,能提高作物生長,利于碳的固存[43]。李露等[29]研究表明施用生物炭20t/hm2對水田溫室氣體N2O和CH4的排放無顯著影響,施用40t/hm2生物炭能顯著降低CH4的排放。而程效義等[76]等研究則表明,施用20t/hm2降低NH3、N2O的排放量,施用40t/hm2效果則相反。Xu等[60]及Gascó等[38]研究表明,8%生物炭施用量能降低土壤呼吸,小于8%施用量則提高了土壤呼吸作用。不同的施用量標準還與土壤性質(zhì)及氣候等因素有關(guān)。
1.4.3 土壤因素
土壤因素,包括土壤pH、有機質(zhì)含量、含水量、溫度等。Sheng等[4]研究表明,與對照相比,酸性土壤施用生物炭促進了本土有機質(zhì)及生物炭的分解,提高了CO2的排放量,提高幅度約1.5—3.5倍,其原因是酸土壤:a)革蘭氏陽細菌比例增加 (增幅為25%—36%),促進生物炭及有機質(zhì)降解;2)生物炭提高了C/O比例,在底物有限的情況下,增加了CO2排放。Luo等[10]研究表明生物炭與尿素配施,解除C/N高的抑制作用后,N礦化與pH呈顯著負相關(guān)關(guān)系。Purakayastha等[22]研究表明,生物炭施用抑制了有機質(zhì)含量高的松軟土的土壤呼吸,促進了有機質(zhì)含量低的老成土土壤呼吸。土壤溫度、濕度也是影響碳礦化作用的影響因素之一[64]。Sun等[64]研究表明,生物炭施用條件下,田間持水量為70%時,碳礦化量最高。且隨著土壤溫度的升高,土壤可礦化態(tài)碳含量增加,碳循環(huán)周期及穩(wěn)定性碳含量均降低[64]。
1.4.4 管理措施
1.4.5 其他影響因素
實驗長短也是影響生物炭固定效益的重要因素。生物炭施用初期C、N礦化增大,隨后則降低,主要表現(xiàn)在試驗初期,外加有機質(zhì)提高微生物活性,礦化作用增強[58]。另外,生物炭穩(wěn)定性高[22],且具有較高的C/N[10],長期來看,C、N礦化作用較弱。生物炭的施用對土壤有機質(zhì)的提升及穩(wěn)固作用也是一個長期的過程,大部分室內(nèi)培養(yǎng)及田間試驗均較短,對土壤C、N礦化及土壤碳庫的提升作用不明顯[6],Fungo等[6]2年田間試驗表明,生物炭單獨施用對土壤團聚體大小無顯著影響,主要是因為:a)團聚體形成初期,耕作、除草等人為因素的破壞;b)時間較短。
氣候引起土壤環(huán)境的變化,如干濕交替、干旱等環(huán)境,會加速碳的礦化,促進CO2的排放[77]。Wang等[57]研究則表明,與恒濕相比,干旱及干濕交替更能促進本土有機質(zhì)分解轉(zhuǎn)化為可溶性有機質(zhì),主要原因為二者:a)增加了微生物作用有機質(zhì)的幾率;b)提高了微生物活性,促進了土壤有機質(zhì)分解。
生物炭在固碳減排的同時[3,61],提高農(nóng)田土壤產(chǎn)出[10,37],達到一舉多贏的目的[35,65,78- 79]。大量研究表明,生物炭的施用能改善土壤物理性質(zhì)[37,80],提高土壤養(yǎng)分含量[79,81],促進作物生長,提高作物產(chǎn)量[44,82]。已有研究表明,生物炭施用能提高小麥[9]、水稻[19,82]、玉米[44]、生菜[83]、向日葵[75]、草莓[83]等作物生物量及產(chǎn)量,增產(chǎn)幅度為13%—112%[3]。以生物炭的方式還田,與同施用量的秸稈還田及單施化肥相比,增產(chǎn)效果更好,環(huán)境及經(jīng)濟效益更佳[19,37]。
生物炭提高作物產(chǎn)量表現(xiàn)在:一是生物炭促進作物生長[19];二是調(diào)節(jié)土壤環(huán)境[84],且二者與作物產(chǎn)量均呈顯著正相關(guān)關(guān)系[37]。
2.1.1 提高作物生長
生物炭促進作物生長表現(xiàn)在(表3),生物炭的施用可提高:1)作物葉片胡蘿卜素、葉綠素含量[37]及葉片天冬氨酸、谷氨酸含量,為促進作物生長,提高作物生物量及產(chǎn)量奠定了基礎(chǔ)[84];2)提高根系生物量、長度,提高根系傷流速度及氧化力[85];3)提高作物莖葉及籽粒氮、磷、鉀含量[37,65,80,86];4)提高水分利用率[75],Paneque等[75]研究表明,地中海氣候下,生物炭施用促進了葉片氣孔關(guān)閉,從而提高葉片含水量。6)生物炭降低病蟲害發(fā)生幾率[83],主要是因為:a)提高了土壤養(yǎng)分含量,特別是K,促進作物生長,利于抗??;b)促進根際土有益微生物生長,抑制病菌入侵;7)降低了重金屬在作物體內(nèi)的轉(zhuǎn)移系數(shù),降低作物體內(nèi)重金屬含量[32,82,87],特別是可食用部分重金屬含量[15,32,84,87- 89],主要是因為生物炭:a)能通過提高土壤pH、吸附、共沉淀、官能團螯合等作用固定重金屬[87- 88];b)提高可食用部分生物量[87],“稀釋”了作物體內(nèi)重金屬含量[82,84],且隨施用量增加,降低幅度增加[89]。Mohamed等[90]研究認為1.5%施用量是較合適的,能降低作物重金屬積累量,保證人類健康。8)降低有機污染物毒性,促進種子萌發(fā)及作物生長[84,89,91]。生物炭施用降低土壤污染物的毒性,減少了植物螯合肽的合成與分泌[84,89]。
