亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        內(nèi)生菌對(duì)柳樹生長(zhǎng)及氮磷吸收的強(qiáng)化作用

        2016-05-04 01:31:46劉桂青楊棟倪其軍李廷強(qiáng)郝虎林陳寶楊衛(wèi)東楊肖娥
        關(guān)鍵詞:柳樹生物量

        劉桂青, 楊棟, 倪其軍, 李廷強(qiáng), 郝虎林, 陳寶, 楊衛(wèi)東, 楊肖娥*

        (1.浙江大學(xué)環(huán)境與資源學(xué)院,污染環(huán)境修復(fù)與生態(tài)健康教育部重點(diǎn)實(shí)驗(yàn)室,杭州 310058; 2.中國(guó)船舶重工集團(tuán)公司

        第七○二研究所,江蘇 無錫 214082;3.寧波原水研究院,浙江 寧波 315100)

        ?

        內(nèi)生菌對(duì)柳樹生長(zhǎng)及氮磷吸收的強(qiáng)化作用

        劉桂青1, 楊棟2, 倪其軍2, 李廷強(qiáng)1, 郝虎林3, 陳寶1, 楊衛(wèi)東1, 楊肖娥1*

        (1.浙江大學(xué)環(huán)境與資源學(xué)院,污染環(huán)境修復(fù)與生態(tài)健康教育部重點(diǎn)實(shí)驗(yàn)室,杭州 310058; 2.中國(guó)船舶重工集團(tuán)公司

        第七○二研究所,江蘇 無錫 214082;3.寧波原水研究院,浙江 寧波 315100)

        摘要采用水培試驗(yàn),比較了8株來源于超積累植物的內(nèi)生菌(SaMR12、SaZR4、SaMR10、SaNR1、SaCS20、SM03、SM05和LM02)對(duì)柳樹生長(zhǎng)及氮磷吸收的影響。結(jié)果表明:接種SaMR12和SaMR10后柳樹葉綠素含量顯著增加,分別比對(duì)照提高了15%和14%;接種LM02、SaNR1和SaMR12對(duì)柳樹根系生長(zhǎng)有明顯的促進(jìn)作用,其中柳樹的總根長(zhǎng)比對(duì)照分別增加了163%、136%和66%,根表面積分別增加了54%、12%和17%,根尖數(shù)分別增加了54%、44%和48%;接種LM02、SaMR12和SaMR10后柳樹總生物量分別比對(duì)照增加了234%、43%和54%;LM02、SaMR12和SaMR10這3株內(nèi)生菌能顯著促進(jìn)柳樹氮磷吸收,其中柳樹地上部氮積累量比對(duì)照分別增加了176%、26%和41%,根系氮積累量分別是對(duì)照的8.3倍、2.4倍和3.4倍,柳樹地上部磷積累量比對(duì)照分別增加了109%、12%和30%,根系磷積累量分別是對(duì)照的4.8倍、2.1倍和2.8倍。研究結(jié)果顯示,接種LM02、SaMR10和SaMR12對(duì)柳樹生長(zhǎng)和氮磷積累有顯著的促進(jìn)作用,同時(shí),顯著提高了對(duì)富營(yíng)養(yǎng)化水體的修復(fù)效率。

        關(guān)鍵詞內(nèi)生細(xì)菌; 柳樹; 生物量; 氮; 磷; 生物強(qiáng)化

        Bioaugmentation effects of endophytic bacteria on growth and nitrogen and phosphorus accumulation of willow.JournalofZhejiangUniversity(Agric. &LifeSci.), 2016,42(2):256-264

        LIU Guiqing1, YANG Dong2, NI Qijun2, LI Tingqiang1, HAO Hulin3, CHEN Bao1, YANG Weidong1, YANG Xiao’e1*

        (1.KeyLaboratoryofPollutedEnvironmentRemediationandEcologicalHealth,MinistryofEducation,CollegeofEnvironmentalandResourceSciences,ZhejiangUniversity,Hangzhou310058,China; 2.ChineseShipScientificResearchCenter,Wuxi214082,Jiangsu,China; 3.NingboRawWaterResourceResearchAcademy,Ningbo315100,Zhejiang,China)

