亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        嫁接對番茄抗逆性影響機(jī)制的研究進(jìn)展

        2018-02-03 16:51:23邢佳毅
        中國蔬菜 2018年2期
        關(guān)鍵詞:產(chǎn)量研究

        邢佳毅 劉 偉

        (北京市農(nóng)林科學(xué)院蔬菜研究中心,農(nóng)業(yè)部都市農(nóng)業(yè)華北重點(diǎn)實(shí)驗(yàn)室,北京 100097)

        嫁接作為一種園藝技術(shù)最早起源于2 000多年前的東亞,當(dāng)時是用于解決以有限的耕地集約化種植蔬菜,20世紀(jì)末傳入歐洲,之后傳入北美(Kubota et al.,2008)?,F(xiàn)今,嫁接主要用于提高作物產(chǎn)量、減少病蟲害發(fā)生以及降低種植成本等(Rivard &Louws,2008;Mudge et al.,2009;Rivard et al.,2010;Haroldsen et al.,2012)。嫁接的優(yōu)勢主要體現(xiàn)在以下幾方面:提高優(yōu)良品種的產(chǎn)量潛力(Oztekin et al.,2009)、提高作物適應(yīng)不良環(huán)境的能力(Rivard et al.,2010)、減少化學(xué)物質(zhì)(藥劑和肥料)的使用(Louws et al.,2010)、提高作物對水分和土壤等資源的利用率(Schwarz et al.,2012)、通過表觀遺傳學(xué)產(chǎn)生有益的基因型變異(Albacete et al.,2015)、提高果實(shí)品質(zhì)等(Lee et al.,2010;S á nchez-Rod rí guez et al.,2013)。

        番茄(Solanum lycopersicumL.)作為重要的園藝作物之一,隨著其在設(shè)施生產(chǎn)中的發(fā)展,連作障礙、次生鹽漬化、青枯病以及根結(jié)線蟲等土傳病害日益嚴(yán)重(Thompson et al.,2007)。選擇適宜的砧木嫁接不僅能夠提高番茄果實(shí)產(chǎn)量、改善品質(zhì)(Flores et al.,2010),還能夠提高植株抵御病毒、細(xì)菌、真菌和線蟲等生物脅迫的能力(Kunwar et al.,2015),以及增強(qiáng)植株的耐熱性、耐寒性、耐鹽性、耐旱性、耐弱光能力等(Venema et al.,2008;Colla et al.,2010;Schwarz et al.,2010)。目前,關(guān)于嫁接番茄的研究主要集中在砧木對于接穗的影響,砧木能夠通過韌皮部和木質(zhì)部為接穗的生長提供水分、養(yǎng)分、激素、代謝產(chǎn)物、多肽、有機(jī)小分子以及核酸等物質(zhì)(Esta? et al.,2005;Villalta et al.,2008;Dun et al.,2009)。砧木中的 mRNA能夠通過韌皮部傳遞到接穗中,調(diào)控葉片形態(tài)的發(fā)育(Kim et al.,2001)。

        雖然嫁接在番茄上應(yīng)用廣泛,但對于嫁接如何提高番茄抗逆性的機(jī)制仍然不太清楚。本文就近年來番茄嫁接中砧木與接穗之間有關(guān)養(yǎng)分吸收與運(yùn)輸、激素調(diào)控、基因與蛋白表達(dá)等方面的研究進(jìn)行簡要綜述,以期為嫁接在番茄抗逆栽培和品種改良方面提供理論參考。

        1 養(yǎng)分吸收與運(yùn)輸

        優(yōu)良的番茄砧木往往根系發(fā)達(dá),具有更強(qiáng)的水分和養(yǎng)分吸收能力,能夠促進(jìn)作物的生長發(fā)育,為作物抗逆性的提高提供生理基礎(chǔ)(Martinez-Rodriguez et al.,2008;Flores et al.,2010)。眾所周知,砧木對于養(yǎng)分和水分的攝取能夠影響植株的表型,但是這其中的生理機(jī)制還知之甚少。