表3 生物炭對農(nóng)田產(chǎn)出的影響及機制
2.1.2 提高土壤肥力
生物炭的施用能提高土壤質(zhì)量[19,46,50,84],促進作物生長,特別是在養(yǎng)分、水分缺乏的條件下[83]。生物炭提高農(nóng)田效益主要歸因于生物炭:1)自身含有較高的養(yǎng)分,促進作物生長[44,83];2)施用能降低水分、養(yǎng)分的淋失[42],且溫度越高,固持效果越好[92]。一般而言,生物炭施用后土壤田間持水量提高15.1%,土壤飽和導水率增加25.2%[81]。3)改變根際微生物群落組成[83],提高有益細菌的生物量[87];4)利于土壤團聚體的形成,提高其穩(wěn)定性[6,20],促進土壤保肥保水[20],主要是因為生物炭:a)促進根系及微生物(特別是真菌)的生長,從而促進團聚體形成[58];b)提高可交換性陽離子如Ca的交換能力,抑制粘粒的分散作用[6];c)通過比表面積或含氧官能團吸附粘粒,提高微團聚體形成[6];d)提高微生物量[6]。5)一定程度上提高了土壤溫度,利于微生物活動,Usowicz等[62]研究表明,施用20—30t/hm2生物炭,能降低土壤導熱率及熱擴散率;還會增加土壤顏色,降低反射率[62]。6)改善土壤物理性質(zhì),如降低土壤容重[62],提高含水量及透氣性[80]等。生物炭能顯著降低土壤容重[62,93],且隨著生物炭的施用量增加而降低幅度增加[63,81]。G?b等[63]研究表明,土壤容重y與生物炭施用量x相關(guān)關(guān)系可表示為:y= -0.0856x+1.6559 (R2=0.903)。此外,生物炭還能提高鹽堿土孔隙度,改善透氣性,提高土壤團聚體,促進作物生長[80]。7)提高土壤動物數(shù)量,特別是無脊椎動物,其原因是生物炭的施用:a)提高了微生物數(shù)量,為無脊椎動物提供了更多的食物[85];b)降低土壤污染物的有效性[85]。
也有一些研究結(jié)果表明生物炭的施用對作物產(chǎn)量無影響,甚至出現(xiàn)降低的趨勢[83,94]。生物炭抑制作物生長的主要原因是(表3):1)生物炭含有含有一定量重金屬、多環(huán)芳烴等有毒物質(zhì)[5,17],抵消了生物炭因改善土壤的生物學效應,表現(xiàn)為對產(chǎn)量無影響或?qū)е庐a(chǎn)量下降[17,93]。生物炭的有毒物質(zhì)[38],是阻礙生物炭應用的重要原因[95]。因此,施用前應對生物炭進行毒性檢測[11,17,96]。根據(jù)歐盟生物炭聯(lián)盟的建議生物炭中重金屬As、Cd、Pb及PAHs的含量應低于12—100mg/kg、1.4—39mg/kg、70—500mg/kg、4—12μg/g[24,94]。2)降低了有效水含量,Carvalho等[97]研究表明,施用32t/hm2的木質(zhì)生物炭對水稻產(chǎn)量無影響,可能是因為生物炭降低了土壤植物有效水含量,這部分作用抵消了生物炭對土壤有機質(zhì)的提升作用;3)較高的C/N比,降低有效N的含量[32];4)提高了土壤的pH,抑制了根系活性[17];5)養(yǎng)分過高,特別是K[5]。Buss等[98]分析了19種生物質(zhì)制備而成的生物炭的元素組成,表明,19種生物炭中K元素富集系數(shù)及含量最高,較多的K元素提高了土壤滲透壓及pH,抑制了種子發(fā)芽。6)降低微量元素(如Fe、Cu)有效性,抑制葉綠素產(chǎn)生,降低光合[58];7)速效養(yǎng)分含量降低,且隨著溫度升高及施用量增加,降低幅度增加。隨著熱解溫度升高,生物炭比表面積增大,吸附的速效養(yǎng)分增加[99];Seneviratne等[89]及Xu等[80]證實了,隨著生物炭施用量增加,土壤有效N、P含量出現(xiàn)降低的趨勢,二者呈現(xiàn)負相關(guān)關(guān)系。
生物炭對農(nóng)作物生長的促進作用隨生物炭類型及熱解溫度、土壤類型、施用量、氣候的不同而不同(表4)[75,78,86]。不同影響因素,在不同條件下所占地位不一致。Hagner等[35]研究認為,樺木生物炭的施用效果與作物類型及施用量關(guān)系密切,而熱解溫度對土壤性質(zhì)及作物生物量的影響作用較小。而對于較干旱的地中海氣候,生物炭對水分的固持作用越好,對作物促進作用越好,此時,原料占主導[75]。