        Summary Due to large biomass, submergence tolerance, rapid growth, well-developed root system and strong adaptability, willow (Salixmatsudana) trees were not only widely used in ecological restoration of the heavy metal pollution, organic pollution and eutrophication, but also used as source of biomass energy. To expand the range of application and improve the economic value, it is necessary to enhance the biomass and nutrient accumulation of willow. Phyto-microbial remediation technology was widely used in recent years for it was environmentally friendly, low cost and high efficiency in restoration. With assistance of microbe, the efficiency of phytoremediation was significantly enhanced. Endophytic bacterium, a kind of microbe colonized in plant tissue without causing pathogenicity, could produce plant hormones like gibberellin and indole acetic acid (IAA) to promote plant growth.

        In this study, willow trees were inoculated by eight endophytic bacteria (SaMR12, SaZR4, SaMR10, SaNR1, SaCS20, SM03, SM05 and LM02) derived from hyperaccumulatorSedumalfredii, and the plant growth and accumulation of nitrogen and phosphorus were investigated. In hydroponics experiment, the willow cuttings were grown in 2.5 L Hoagland’s solution with physiology upward until root length was above 1 cm. And propagation of endophytic bacteria suspension was added to the vessel with final density of 1×108CFU/mL. The bacterial solution was replaced after 3 days. The treatment without bacterial inoculation was used as a control. The willows were observed and determined after 2 months of culture.

        The chlorophyll contents, root morphology, shoot and root biomass, nitrogen and phosphorus accumulation showed significantly different among different endophytic bacteria treatments. Chlorophyll content was significantly increased by 15% and 14% with inoculation of SaMR12 and SaMR10 endophytic strains as compared with the control. After inoculation with LM02, SaNR1 and SaMR12, the root morphology was significantly improved. The total root length was increased by 163%, 136% and 66%, respectively. Root surface area was increased by 54%, 12% and 17%, and the number of root tips was increased by 54%, 44% and 48%, respectively. With the inoculation of LM02, SaMR12 and SaMR10, the total biomass of willow was increased by 234%, 43% and 54%, respectively. The accumulation of nitrogen and phosphorus nutrients was also significantly promoted. Shoot nitrogen accumulation was increased by 176%, 26% and 41%, and shoot phosphorus accumulation was increased by 109%, 12% and 30%, respectively, as compared with the control. The root nitrogen accumulation was increased by 8.3 times, 2.4 times and 3.4 times, and the root phosphorus accumulation was increased by 4.8 times, 2.1 times and 2.8 times, respectively, with the inoculation of LM02, SaMR12 and SaMR10. Meanwhile, the concentrations of nitrogen and phosphorus in eutrophic water were significantly decreased.

        It is concluded that LM02, SaMR10 and SaMR12 are more efficient in promotion of plant growth than other endophytic bacteria. These strains also show the enhancement of willow growth for bio-energy and improvement of phytoremediation efficiency, which have a broad application prospect.

        Key wordsendophytic bacteria; willow (Salixmatsudana); biomass; nitrogen; phosphorus; bioaugmentation

        柳樹屬于楊柳科,大約有450種,主要分布在北半球溫帶地區(qū),有豐富的遺傳和生態(tài)多樣性[1]。柳樹具有生物量大、樹型優(yōu)美、景觀效果良好,喜濕耐水、速生性強(qiáng),根系發(fā)達(dá)、適應(yīng)能力強(qiáng)和良好的防污、凈化空氣的優(yōu)點(diǎn)[2-3]。早在20世紀(jì)90年代,歐洲與北美地區(qū)已開始研究將柳樹應(yīng)用于植物修復(fù)和營(yíng)建環(huán)保林等[1]。近些年,有許多研究報(bào)道表明,柳樹因良好的生長(zhǎng)特性,可以進(jìn)行重金屬污染、有機(jī)物污染[4-6]、水體富營(yíng)養(yǎng)化等方面的修復(fù),可以用于構(gòu)建人工濕地凈化廢水[7],發(fā)展短輪伐期柳樹矮林用于生物質(zhì)能源[8],可以快速改良土壤、水體、大氣等環(huán)境。但單一的植物修復(fù)技術(shù)在工程應(yīng)用過程中仍存在一定的局限性[9]。