        研究表明,與Florida47自根苗相比,以Beaufort和Multifort為砧木的番茄嫁接苗對水分和N素的利用率均有所提高,并且產(chǎn)量也分別提高了近27%和30%(Djidonou et al.,2013)。砧木LA1777能夠增加接穗Moneymaker葉片中C素和N素的積累,其中C素含量增加主要是由于葉片中淀粉的累積,從而提高了番茄植株的耐寒性(Venema et al.,2008)。Khah等(2006)也證實(shí),番茄嫁接后植株能夠通過提高P素的利用率來提高產(chǎn)量。在干旱條件下,由于植株缺乏蒸騰作用,導(dǎo)致作物根系對N素的吸收和轉(zhuǎn)運(yùn)出現(xiàn)問題(Robredo et al.,2011);干旱脅迫還能抑制N代謝過程中酶的活性,從而降低植株對N的吸收(Li & Lascano,2011)。S á nchez-Rod rí guez等(2013)研究表明,以Zarina為砧木進(jìn)行嫁接能夠提高干旱條件下番茄植株對N的吸收和光呼吸作用,增加番茄葉片對的光合同化產(chǎn)物。Cristina等(2017)采用4種不同的嫁接組合來研究低P脅迫對番茄生長發(fā)育的影響,通過分析韌皮部汁液和葉片中的離子種類以及各激素含量變化,發(fā)現(xiàn)低P脅迫能夠影響番茄植株對P、Ca、S和Mn元素的吸收并引起乙烯和細(xì)胞分裂素的含量變化,最后篩選出在低P環(huán)境下能夠穩(wěn)定生長的砧木Hp-type。此外,砧木還能增強(qiáng)番茄接穗對于 K+、Ca2+和 Mg2+的吸收(Savvas et al.,2010)。雖然養(yǎng)分吸收和同化看起來對于砧木提高植株的活力非常重要,但是除了Albacete等(2009)關(guān)于75 mmol·L-1NaCl處理下嫁接能夠通過提高番茄植株韌皮部汁液中的K+/Na+比值來提高植株的抗鹽性以及增加產(chǎn)量的報道外,鮮有關(guān)于嫁接植株體內(nèi)養(yǎng)分濃度與產(chǎn)量的相關(guān)性研究。

        砧木不僅能夠增強(qiáng)番茄植株對養(yǎng)分的吸收,在有些情況下還能減少植株對有毒離子的吸收和轉(zhuǎn)運(yùn)(Savvas et al.,2010)。例如,在硼(B)元素過量的環(huán)境下,以Arnold為砧木的番茄嫁接苗中編碼B轉(zhuǎn)運(yùn)蛋白的基因表達(dá)量下降,從而減少根系對B的吸收以及該元素在莖部的積累(Gioia et al.,2017)。

        砧木不但可以調(diào)節(jié)番茄植株對營養(yǎng)元素的吸收和運(yùn)輸,而且能夠通過提高植株體內(nèi)化合物的含量和活性來調(diào)節(jié)生長發(fā)育(Fernaandez-Garciaa et al.,2004),并因此增強(qiáng)植株的抗逆性(Ghanem et al.,2008;S á nchez-Rod rí guez et al.,2012b)。在鹽分脅迫條件下,嫁接能夠提高番茄過氧化氫酶(CAT)、抗壞血酸過氧化物酶(APX)、脫氫抗壞血酸還原酶(DHAR)和谷胱甘肽還原酶(GR)等抗氧化酶的活性(He et al.,2009)。而在高溫脅迫條件下,嫁接番茄植株體內(nèi)谷胱甘肽過氧化物酶(GPX)和CAT的活性增強(qiáng),導(dǎo)致各組織中的H2O2含量增加,從而提高番茄的耐熱性(Rosa et al.,2003)。Angelika和Dietmar(2013)研究表明,嫁接能夠緩解弱光對于番茄生長發(fā)育的抑制,與自根苗相比,以Piccolino和Classy為砧木的嫁接番茄果實(shí)中類胡蘿卜素(包括番茄紅素和β-胡蘿卜素)以及糖、酸的含量更高。在干旱脅迫條件下,采用Zarina作砧木能夠提高植株的抗壞血酸、酚類、黃酮類、番茄紅素和β-胡蘿卜素等抗氧化物質(zhì)的含量,從而提高櫻桃番茄的產(chǎn)量和果實(shí)品質(zhì)(S á nchez-Rod rí guez et al.,2012a)。