表4 生物炭影響作物生長因素
2.3.1 生物炭性質(zhì)
不同原料生物炭對作物的增產(chǎn)效果不一致[85]??v觀前人研究,可以得出,不同原料生物炭對土壤改良及對作物促進作用大致表現(xiàn)為:豬糞生物炭>秸稈生物炭>竹炭生物炭、葡萄藤生物炭>木質(zhì)生物炭[19,61,85- 86,100]。糞便及污泥生物炭重金屬及鹽分含量較高[67],對作物生長抑制作用較強。另外,Paneque等[75]研究表明,松樹、紙漿、污泥生物炭持水量較低[97],對地中海氣候下向日葵萌發(fā)及生長有抑制作用,而葡萄藤生物炭具有促進作用,還與地中海較干燥的氣候條件有關(guān)。
施用效果與生物炭的制備溫度密切相關(guān)[70]。一般而言,低溫(300—400℃)制備生物炭:1)有效N、P含量較高,對作物生長促進作用較好[80];2)比表面積小,對養(yǎng)分固定作用小,利于根系生長[6];3)含不穩(wěn)定可溶性有機碳較多[70],促進微生物生長,Ahmad等[71]研究表明,300℃制備生物炭提高了土壤細菌、放線菌、真菌、叢枝菌根的豐度,而700℃制備生物炭施用,微生物數(shù)量表現(xiàn)出恒定的狀態(tài);4)影響酶活性,Wang等[99]研究表明,生物炭熱解溫度從450℃增加到600℃,脲酶活性逐漸降低,不同酶種類表現(xiàn)出不同的趨勢。Gascó等[38]施用8%的豬糞生物炭,表明300℃制備生物炭提高土壤脫氫酶、磷酸單酯酶、磷酸二酯酶活性,而500℃制備的生物炭對土壤酶活性無影響。
2.3.2 施用量
施用量也是影響生物炭施用效果的重要因素[81]。如Hagner等[35]及Paneque等[75]研究表明,低劑量生物炭施用對土壤pH、EC、含水量及微生物活性無影響,因此,對作物生長無促進作用,提高施用量能提高作物產(chǎn)量,認為施用量應在1.5t/hm2以上。但施用量過高,超過5%則出現(xiàn)抑制[89,93,98]。施用量過高,土壤養(yǎng)分(特別是K)[98]、pH[98]、有毒元素[5,17]含量較高,抑制作物生長,同時會降低水分及養(yǎng)分有效性[32,97]。因此,選擇合適的生物炭施用量是作物增產(chǎn)的前提[65,75,93- 94]。Seneviratne等[89]及Buss等[98]研究認為2.5%施用量對作物生長及養(yǎng)分的提高效果最佳[89]。
2.3.3 土壤類型
生物炭施用于不同土壤類型,作用效果亦不同[54,61,86]。整體來說:生物炭對粗砂土壤的改善效果優(yōu)于砂土[61];對酸性土壤改良效果優(yōu)于鹽堿土[86,88,90];生物炭對粗骨土的改善作用優(yōu)于壤土[61,81];對干旱及半干旱區(qū)土壤的養(yǎng)分[44]及物理性質(zhì)[81]的改善作用更好[18]。生物炭可通過提高土壤pH、有機質(zhì)含量,改善土壤的性質(zhì)[101],簡言之,對酸[86]、瘦[83]、粗[61]、旱[102]、冷[19]類型土壤改良作用更佳[19,35,65]。Tender等[83]研究表明,3%的生物炭施用量對大田生菜生長及抗立枯絲核菌感染的能力無影響,而顯著提高了白炭泥土壤上草莓的鮮重及干重,提高了抗病能力,這與白炭泥土較低的pH及養(yǎng)分有關(guān)。此外,生物炭也能改善pH較高的鹽堿土物理性質(zhì),如孔隙度、通透性、團聚體,從而提高作物產(chǎn)量[80]。
2.3.4 管理措施
與單施生物炭相比,生物炭與化肥[3,80]、作物殘余物[40]、綠肥[6]配施,對作物光合作用、根系活力、土壤性質(zhì)(如微生物活性、團聚體含量)的提升效果更明顯,對作物生長的促進作用更好[5,37]。Xu等[80]研究認為,生物炭與P肥配施于鹽堿土,對作物的促進作用高于二者單獨施用,主要是因為生物炭對P素的吸附作用,抑制了P的有效性,而與P配施減少了生物炭對P的固定。
綜上,生物炭固碳及農(nóng)田效益受多方面因素影響,如生物炭性質(zhì)、土壤性質(zhì)、氣候等因素影響,因此,生物炭施用需因地制宜,選擇合適的生物炭[75]、合適的用量[94],是發(fā)揮固碳及增產(chǎn)效益的前提?;诒疚奶峒暗难芯拷Y(jié)論,綜合固碳及培肥兩個方面,筆者認為選擇300—700℃制備的農(nóng)林廢棄物生物炭,且施用量不超過5%為宜[45,67- 68,70,75, 89- 90,98]。