        近年來,植物與微生物聯(lián)合修復(fù)技術(shù)逐漸成為國(guó)內(nèi)外研究的熱點(diǎn)。有許多研究將植物與微生物聯(lián)合修復(fù)技術(shù)應(yīng)用于土壤重金屬污染修復(fù)中,因其具有環(huán)境友好、成本低廉等優(yōu)點(diǎn)而得到重視[10]。植物與微生物結(jié)合組成生態(tài)修復(fù)聯(lián)合系統(tǒng),不僅可以應(yīng)用于土壤污染修復(fù),還可以應(yīng)用于江河湖海的富營(yíng)養(yǎng)化綜合治理中[11]。植物-微生物聯(lián)合修復(fù)已成為生態(tài)修復(fù)的重要技術(shù),如何提高植物對(duì)污染物的吸收與抗性、促進(jìn)植物生長(zhǎng)是影響修復(fù)效率的關(guān)鍵之一。聯(lián)合植物修復(fù)的微生物在修復(fù)過程中至關(guān)重要,許多特異性微生物起著關(guān)鍵作用,比如海洋細(xì)菌中的假單胞菌屬(Pseudomonas)和弧菌屬(Vibrio)等可被用于降解水體中低分子質(zhì)量的多環(huán)芳烴[12];來自土壤微生物類群的假單胞菌屬細(xì)菌可有效降解農(nóng)藥[13];許多根際微生物可以通過改善根區(qū)微環(huán)境,產(chǎn)生分泌物質(zhì)螯合重金屬、活化重金屬等多種方式促進(jìn)重金屬的吸收[14];一些假單胞菌屬和芽孢桿菌屬等內(nèi)生菌會(huì)產(chǎn)生赤霉素或吲哚乙酸促進(jìn)植物生長(zhǎng)[15],有的內(nèi)生菌可以提高植物抗病性,影響生理生態(tài)[16]等。

        在植物-微生物聯(lián)合修復(fù)中,對(duì)植物的相關(guān)研究較多,但對(duì)聯(lián)合的微生物中特異性內(nèi)生菌的研究較少。本研究的主要目的就是將多株高效促生的特異性內(nèi)生菌接種到應(yīng)用廣泛的木本修復(fù)植物柳樹體內(nèi),篩選出對(duì)柳樹促生明顯且有較好親和力的特異性內(nèi)生細(xì)菌,通過內(nèi)生菌強(qiáng)化能源柳樹,提高生物質(zhì)產(chǎn)量,改善生態(tài)修復(fù)效率,同時(shí)增加經(jīng)濟(jì)效益。

        1材料與方法

        1.1試驗(yàn)材料

        供試柳樹(Salixmatsudana)是從江蘇省林業(yè)科學(xué)研究院引進(jìn)、在浙江大學(xué)農(nóng)業(yè)試驗(yàn)站培植的柳樹種質(zhì)資源品種SM24。供試的8株內(nèi)生細(xì)菌是從超富集型植物東南景天體內(nèi)分離純化得到的,其基本特性見表1。

        供試內(nèi)生菌菌液制備:將8株內(nèi)生細(xì)菌分別接種到盛有等量LB(Luria-Bertani)液體培養(yǎng)基的三角瓶中,放入振蕩機(jī)過夜培養(yǎng)(30 ℃,200 r/min)12 h,其菌落總數(shù)約為2×109CFU/mL。

        根據(jù)WASTON等[17]的方法改進(jìn)水培營(yíng)養(yǎng)液配方:1 mmol/L Ca(NO3)2·4H2O,0.1 mmol/L NH4H2PO4,1.25 mmol/L KNO3,0.5 mmol/L MgSO4·7H2O,0.025 mmol/L Fe-EDTA,0.5 mL/L微量元素溶液(23.1 μmol/L H3BO3,0.4 μmol/L ZnCl2,0.18 μmol/L CuCl2,4.57 μmol/L MnCl2,0.06 μmol/L Na2MoO4)。

        表1 供試內(nèi)生菌的基本特征

        +:產(chǎn)酶;—:不產(chǎn)酶。

        “+” represents that the strain could produce the corresponding enzyme; “—” represents that no enzyme was produced.