        到目前為止,關(guān)于番茄嫁接的大部分研究還是集中在篩選養(yǎng)分利用率高的砧木,或者與嫁接苗栽培配套的灌溉與施肥措施上,而從生理水平和分子水平上揭示這種高養(yǎng)分利用率的發(fā)生機(jī)制的研究還有待加強(qiáng)。

        2 植物激素調(diào)控

        在嫁接番茄中,砧木可以通過激素調(diào)節(jié)來影響接穗的生長(Holbrook et al.,2002;P é rez-Alfocea et al.,2010)。例如,以耐鹽野生品種為砧木嫁接栽培品種,可以提高番茄的產(chǎn)量和品質(zhì),原因在于砧木能夠增強(qiáng)調(diào)節(jié)葉面積與葉片衰老的根源性離子和激素因子的供應(yīng)能力(Santa et al.,2002;Fern á ndez-Gar cí a et al.,2004)。在 75 mmol·L-1NaCl處理下,與對照相比,番茄嫁接苗葉片木質(zhì)部中反玉米素(t-Z)、脫落酸(ABA)和吲哚乙酸(IAA)的濃度均發(fā)生變化(Albacete et al.,2008,2010)。此外,在鹽分脅迫條件下,將野生型番茄嫁接到一個能夠持續(xù)表達(dá)異戊烯基腺苷轉(zhuǎn)移酶(IPT)基因(調(diào)控細(xì)胞分裂素合成)的砧木(35S∶∶IPT)上,結(jié)果發(fā)現(xiàn)與野生型自根苗相比,嫁接苗的產(chǎn)量提高了30%,這種產(chǎn)量上的差異很可能是由于嫁接促進(jìn)了番茄植株莖部的發(fā)育并減少了花的敗育,因?yàn)榧藿用缰衪-Z的濃度比對照高1.5~2.0倍,而這種激素能夠促進(jìn)發(fā)育的果實(shí)中細(xì)胞的分化和膨大,從而提高單果質(zhì)量(Ghanem et al.,2011)。Ghanem等(2011)還指出,鹽分脅迫能夠通過降低番茄莖部細(xì)胞分裂素(CK)的濃度來減少果實(shí)產(chǎn)量,而采用35S∶∶IPT砧木嫁接后,嫁接苗根部產(chǎn)生的CK能夠通過韌皮部傳遞到植株地上部分,從而緩解鹽分脅迫帶來的危害。還有報道指出,在嫁接番茄中CK等激素能夠通過調(diào)節(jié)庫源活力來提高植株的抗逆性(Albacete et al.,2014),而 Dodd等(2009)將ABA缺失突變體(fl acca)嫁接到正常的野生型番茄砧木上,發(fā)現(xiàn)根部產(chǎn)生的ABA能夠調(diào)控葉片氣孔的發(fā)育。

        目前在豌豆(Pisum sativum)和擬南芥(Arabidopsis thaliana)中已經(jīng)證實(shí),激素信號的傳遞往往與類胡蘿卜素等化合物的代謝有關(guān)(Dun et al.,2009;Sieburth & Lee,2010),鑒別出這些分子及其信號元件能夠更好地提高嫁接番茄適應(yīng)逆境的能力。

        3 基因與蛋白表達(dá)

        番茄作為模式植物已經(jīng)完成了全基因組測序,并得到了許多性狀鮮明的突變體,這為在嫁接中篩選優(yōu)質(zhì)砧木,以及研究在番茄根部特異表達(dá)的基因如何影響地上部的形態(tài)發(fā)育提供了有利條件(Asins et al.,2010;Harada,2010)。