生物炭作為在減少溫室氣體排放及提高農(nóng)田產(chǎn)出方面表現(xiàn)出巨大的潛力,可通過大規(guī)模的施用,緩解溫室效應,提高農(nóng)田產(chǎn)出,維持農(nóng)田可持續(xù)發(fā)展。而大規(guī)模應用僅在發(fā)達國家較多,對于發(fā)展中國家應用還較少[1],因此,還有許多不完備之處,尚需開展以下等方面的研究:
(1)經(jīng)濟效益作為農(nóng)田生態(tài)系統(tǒng)重要屬性之一,生物炭施用的經(jīng)濟可行性是生物炭大規(guī)模應用的前提,特別是對于發(fā)展中國家,因此,還需對生物炭從生產(chǎn)到施用整個體系進行經(jīng)濟可行性分析,為大規(guī)模應用提供基礎(chǔ);
(2)生物炭固碳潛力及農(nóng)田效益突出,如何量化生物炭作用效益,還需開展更多的工作;
(3)生物炭的施用對土壤有機質(zhì)的提升及穩(wěn)固作用是一個長期的過程,對土壤改良及固碳是否具有持續(xù)效果,還需要長期的定點觀測;
(4)土壤粘粒含量也是影響生物炭施用效果的因素之一,具體的影響效果及機制還需進行定性及定量探究;
(5)生物炭調(diào)節(jié)硝化及反硝化反應的作用機理還不清楚;
(6)生物炭對土壤酶活性的影響及其影響因素尚不清楚。
[1] Zhang D X, Yan M, Niu Y, Liu X Y, van Zwieten L, Chen D, Bian R J, Cheng K, Li L Q, Joseph S, Zheng J W, Zhang X H, Zheng J F, Crowley D, Filley T R, Pan G X. Is current biochar research addressing global soil constraints for sustainable agriculture? Agriculture, Ecosystems & Environment, 2016, 226: 25- 32.
[2] Tripathi M, Sahu J N, Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renewable and Sustainable Energy Reviews, 2016, 55: 467- 481.
[3] Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan M Z, Shah A N, Ullah A, Nasrullah, Khan F, Ullah S, Alharby H, Nasim W, Wu C, Huang J L. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiology and Biochemistry, 2016, 103: 191- 198.
[4] Sheng Y Q, Zhan Y, Zhu L Z. Reduced carbon sequestration potential of biochar in acidic soil. Science of the Total Environment, 2016, 572: 129- 137.
[5] Kuppusamy S, Thavamani P, Megharaj M, Venkateswarlu K, Naidu R. Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environment International, 2016, 87: 1- 12.
[7] Colantoni A, Evic N, Lord R, Retschitzegger S, Proto A R, Gallucci F, Monarca D. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renewable and Sustainable Energy Reviews, 2016, 64: 187- 194.
[8] Jin J, Kang M J, Sun K, Pan Z Z, Wu F C, Xing B S. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine. Science of the Total Environment, 2016, 550: 504- 513.
[9] Ren X H, Sun H W, Wang F, Cao F M. The changes in biochar properties and sorption capacities after being cultured with wheat for 3 months. Chemosphere, 2016, 144: 2257- 2263.