        1.2試驗(yàn)設(shè)計(jì)

        試驗(yàn)于2014年2月21日—4月22日在浙江大學(xué)紫金港校區(qū)農(nóng)業(yè)試驗(yàn)站玻璃溫室中進(jìn)行,光照與室外自然光照一致,晝夜溫度控制在15~27 ℃之間。試驗(yàn)共設(shè)9個(gè)處理,包括8種內(nèi)生細(xì)菌和不接菌空白對(duì)照。每個(gè)處理接種100 mL菌液,對(duì)照組中添加不含菌體的等量LB培養(yǎng)基。每個(gè)處理3個(gè)重復(fù),每個(gè)重復(fù)5株植物。選取粗細(xì)均勻的一年生柳樹枝條剪成10 cm的莖段,直接扦插在盛有2.5 L營(yíng)養(yǎng)液的塑料黑色盆缽內(nèi)的泡沫板上,連續(xù)不斷充氣,預(yù)培養(yǎng)至長(zhǎng)出1 cm左右長(zhǎng)度的根系,然后接菌培養(yǎng)3 d,之后更換營(yíng)養(yǎng)液繼續(xù)培養(yǎng)[18-19]。另外,對(duì)促生明顯的2株內(nèi)生菌處理進(jìn)行富營(yíng)養(yǎng)化水體氮磷凈化效果檢測(cè)。試驗(yàn)期間,每個(gè)塑料容器內(nèi)用充氣泵通氣,每5 d更換1次營(yíng)養(yǎng)液,并定期用蒸餾水補(bǔ)充由于蒸發(fā)損失的水量。

        1.3樣品處理

        1.3.1植物測(cè)量與根系形態(tài)分析

        在溫室培養(yǎng)一定時(shí)間后收獲植株,用自來水反復(fù)沖洗根部3次,再用去離子水沖洗3次。直接用直尺測(cè)定最長(zhǎng)根長(zhǎng)度、最長(zhǎng)莖長(zhǎng)度,并將每個(gè)處理拍照,然后將植株分成地上部(莖和葉)、根系和插條,一組植物用根系掃描儀(WinRHIZO圖像分析系統(tǒng))測(cè)定根系形態(tài)指標(biāo),另一組植物在105 ℃烘箱中烘30 min,之后調(diào)至70 ℃,烘至恒量,測(cè)定地上部與根生物量,并計(jì)算根冠比。

        1.3.2植物葉綠素含量的測(cè)定

        選取新鮮展開的葉片約0.5 g,剪成2 mm左右的碎片,放入盛有15 mL 95%乙醇溶液的比色管內(nèi),在黑暗條件下浸提48 h,至葉片全部發(fā)白。浸提液使用Lambda 35紫外可見分光光度計(jì)(北京譜朋科技有限公司)分別在波長(zhǎng)663和645 nm下進(jìn)行比色,測(cè)定吸光度,重復(fù)3次,計(jì)算出相應(yīng)的葉綠素含量[20]。

        1.3.3氮磷的測(cè)定

        將烘干的地上部和根系植物樣品粉碎成粉末,待化學(xué)分析測(cè)定。取0.2 g烘干的植物樣品放入盛有H2SO4-H2O2消煮管內(nèi)消煮,定容至100 mL后取消煮液,使用Lambda 35紫外可見分光光度計(jì),分別采用奈氏比色法和鉬銻抗比色法測(cè)定樣品中的氮和磷[21]。

        水體氮和磷的測(cè)定參考國(guó)標(biāo)法(GB 3838—2002):用堿性過硫酸鉀消解-紫外分光光度法測(cè)定總氮,用鉬酸銨分光光度法測(cè)定總磷。

        1.4數(shù)據(jù)分析

        植株地上部氮(磷)積累量=植株地上部氮(磷)含量×地上部生物量;

        植株根部氮(磷)積累量=植株根部氮(磷)含量×根系生物量。

        用DPS 7.05[22]和Origin 8.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析與作圖,用最小顯著差異法進(jìn)行多重比較(P<0.05)。