        轉(zhuǎn)錄組學(xué)和蛋白組學(xué)的方法是研究嫁接番茄砧木與接穗之間基因和蛋白表達(dá)變化的重要方法(Vitale et al.,2014)。Turhan等(2016) 通 過SDS-PAGE和免疫印跡的方法發(fā)現(xiàn),與自根苗相比,以Beril、Logure和Valiant為砧木的番茄嫁接苗能夠通過提高葉片中熱激蛋白HSP23和HSP60的含量來抵抗高溫脅迫。Muneer等(2016)對以B-blocking為砧木的番茄嫁接苗分別進(jìn)行低溫(15℃)和高溫(30 ℃)處理,發(fā)現(xiàn)溫度脅迫下植株能夠產(chǎn)生H2O2和兩種形式的活性氧,并且嫁接苗中超氧化物歧化酶(SOD)、CAT和APX的含量也更高,通過2-DE技術(shù)共鑒定出87個差異表達(dá)蛋白,這些蛋白參與了防御、應(yīng)激反應(yīng),離子結(jié)合、運(yùn)輸,光合作用和蛋白質(zhì)合成等過程。Georgia等(2017)采用營養(yǎng)液膜技術(shù)(NFT)研究發(fā)現(xiàn),低溫脅迫條件下耐低溫砧木LA1777能夠提高番茄植株莖部的干、鮮質(zhì)量,葉面積,根干質(zhì)量,氣孔導(dǎo)度,胞間CO2濃度和過氧化物酶活性等;對番茄植株葉片進(jìn)行轉(zhuǎn)錄組分析,共篩選出361個差異表達(dá)基因,對這些基因進(jìn)行功能分類發(fā)現(xiàn)纖維素合成可能是植株在低溫下的響應(yīng)機(jī)制之一。

        近年來的研究發(fā)現(xiàn),一些特異的RNA分子能夠通過韌皮部傳遞來調(diào)控作物的器官發(fā)育(Harada,2010),而在模式植物煙草(Nicotiana benthamiana)中已經(jīng)證實(shí),利用轉(zhuǎn)錄后基因沉默技術(shù)(PTGS)對砧木中的特定基因進(jìn)行沉默后,這種siRNA同樣能夠傳遞到接穗中(Kasai et al.,2011)。在嫁接番茄中開展類似試驗(yàn),有利于更好地了解嫁接番茄的抗逆機(jī)制。

        4 展望

        雖然嫁接番茄在提高植株抗逆性方面的作用已經(jīng)被證實(shí),但由于具有多重抗性的優(yōu)良砧木較少,目前在生產(chǎn)上嫁接番茄的應(yīng)用面積并不是很大。鑒于此,一方面要加強(qiáng)對于野生番茄資源的挖掘和選育,培育出更多的優(yōu)良砧木品種;另一方面,要加深嫁接番茄砧木與接穗之間關(guān)于信號傳遞和基因表達(dá)等方面的研究,闡明嫁接番茄的抗逆機(jī)制,更好地利用嫁接這一手段來鑒定、開發(fā)和創(chuàng)造新的遺傳多樣性,從而提高番茄適應(yīng)逆境的能力。

        另外,Velez-Ramirez等(2014,2105)在研究嫁接番茄耐持續(xù)光照的試驗(yàn)中,將敏感型的A131接穗和耐受型的CLT接穗同時嫁接到A131上,結(jié)果發(fā)現(xiàn)與根部相比,提高植株莖部的耐光照性更能提高番茄的產(chǎn)量,因此培育耐光照的接穗比耐光照的砧木更加重要,這一結(jié)果為研究嫁接番茄植株響應(yīng)抗逆境的信號發(fā)生部位提供了新思路。

        Albacete A,Ghanem M E,Mar tí nez-And ú jar C,Acosta M,S á nchez-Bravo J,Mar tí nez V,Lutts S,Dodd I C,P é rez-Alfocea F.2008.Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato(Solanum lycopersicumL.)plants.Journal of Experimental Botany,59:4119-4131.