[10] Luo X X, Chen L, Zheng H, Chang J J, Wang H F, Wang Z Y, Xing B S. Biochar addition reduced net N mineralization of a coastal wetland soil in the Yellow River Delta, China. Geoderma, 2016, 282: 120- 128.
[11] Shen X, Huang D Y, Ren X F, Zhu H H, Wang S, Xu C, He Y B, Luo Z C, Zhu Q H. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil. Journal of Environmental Management, 2016, 168: 245- 251.
[12] Han Y T, Cao X, Ouyang X, Sohi S P, Chen J W. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: effects of production conditions and particle size. Chemosphere, 2016, 145: 336- 341.
[13] Lehmann J. A handful of carbon. Nature, 2007, 447(7141): 143- 144.
[14] Khorram M S, Zhang Q, Lin D L, Zheng Y, Fang H, Yu Y L. Biochar: a review of its impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences, 2016, 44: 269- 279.
[15] Li Z Y, Qi X B, Fan X Y, Du Z J, Hu C, Zhao Z J, Isa Y, Liu Y. Amending the seedling bed of eggplant with biochar can further immobilize Cd in contaminated soils. Science of the Total Environment, 2016, 572: 626- 633.
[16] Tan X F, Liu Y G, Gu Y L, Xu Y, Zeng G M, Hu X J, Liu S B, Wang X, Liu S M, Li J. Biochar-based Nano-composites for the decontamination of wastewater: a review. Bioresource Technology, 2016, 212: 318- 333.
[17] Bass A M, Bird M I, Kay G, Muirhead B. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Science of the Total Environment, 2016, 550: 459- 470.
[18] Mohamed B A, Ellis N, Kim C S, Bi X T, Emam A E R. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil. Science of the Total Environment, 2016, 566- 567: 387- 397.
[19] Liu Y X, Lu H H, Yang S M, Wang Y F. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons. Field Crops Research, 2016, 191: 161- 167.
[20] Plaza C, Giannetta B, Fernández J M, López-de-Sá E G, Polo A, Gascó G, Méndez A, Zaccone C. Response of different soil organic matter pools to biochar and organic fertilizers. Agriculture, Ecosystems and Environment, 2016, 225: 150- 159.
[21] Wu M X, Han X G, Zhong T, Yuan M D, Wu W X. Soil organic carbon content affects the stability of biochar in paddy soil. Agriculture, Ecosystems & Environment, 2016, 223: 59- 66.
[22] Purakayastha T J, Das K C, Gaskin J, Harris K, Smith J L, Kumari S. Effect of pyrolysis temperatures on stability and priming effects of C3 and C4 biochars applied to two different soils. Soil and Tillage Research, 2016, 155: 107- 115.
[23] Xu X Y, Kan Y, Zhao L, Cao X D. Chemical transformation of CO2during its capture by waste biomass derived biochars. Environmental Pollution, 2016, 213: 533- 540.
[24] Yin D X, Wang X, Chen C, Peng B, Tan C Y, Li H L. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere, 2016, 152: 196- 206.
[25] Sasidharan S, Torkzaban S, Bradford S A, Kookana R, Page D, Cook P G. Transport and retention of bacteria and viruses in biochar-amended sand. Science of the Total Environment, 2016, 548- 549: 100- 109.
[26] Ouyang W, Zhao X C, Tysklind M, Hao F H. Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content. Water Research, 2016, 92: 156- 163.
[27] Awasthi M K, Wang Q, Ren X N, Zhao J C, Huang H, Awasthi S K, Lahori A H, Li R H, Zhou L N, Zhang Z Q. Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting. Bioresource Technology, 2016, 219: 270- 280.
[28] Ameloot N, Maenhout P, De Neve S, Sleutel S. Biochar-induced N2O emission reductions after field incorporation in a loam soil. Geoderma, 2016, 267: 10- 16.
[29] 李露, 周自強, 潘曉健, 熊正琴. 不同時期施用生物炭對稻田N2O和CH4排放的影響. 土壤學報, 2015, 52(4): 839- 848.
[30] 李飛躍, 汪建飛. 中國糧食作物秸稈焚燒排碳量及轉(zhuǎn)化生物炭固碳量的估算. 農(nóng)業(yè)工程學報, 2013, 29(14): 1- 7.
[31] 姜志翔, 鄭浩, 李鋒民, 王震宇. 生物炭技術(shù)緩解我國溫室效應潛力初步評估. 環(huán)境科學, 2013, 34(6): 2486- 2492.
[32] Xu P, Sun C X, Ye X Z, Xiao W D, Zhang Q, Wang Q. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicology and Environmental Safety, 2016, 132: 94- 100.