        2結(jié)果

        2.1不同內(nèi)生菌對(duì)柳樹根系形態(tài)、莖長(zhǎng)和葉綠素含量的影響

        接種不同內(nèi)生菌促進(jìn)了柳樹根系發(fā)育,表現(xiàn)在柳樹總根長(zhǎng)、根表面積、根尖數(shù)和最長(zhǎng)根長(zhǎng)均比對(duì)照有不同程度的增加(表2,圖1)。接種LM02、SaNR1和SaMR12處理柳樹總根長(zhǎng)比對(duì)照分別增加了163%、136%和66%,根表面積分別增加了54%、12%和17%,根尖數(shù)分別增加了54%、44%和48%。接種LM02柳樹最長(zhǎng)根長(zhǎng)比對(duì)照增加了96%。接種內(nèi)生菌不僅增加了柳樹根尖數(shù)、根表面積和根長(zhǎng),而且對(duì)柳樹地上部的最高莖長(zhǎng)也有促進(jìn)作用,其中接種LM02顯著高于其他處理,與對(duì)照相比增加了40%。

        表2 內(nèi)生菌對(duì)柳樹根系形態(tài)和莖生長(zhǎng)的影響

        CK:不接菌。表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)差;同列數(shù)據(jù)后的不同小寫字母表示在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義。

        CK: Without bacterial inoculation. Data shown are means ± standard deviation. The values followed by different lowercase letters in the same column represent statistically significant differences at the 0.05 probability level.

        CK:不接菌。CK: Without bacterial inoculation.圖1 內(nèi)生菌對(duì)柳樹根系發(fā)育的影響Fig.1 Influence of endophytic bacteria on root development of willow

        不同內(nèi)生菌處理對(duì)柳樹葉綠素含量的影響存在明顯差異。從圖2中可以看出:SaMR12和SaMR10

        內(nèi)生菌處理的柳樹葉綠素含量顯著高于其他處理,且分別比對(duì)照處理提高15%和14%;其他各處理之間差異無統(tǒng)計(jì)學(xué)意義(P<0.05)。

        CK:不接菌。短?hào)派系牟煌懽帜副硎驹赑<0.05水平差異有統(tǒng)計(jì)學(xué)意義.CK: Without bacterial inoculation. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 圖2 不同內(nèi)生菌處理56 d對(duì)柳樹葉綠素含量的影響Fig.2 Influence of endophytic bacteria on chlorophyll contents of willow after 56 d of inoculation

        2.2不同內(nèi)生菌對(duì)柳樹生物量和根冠比的影響

        從表3中可以看出,8株內(nèi)生菌對(duì)柳樹地上部和根部生物量的影響存在顯著差異。其中,LM02、SaMR12和SaMR10處理比對(duì)照的地上部生物量分別增加了225%、41%和51%,根部生物量分別是對(duì)照的7倍、2倍和2.5倍,總生物量分別比對(duì)照增加了234%、43%和54%。接種SaNR1處理的柳樹生物量比對(duì)照處理的增大幅度較LM02、SaMR12和SaMR10小。而接種SaZR4和SM03處理的地上部生物量比對(duì)照處理明顯減小。不同處理的柳樹根冠比也差異顯著,其中LM02、SaMR12和SaMR10菌株處理根冠比分別是對(duì)照的2.6倍、1.6倍和2.1倍。另外,SaZR4和SM03處理的根冠比與對(duì)照相比也有增加,原因是地上部生物量減小,根生物量差異較小,根冠比從而增大。SM05處理的根冠比也明顯高于對(duì)照,這與該菌株對(duì)根系的促進(jìn)作用明顯大于對(duì)地上部的促進(jìn)作用有關(guān)。

        表3 內(nèi)生菌對(duì)柳樹生物量和根冠比的影響

        CK:不接菌。根冠比/%=根部生物量/地上部生物量×100。表中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)差;同列數(shù)據(jù)后的不同小寫字母表示在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義。

        CK: Without bacterial inoculation. Root-shoot ratio/%=root dry biomass/shoot dry biomass × 100. Data shown are means ± standard deviation. The values followed by different lowercase letters in the same column represent statistically significant differences at the 0.05 probability level.