        Albacete A,Mar tí nez-And ú jar C,Ghanem M E,Acosta M,S á nchez-Bravo J,Asins M J,Cuartero J,Lutts S,Dodd I C,P é rez-Alfocea F.2009.Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence,and increased leaf area and crop productivity in salinized tomato.Plant Cell Environ,32:928-938.

        Albacete A,Ghanem M E,Dodd I C,P é rez-Alfocea F.2010.Principal component analysis of hormone profling data suggests an important role for cytokinins in regulating leaf growth and senescence of salinized tomato.Plant Signaling and Behavior,5:45-48.

        Albacete A,Cantero-Navarro E,Balibrea M E,Gro?kinsky D K,de la Cruz Gonz á lez M,Mar tí nez-And ú jar C,Smigocki A C,Roitsch T,P é rez-Alfocea F.2014.Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.Journal of Experimental Botany,65(20):6081-6095.

        Albacete A,Mar tí nez-And ú jar C,Mar tí nez-P é rez A,Thompson A J,Dodd I C,P é rez-Alfocea F.2015.Unravelling rootstock×scion interactions to improve food security.Journal of Experimental Botany,66:2211-2226.

        Angelika K,Dietmar S.2013.Grafting:a possibility to enhance health-promoting and flavour compounds in tomato fruits of shaded plants? Scientia Horticulturae,149:97-107.

        Asins M J,Bola rí n M C,P é rez-Alfocea F,Esta? M T,Mar tí nez-And ú jar C,Albacete A,Villalta I,Bernet G P,Dodd I C,Carbonell E A.2010.Genetic analysis of physiological components of salt tolerance conferred bySolanumrootstocks.What is the rootstock doing for the scion? Theoretical and Applied Genetics,121(1):105-115.

        Colla G,Rouphael Y,Leonardi C,Bie Z L.2010.Role of grafting invegetable crops grown under saline conditions.Scientia Horticulturae,127:147-155.

        Cristina M A,Juan M R,Ian C D,Alfonso A,F(xiàn)rancisco P A.2017.Hormonal and nutritional features in contrasting rootstock-mediated tomato growth under low-phosphorus nutrition.Frontiers in Plant Science,8:533-526.

        Djidonou D,Xin Z,Eric H S,Karen E K.2013.Yield,water-,and nitrogen-use efficiency in field-grown,grafted tomatoes.HortScience,48:485-492.

        Dodd I C,Theobald J C,Richer S K,Davies W J.2009.Partial phenotypic reversion of ABA-deficient flacca tomato(Solanum lycopersicum)scions by a wild-type rootstock:normalizing shoot ethylene relations promotes leaf area but does not diminish whole plant transpiration rate.Journal of Experimental Botany,60:4029-4039.

        Dun E A,Brewer P B,Beveridge C A.2009.Strigolactones:discovery of the elusive shoot branching hormone.Trends in Plant Science,14:364-372.

        Esta? M T,Martinez-Rodrigues M M,Perez-Alfoce F,F(xiàn)lowers T J,Bolarin M C.2005.Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot.Journal of Experimental Botany,56(412):703-712.

        Fernaandez-Garciaa N,Carvajal M,Olmos E.2004.Graft union formation in tomato plants:peroxidase and catalase involvement.Annals of Botany,93:53-60.

        Fern á ndez-Gar cí a N,Ma rtí nez V,Carvajal M.2004.Effect of salinity on growth,mineral composition,and water relations of grafted tomato plants.Journal of Plant Nutrition & Soil Science,167(5):616-622.

        Flores F B,Sanchez-Bel P,Estan M T,Martinez-Rodriguez M M,Moyano E,Morales B,Campos J F,Garcia-Abel lá n J O,Egea M I,F(xiàn)ern á ndez-Garcia N,Romojaro F,Bola rí n M C.2010.The effectiveness of grafting to improve tomato fruit quality.Scientia Horticulturae,125:211-217.