[33] Nautiyal P, Subramanian K A, Dastidar M G. Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: alternate use of waste of biodiesel industry. Journal of Environmental Management, 2016, 182: 187- 197.
[34] Jiang X Y, Haddix M L, Cotrufo M F. Interactions between biochar and soil organic carbon decomposition: effects of nitrogen and low molecular weight carbon compound addition. Soil Biology and Biochemistry, 2016, 100: 92- 101.
[35] Hagner M, Kemppainenb R, Jauhiainen L, Tiilikkala K, Set?l? H. The effects of birch (Betulaspp.) biochar and pyrolysis temperature on soil properties and plant growth. Soil and Tillage Research, 2016, 163: 224- 234.
[37] Agegnehu G, Bass A M, Nelson P N, Bird M I. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 2016, 543: 295- 306.
[38] Gascó G, Paz-Ferreiro J, Cely P, Plaza C, Méndez A. Influence of pig manure and its biochar on soil CO2emissions and soil enzymes. Ecological Engineering, 2016, 95: 19- 24.
[39] Qian L B, Zhang W Y, Yan J C, Han L, Gao W G, Liu R Q, Chen M F. Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures. Bioresource Technology, 2016, 206: 217- 224.
[40] Rogovska N, Laird D A, Karlen D L. Corn and soil response to biochar application and stover harvest. Field Crops Research, 2016, 187: 96- 106.
[41] Zhang Y N, Li Y L, Wang L, Tang Y S, Chen J H, Hu Y, Fu X H, Le Y Q. Soil microbiological variability under different successional stages of the Chongming Dongtan wetland and its effect on soil organic carbon storage. Ecological Engineering, 2013, 52: 308- 315.
[42] Ngo P T, Rumpel C, Janeau J L, Dang D K, Doan T T, Jouquet P. Mixing of biochar with organic amendments reduces carbon removal after field exposure under tropical conditions. Ecological Engineering, 2016, 91: 378- 380.
[43] Liu X Y, Zheng J F, Zhang D X, Cheng K, Zhou H M, Zhang AF, Li L Q, Joseph S, Smith P, Crowley D, Kuzyakov Y, Pan G X. Biochar has no effect on soil respiration across Chinese agricultural soils. Science of the Total Environment, 2016, 554- 555: 259- 265.
[44] Zhang D X, Pan G X, Wu G, Kibue G W, Li L Q, Zhang X H, Zheng J W, Zheng J F, Cheng K, Joseph S, Liu X Y. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere, 2016, 142: 106- 113
[45] Subedi R, Taupe N, Pelissetti S, Petruzzelli L, Bertora C, Leahy J J, Grignani C. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: influence of pyrolysis temperature and feedstock type. Journal of Environmental Management, 2016, 166: 73- 83.
[46] Li M, Liu M, Li Z P, Jiang C Y, Wu M. Soil N transformation and microbial community structure as affected by adding biochar to a paddy soil of subtropical China. Journal of Integrative Agriculture, 2016, 15(1): 209- 219.
[47] Fungo B, Guerena D, Thiongo M, Lehmann J, Neufeldt H, Kalbitz K. N2O and CH4emission from soil amended with steam-activated biochar. Journal of Plant Nutrition and Soil Science, 2014, 177(1): 34- 38.
[48] Tian J, Wang J Y, Dippold M, Gao Y, Blagodatskaya Y E, Kuzyakov Y. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Science of the Total Environment, 2016, 556: 89- 97.
[49] Mitchell P J, Simpson A J, Soong R, Simpson M J. Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. Soil Biology and Biochemistry, 2015, 81: 244- 254.
[50] Harter J, Weigold P, El-Hadidi M, Huson D H, Kappler A, Behrens S. Soil biochar amendment shapes the composition of N2O-reducing microbial communities. Science of the Total Environment, 2016, 562: 379- 390.
[51] Singh B P, Cowie A L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Scientific Reports, 2014, 4: 3687.
[52] Nguyen M V, Lee B K. A novel removal of CO2using nitrogen doped biochar beads as a green adsorbent. Process Safety and Environmental Protection, 2016, 104: 490- 498.
[53] 孟凡榮, 竇森, 尹顯寶, 張葛, 鐘雙玲. 施用玉米秸稈生物質(zhì)炭對黑土腐殖質(zhì)組成和胡敏酸結(jié)構(gòu)特征的影響. 農(nóng)業(yè)環(huán)境科學學報, 2016, 35(1): 122- 128.
[54] 王洪媛, 蓋霞普, 翟麗梅, 劉宏斌. 生物炭對土壤氮循環(huán)的影響研究進展. 生態(tài)學報, 2016, 36(19): 5998- 6011.