        2.3在不同內(nèi)生菌處理下柳樹氮磷積累量及水體氮磷去除的差異

        從圖3中可以看出,不同內(nèi)生菌處理之間的柳樹地上部與根部養(yǎng)分積累量均存在顯著差異。8個(gè)接菌處理中除SaZR4和SM03外,其他接菌處理的柳樹地上部氮磷養(yǎng)分積累量均比對(duì)照有明顯的增加,8個(gè)接菌處理的柳樹根部氮磷養(yǎng)分積累量均高于對(duì)照。其中LM02、SaMR12、SaMR10和SM05菌株處理的地上部氮積累量比對(duì)照分別增加了176%、26%、41%和20%,根部氮積累量分別是對(duì)照處理的8.3倍、2.4倍、3.4倍和3.9倍;同時(shí),這4株菌處理的柳樹地上部磷積累量比對(duì)照分別增加了109%、12%、30%和21%,根部磷積累量分別是對(duì)照的4.8倍、2.1倍、2.8倍和3.8倍。

        CK:不接菌。短?hào)派系牟煌懽帜副硎驹赑<0.05水平差異有統(tǒng)計(jì)學(xué)意義.CK: Without bacterial inoculation. Different lowercase letters above bars represent statistically significant differences at the 0.05 probability level. 圖3 不同內(nèi)生菌處理56 d對(duì)柳樹養(yǎng)分積累量的影響Fig.3 Influence of endophytic bacteria on nutrient contents in tissues of willow after 56 d of inoculation

        從圖4中可以看出:柳樹接種LM02和SaMR10處理的水體總氮和總磷質(zhì)量濃度明顯低于對(duì)照處理;第28天CK、LM02和SaMR10處理的水體總氮去除率分別是59.9%、71.0%和69.8%,總磷去除率分別是49.9%、67.9%和62.7%。這進(jìn)一步說明接種內(nèi)生菌有利于提高柳樹對(duì)富營(yíng)養(yǎng)化水體總氮和總磷的去除效率。

        CK:不接菌。CK: Without bacterial inoculation.圖4 不同內(nèi)生菌處理對(duì)富營(yíng)養(yǎng)化水體中總氮和總磷質(zhì)量濃度的影響Fig.4 Effect of endophytic bacteria on total nitrogen (TN) and total phosphorus (TP) concentrations in eutrophic water

        3討論

        植物根際促生細(xì)菌可以通過植物根際進(jìn)入植物體內(nèi)或者與植物共生等方式生存,進(jìn)而促進(jìn)植物生長(zhǎng),增加生物量[23-24]。植物根際促生細(xì)菌對(duì)植物生長(zhǎng)的影響有許多方式,包括植物激素調(diào)節(jié)作用和增加磷酸鹽溶解性等[25-26];此外,細(xì)菌可以改變植物根系形態(tài),通過產(chǎn)生吲哚乙酸促進(jìn)根長(zhǎng)和根毛生長(zhǎng)[27]。在本試驗(yàn)中,LM02、SaMR10和SaMR12內(nèi)生菌相比其他菌株有更好的根系促進(jìn)效果,不僅與吲哚乙酸含量差異有關(guān),還由于細(xì)菌在植物上的定殖能力因植物種類不同而有差異[28]。SHI等[29]從醉馬草的根、莖、葉和種子中分離出許多細(xì)菌可以促進(jìn)植物生長(zhǎng),但促進(jìn)程度有所不同。TRUYENS等[30]研究表明,從重金屬鎘處理的擬南芥種子中分離出的細(xì)菌可通過改善植物抗性和酶活性,并產(chǎn)生更多的鐵載體和有機(jī)酸等,對(duì)植物也有較好的促生效果。推測(cè)LM02、SaMR10和SaMR12比其他菌株有更好的根系促進(jìn)作用,與它們和柳樹親和力更強(qiáng)、不同細(xì)菌在不同植物體內(nèi)的促進(jìn)機(jī)制存在差異也密切相關(guān)。張新成[31]研究報(bào)道,植物內(nèi)生菌也可以通過促進(jìn)植物氮、鎂(葉綠素的組成成分)含量增加,提高葉片葉綠素含量,增強(qiáng)光合作用,從而促進(jìn)植物生物量增加。在本試驗(yàn)中,分離自超積累型東南景天體內(nèi)的LM02、SaMR10和SaMR12內(nèi)生菌相比其他菌株,可以明顯提高葉片葉綠素含量,增強(qiáng)柳樹光合作用,從而使柳樹的生物質(zhì)產(chǎn)量增加。