        Georgia N,Dimitrios S,Vassilis P,Anastasios K,Rita M Z,Dirk K H,Ellen Z,Dietmar S.2017.Rootstock sub-optimal temperature tolerance determines transcriptomic responses after long-term root cooling in rootstocks and scions of grafted tomato plants.Frontiers in Plant Science,8:911-925.

        Ghanem M E,Albacete A,Mar tí nez-And ú jar C,Acosta M,Romero-Aranda R,Dodd I C,Lutts S,P é rez-Alfocea F.2008.Hormonal changes during salinity-induced leaf senescence in tomato(Solanum lycopersicumL.).Journal of Experimental Botany,59:3039-3050.

        Ghanem M E,Albacete A,Smigocki A C,F(xiàn) ré bort I,Posp í ?ilov á H,Ma rtí nez-And ú jar C,Acosta M,S á nchez-Bravo J,Lutts S,Dodd I C,P é rez-Alfocea F.2011.Rootsynthesized cytokinins improve shoot growth and fruit yield in salinized tomato(Solanum lycopersicumL.)plants.Journal of Experimental Botany,62(1):125-140.

        Gioia F D,Aprile A,Sabella E,Santamaria P,Pardossi A,Miceli A,de Bellis L,Nutricati E.2017.Grafting response to excess boron and expression analysis of genes coding boron transporters in tomato.Plant Biology,19(5):728-735.

        Harada T.2010.Grafting and RNA transport via phloem tissue in horticultural plants.Scientia Horticulturae,125:545-550.

        Haroldsen V M,Szczerba M W,Aktas H,Lopez-Baltazar J,Odias M J,Chi-Ham C L,Labavitch J M,Bennett A B,Powell A L.2012.Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement.Frontiers in Plant Science,3:39-51.

        He Y,Zhu Z,Yang J,Ni X,Zhu B.2009.Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity.Environmental &Experimental Botany,66:270-278.

        Holbrook N M,Shashidhar V R,James R A,Munns R.2002.Stomatal control in tomato with ABA-defcient roots:response of grafted plants to soil drying.Journal of Experimental Botany,53:1503-1514.

        Kasai A,Bai S,Li T,Harada T.2011.Graft-transmitted siRNA signal from the root induces visual manifestation of endogenous posttranscriptional gene silencing in the scion.PLoS One,6(2):e16895.

        Khah E M,Kakava E,Mavromatis A,Chachalis D,Goulas C.2006.Effect of grafting on growth and yield of tomato(Lycopersicon esculentumMill.)in greenhouse and open-feld.Journal of Applied Horticulture,8:3-7.

        Kim M,Canio W,Kessler S,Sinha N.2001.Developmental changes due to long-distance movement of ahomeobox fusion transcript in tomato.Science,293:287-289.

        Kubota C,McClure M A,Kokalis-Burelle N,Bausher M G,Rosskopf E N.2008.Vegetable grafting:history,use,and current technology status in North America.HortScience,43(6):1664-1669.

        Kunwar S,Paret M L,Olson S M,Ritchie L,Rich J,F(xiàn)reeman J,Theodore M.2015.Grafting using rootstocks with resistance toRalstonia solanacearumagainstMeloidogyne incognitain tomato production.Plant Disease,99:119-124.

        Lee J M,Kubota C,Tsau S J,Bie Z,Echevarria P H,Morra L,Oda M.2010.Current status of vegetable grafting:diffusion,grafting techniques,automation.Scientia Horticulturae,127:93-105.

        Li H,Lascano R J.2011.Deficit irrigation for enhancing sustainable water use:comparison of cotton nitrogen uptake and prediction of lint yield in a multivariate autoregressive state-space model.Environmental & Experimental Botany,71:224-231.

        Louws F J,Rivard C L,Kubota C.2010.Grafting fruiting vegetables to manage soilborne pathogens,foliar pathogens,arthropods and weeds.Scientia Horticulturae,127:127-146.