[55] 侯亞紅, 王磊, 付小花, 樂毅全. 土壤碳收支對秸稈與秸稈生物炭還田的響應及其機制. 環(huán)境科學, 2015, 36(7): 2655- 2661.
[56] Smebye A, Alling V, Vogt R D, Gadmar T C, Mulder J, Cornelissen G, Hale S E. Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere, 2016, 142: 100- 105.
[57] Wang D Y, Griffin D E, Parikh S J, Scow K M. Impact of biochar amendment on soil water soluble carbon in the context of extreme hydrological events. Chemosphere, 2016, 160: 287- 292.
[58] Hartley W, Riby P, Waterson J. Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability. Journal of Environmental Management, 2016, 181: 770- 778.
[59] Venegas A, Rigol A, Vidal M. Changes in heavy metal extractability from contaminated soils remediated with organic waste or biochar. Geoderma, 2016, 279: 132- 140.
[60] Xu N, Tan G C, Wang H Y, Gai X P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 2016, 74: 1- 8.
[61] Burrell L D, Zehetner F, Rampazzo N, Wimmer B, Soja G. Long-term effects of biochar on soil physical properties. Geoderma, 2016, 282: 96- 102
[62] Usowicz B, Lipiec J,ukowski M, Marczewski W, Usowicz J. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil and Tillage Research, 2016, 164: 45- 51.
[64] Sun J N, He F H, Zhang Z H, Shao H B, Xu G. Temperature and moisture responses to carbon mineralization in the biochar-amended saline soil. Science of the Total Environment, 2016, 569- 570: 390- 394.
[65] Gao S, Hoffman-Krull K, Bidwell A L, DeLuca T H. Locally produced wood biochar increases nutrient retention and availability in agricultural soils of the San Juan Islands, USA. Agriculture, Ecosystems & Environment, 2016, 233: 43- 54.
[66] Ashry A, Bailey E H, Chenery S R N, Young S D. Kinetic study of time-dependent fixation of UVIon biochar. Journal of Hazardous Materials, 2016, 320: 55- 66.
[67] Jin J W, Li Y N, Zhang J Y, Wu S C, Cao Y C, Liang P, Zhang J, Wong M H, Wang M Y, Shan S D, Christie P. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. Journal of Hazardous Materials, 2016, 320: 417- 426.
[68] Tag A T, Duman G, Ucar S, Yanik J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of Analytical and Applied Pyrolysis, 2016, 120: 200- 206.
[69] Chen D Y, Yu X Z, Song C, Pang X L, Huang J, Li Y J. Effect of pyrolysis temperature on the chemical oxidation stability of bamboo biochar. Bioresource Technology, 2016, 218: 1303- 1306.
[70] Taherymoosavi S, Joseph S, Munroe P. Characterization of organic compounds in a mixed feedstock biochar generated from Australian agricultural residues. Journal of Analytical and Applied Pyrolysis, 2016, 120: 441- 449.
[71] Ahmad M, Ok Y S, Kim B Y, Ahn J H, Lee Y H, Zhang M, Moon D H, Al-Wabel M I, Lee S S. Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil. Journal of Environmental Management, 2016, 166: 131- 139.
[72] Shi K S, Qiu Y P, Li B, Stenstrom M K. Effectiveness and potential of straw- and wood-based biochars for adsorption of imidazolium-type ionic liquids. Ecotoxicology and Environmental Safety, 2016, 130: 155- 162.
[73] Vandecasteele B, Sinicco T, D′Hose T, vanden Nest T, Mondini C. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. Journal of Environmental Management, 2016, 168: 200- 209.
[74] Zhang W H, Zheng J, Zheng P P, Qiu R L. Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions. Chemosphere, 2015, 134: 438- 445.
[75] Paneque M, De la Rosa J M, Franco-Navarro J D, Colmenero-Flores J M, Knicker H. Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena, 2016, 147: 280- 287.
[76] 程效義, 張偉明, 孟軍, 楊旭, 趙倩雯, 陳溫福. 玉米秸稈炭對玉米物質(zhì)生產(chǎn)及產(chǎn)量形成特性的影響. 玉米科學, 2016, 24(1): 117- 122, 129- 129.
[77] Zhang H H, Lin K D, Wang H L, Gan J. Effect ofPinusradiataderived biochars on soil sorption and desorption of phenanthrene. Environmental Pollution, 2010, 158(9): 2821- 2825.
[78] 陳溫福, 張偉明, 孟軍. 農(nóng)用生物炭研究進展與前景. 中國農(nóng)業(yè)科學, 2013, 46(16): 3324- 3333.
[79] Gonzaga M I S, Mackowiak C L, Comerford N B, da Veiga Moline E F, Shirley J P, Guimaraes D V. Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition. Soil and Tillage Research, 2017, 165: 59- 65.