        Martinez-Rodriguez M M,Estan M T,Moyano E,Garcia-Abellan J O,F(xiàn)lores F B,Campos J F,Al-Azzawi M J,F(xiàn)lowers T J,Bolarin M C.2008.The effectiveness of grafting to improve salt tolerance in tomato when an‘excluder’genotype is used as scion.Environmental & Experimental Botany,63:392-401.

        Mudge K,Janick J,Scofeld S,Goldschmidt E E.2009.A history of grafting.Horticultural Reviews,35:437-493.

        Muneer S,Ko C H,Wei H,Chen Y,Jeong B R.2016.Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress.PLoS One,11(6):e0157439.

        Oztekin G B,Giuffrida F,Tuzel Y,Leonardi C.2009.Is the vigour of grafted tomato plants related to root characteristics? Journal of Food Agriculture and Environment,7:364-368.

        P é rez-Alfocea F,Albacete A,Ghanem M E,Dodd I C.2010.Hormonal regulation of source-sink relations to maintain crop productivity under salinity:a case study of root-to-shoot signalling in tomato.Functional Plant Biology,37:592-603.

        Rivard C L,Louws F J.2008.Grafting to manage soilborne disease in heirloom tomato production.HortScience,43:2104-2111.

        Rivard C L,O’Connell S,Peet M M,Louws F J.2010.Grafting tomato with interspecific rootstock to manage diseases caused bySclerotium rolfsiiand southern root-knot nematode.Plant Disease,94(8):1015-1021.

        Robredo A,P é rez-L ó pez U,Miranda-Apodaca J,Lacuesta M,Mena-Petite A,Mu?oz-Rueda A.2011.Elevated CO2reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery.Environmental & Experimental Botany,71:399-408.

        Rosa M R,Juan M R,Esteban S,Luis R.2003.Does grafting provide tomato plants an advantage against H2O2production under conditions of thermal shock? Physiologia Plantarum,117:44-50.

        Santa C A,Martinez-Rodriguez M M,Perez-Alfocea F,Romero-Aranda R,Maria C B.2002.The rootstock effect on the tomato salinity response depends on the shoot genotype.Plant Science,162:825-831.

        Savvas D,Savva A,Ntatsi G,Ropokis A,Karapanos I,Krumbein A,Olympios C.2010.Effects of three commercial rootstocks on mineral nutrition,fruit yield,and quality of salinized tomato.Journal of Plant Nutrition & Soil Science,174:154-162.

        S á nchez-Rod rí guez E,Leyva R,Cons tá n-Aguilar C,Romero L,Ruiz J M.2012a.Grafting under water stress in tomato cherry:improving the fruit yield and quality.Annals of Applied Biology,161:302-312.

        S á nchez-Rod rí guez E,Mdm R W,Blasco B,Leyva R,Romero L,Ruiz J M.2012b.Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress.Plant Science,188(3):89-96.

        S á nchez-Rod rí guez E,Romero L,Ruiz J M.2013.Role of grafting in resistance to water stress in tomato plants:ammonia production and assimilation.Journal of Plant Growth Regulation,32:831-842.

        Schwarz D,Rouphael Y,Colla G,Venema J H.2010.Grafting as a tool to improve tolerance of vegetables to abiotic stresses:thermal stress,water stress and organic pollutants.Scientia Horticulturae,127:162-171.

        Schwarz D,?ztekin G B,Yukzel T,B rü ckner B,Krumbein A.2012.Rootstockscan enhance tomato growth and quality characteristics at low potassium supply.Scientia Horticulturae,149:70-79.

        Sieburth L E,Lee D K.2010.BYPASS1:how a tiny mutant tells a big story about root-to-shoot signaling.Journal of Integrative Plant Biology,52:77-85.

        Thompson A J,Andrews J,Mulholland B J,McKee J M T,Hilton H W,Horridge J S,F(xiàn)arquhar G D,Smeeton R C,Smillie I R A,Black C R,Taylor I B.2007.Overproduction of abscisic acid in tomato increases transpiration effciency and root hydraulic conductivity and in uences leaf expansion.Plant Physiology,143:1905-1917.