[80] Xu G, Zhang Y, Sun J N, Shao H B. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil. Science of the Total Environment, 2016, 568: 910- 915.
[81] Omondi M O, Xia X, Nahayo A, Liu X Y, Korai P K, Pan G X. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 2016, 274: 28- 34.
[82] Shu R, Wang Y J, Zhong H. Biochar amendment reduced methylmercury accumulation in rice plants. Journal of Hazardous Materials, 2016, 313: 1- 8.
[83] De Tender C A, Debode J, Vandecasteele B, D′Hose T, Cremelie P, Haegeman A, Ruttink T, Dawyndt P, Maes M. Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Applied Soil Ecology, 2016, 107: 1- 12.
[85] Molnár M, Vaszita E, Farkas é, Ujaczki é, Fekete-Kertész I, Tolner M, Klebercz O, Kirchkeszner C, Gruiz K, Uzinger N, Feigl V. Acidic sandy soil improvement with biochar—a microcosm study. Science of the Total Environment, 2016, 563- 564: 855- 865.
[86] Manolikaki I I, Mangolis A, Diamadopoulos E. The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils. Journal of Environmental Management, 2016, 181: 536- 543.
[87] Wang Q, Chen L, He L Y, Sheng X F. Increased biomass and reduced heavy metal accumulation of edible tissues of vegetable crops in the presence of plant growth-promotingNeorhizobiumhuautlenseT1- 17 and biochar. Agriculture, Ecosystems & Environment, 2016, 228: 9- 18.
[88] Zhang G X, Guo X F, Zhao Z H, He Q S, Wang S F, Zhu Y, Yan Y L, Liu X T, Sun K, Zhao Y, Qian T W. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environmental Pollution, 2016, 218: 513- 522.
[89] Seneviratne M, Weerasundara L, Ok Y S, Rinklebe J, Vithanage M. Phytotoxicity attenuation inVignaradiataunder heavy metal stress at the presence of biochar and N fixing bacteria. Journal of Environmental Management, 2017, 186: 293- 300.
[90] Mohamed I, Zhang G S, Li Z G, Liu Y, Chen F, Dai K. Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application. Ecological Engineering, 2015, 84: 67- 76.
[91] Yu F, Zhou Y M, Gao B, Qiao H, Li Y H, Wang E Z, Pang L F, Bao C. Effective removal of ionic liquid using modified biochar and its biological effects. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 318- 324.
[92] Yuan H R, Lu T, Wang Y Z, Chen Y, Lei T Z. Sewage sludge biochar: nutrient composition and its effect on the leaching of soil nutrients. Geoderma, 2016, 267: 17- 23.
[93] Andrenelli M C, Maienza A, Genesio L, Miglietta F, Pellegrini S, Vaccari F P, Vignozzi N. Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil. Agricultural Water Management, 2016, 163: 190- 196.
[94] Marks E A N, Mattana S, Alcaiz J M, Pérez-Herrero E, Domene X. Gasifier biochar effects on nutrient availability, organic matter mineralization, and soil fauna activity in a multi-year Mediterranean trial. Agriculture, Ecosystems & Environment, 2016, 215: 30- 39.
[95] Anyika C, Majid Z A, Rashid M, Isa A B, Ismail N, Zakaria M P, Yahya A. Toxic and nontoxic elemental enrichment in biochar at different production temperatures. Journal of Cleaner Production, 2016, 131: 810- 821.
[96] Zielińska A, Oleszczuk P. Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludge-derived biochars. Chemosphere, 2016, 163: 480- 489.
[97] Carvalho M T M, Madari B E, Bastiaans L, van Oort P A J, Leal W G O, Heinemann A B, da Silva M A S, Maia A H N, Parsons D, Meinke H. Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield. Geoderma, 2016, 276: 7- 18.
[98] Buss W, Graham M C, Shepherd J G, Ma?ek O. Risks and benefits of marginal biomass-derived biochars for plant growth. Science of the Total Environment, 2016, 569- 570: 496- 506.
[99] Wang X B, Zhou W, Liang G Q, Song D, Zhang X Y. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Science of the Total Environment, 2015, 538: 137- 144.
[100] 王麗麗. 不同生物炭對鉛鋅礦尾礦重金屬污染土壤修復效果的研究[D]. 杭州: 浙江大學, 2015.
[101] 韓瑋, 申雙和, 謝祖彬, 李博, 李玉婷, 劉琦. 生物炭及秸稈對水稻土各密度組分有機碳及微生物的影響. 生態(tài)學報, 2016, 36(18): 5838- 5846.
[102] Hansen V, Hauggaard-Nielsen H, Petersen C T, Mikkelsen T N, Müller-St?ver D. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil and Tillage Research, 2016, 161: 1- 9.