        Turhan E,Ergin S,Aydogan C,Ozturk N.2016.Influence of grafting on heat shock proteins of tomato(Lycopersicon esculentumMill)plants under heat stress.Journal of Biotechnology,231:27.

        Velez-Ramirez A I,Ieperen W V,Dick V,Pieter M J A V P,Heuvelink E,Millenaar F F.2014.A single locus confers tolerance to continuous light and allows substantial yield increase in tomato.Nature Communications,5:4549-4562.

        Velez-Ramirez A I,Ieperen W V,Dick V,Millenaar F F.2015.Continuous-light tolerance in tomato is graft-transferable.Planta,241:285-290.

        Venema J H,Dijk B E,Bax J M,van Hasselt P R,Elzenga J T M.2008.Grafting tomato(Solanum lycopersicum)onto the rootstock of ahigh-altitude accession ofSolanum habrochaitesimproves suboptimal-temperature tolerance.Environmental & Experimental Botany,63:359-367.

        Villalta I,Reina-S á nchez A,Bola rí n M C,Cuartero J,Belver A,Venema K,Carbonell E A,Asins M J.2008.Genetic analysis of Na+and K+concentrations in leaf and stem as physiological components of salt tolerance in tomato.Theoretical and Applied Genetics,116:869-880.

        Vitale A,Rocco M,Arena S,Giuffrida F,Cassaniti C,Scaloni A,Lomaglio T,Guarnaccia V,Polizzi G,Marra M,Leonardi C.2014.Tomato susceptibility toFusariumcrown and root rot:effect of grafting combination and proteomic analysis of tolerance expression in the rootstock.Plant Physiology & Biochemistry,83:207-216.

        猜你喜歡
        產(chǎn)量研究
        FMS與YBT相關(guān)性的實(shí)證研究
        2022年11月份我國鋅產(chǎn)量同比增長2.9% 鉛產(chǎn)量同比增長5.6%
        提高玉米產(chǎn)量 膜下滴灌有效
        2020年國內(nèi)翻譯研究述評
        遼代千人邑研究述論
        世界致密油產(chǎn)量發(fā)展趨勢
        海水稻產(chǎn)量測評平均產(chǎn)量逐年遞增
        視錯覺在平面設(shè)計(jì)中的應(yīng)用與研究
        科技傳播(2019年22期)2020-01-14 03:06:54
        2018年我國主要水果產(chǎn)量按?。▍^(qū)、市)分布
        EMA伺服控制系統(tǒng)研究
        草草影院发布页| 蜜桃精品国产一区二区三区| 午夜无码片在线观看影院| 国产香蕉一区二区三区在线视频| 9191在线亚洲精品| 国产91色在线|亚洲| 国产成人自产拍免费视频| 国产成人午夜av影院| 日韩中文字幕一区在线| 国产高潮迭起久久av| 与漂亮的女邻居少妇好爽 | 久久综合九色综合网站| 亚洲天堂2017无码中文| 无码精品一区二区三区超碰| 色婷婷av一区二区三区不卡| 蜜桃视频在线免费观看| 国产人成无码视频在线观看| 农村欧美丰满熟妇xxxx| 亚洲精品无码乱码成人| 国产综合第一夜| 日本在线免费精品视频| 亚洲成在人网站天堂日本| 加勒比东京热一区二区| 午夜熟女插插xx免费视频| 亚洲小说图区综合在线| 成熟丰满熟妇高潮xxxxx视频| 无码AV高潮喷水无码专区线| 欧美成人精品三级在线观看| 亚洲专区在线观看第三页| 国产精品丝袜美女久久| 日本超级老熟女影音播放| 国产精品一区二区av麻豆| 国产精品无码一区二区在线看| 中文字幕国产91| 97久久成人国产精品免费| 亚洲美女自拍偷拍视频| 精品久久久久久久久午夜福利| 中文人妻无码一区二区三区在线| 国产亚洲精品综合一区| av二区三区在线观看| 国产精品亚洲精品一区二区|