        在自然條件下,植物根系生長(zhǎng)是礦質(zhì)營(yíng)養(yǎng)吸收的基礎(chǔ)[32],根系生長(zhǎng)旺盛會(huì)增加礦質(zhì)元素的吸收和運(yùn)輸。同時(shí),有研究表明鞘氨醇單胞菌屬、伯克霍爾德菌屬、腸桿菌屬等內(nèi)生菌通過分泌吲哚乙酸,增加磷酸鹽礦物溶解[25],發(fā)揮生物固氮作用[33-34]或產(chǎn)生鐵載體[26]等,一方面可以明顯增加植物氮磷的吸收,另一方面可以增加內(nèi)生菌的自身生長(zhǎng)。在本試驗(yàn)中特異性內(nèi)生菌LM02、SaMR10和SaMR12對(duì)柳樹氮磷養(yǎng)分積累量的影響與對(duì)照相比有明顯的提高,正是由于接種這3株菌后柳樹根系生長(zhǎng)更加旺盛,分泌吲哚乙酸促進(jìn)氮磷的吸收;另外,還可能與接菌的柳樹根系內(nèi)生菌數(shù)量增加,分泌的吲哚乙酸增加有關(guān)。SHAN等[35]從富營(yíng)養(yǎng)化水體中分離出的光合細(xì)菌、酵母菌、絲狀真菌和放線菌對(duì)富營(yíng)養(yǎng)化水體總氮和總磷去除率分別達(dá)77.8%和72.2%。胡綿好等[36]將固定化氮循環(huán)細(xì)菌與鳳眼蓮結(jié)合,其對(duì)富營(yíng)養(yǎng)化水體中總氮和銨態(tài)氮的去除率達(dá)77.2%和49.2%,顯著高于鳳眼蓮單獨(dú)處理的凈化效率。陸開宏等[37]研究表明,狐尾藻和喜旱蓮子草因根際存在假單胞菌屬和不動(dòng)桿菌屬2類主要聚磷菌,而在富營(yíng)養(yǎng)化水體修復(fù)中效果顯著。用微生物修復(fù)富營(yíng)養(yǎng)化水體的研究比較廣泛,而將內(nèi)生細(xì)菌接種于植物來修復(fù)富營(yíng)養(yǎng)化水體的研究鮮有報(bào)道。在本試驗(yàn)中內(nèi)生菌LM02、SaMR10和SaMR12對(duì)富營(yíng)養(yǎng)化水體中氮磷的去除效率明顯增加,進(jìn)一步驗(yàn)證了內(nèi)生菌接種于柳樹可以用來修復(fù)富營(yíng)養(yǎng)化水體的結(jié)論,為今后富營(yíng)養(yǎng)化水體生態(tài)修復(fù)材料的選擇指明了新方向。

        4結(jié)論

        本研究通過將分離自超積累型東南景天體內(nèi)的8株內(nèi)生細(xì)菌接種至應(yīng)用較多的木本修復(fù)植物柳樹體內(nèi),發(fā)現(xiàn)柳樹根系形態(tài)、葉綠素含量、根及地上部生物量、植物體內(nèi)氮和磷積累量受到不同內(nèi)生細(xì)菌處理的顯著影響。其中,菌株LM02、SaMR12和SaNR1對(duì)柳樹根表面積、根尖數(shù)等根系形態(tài)發(fā)育有明顯的促進(jìn)效果;LM02、SaMR10和SaMR12對(duì)柳樹生物量、氮磷養(yǎng)分積累量以及修復(fù)富營(yíng)養(yǎng)化水體氮磷的效果有顯著促進(jìn)作用。綜上所述,不同的內(nèi)生菌與柳樹的親和力差異較大,其中,菌株LM02、SaMR10和SaMR12可以用來強(qiáng)化能源柳樹,促進(jìn)植株生長(zhǎng)和養(yǎng)分吸收,增加生物量,提高修復(fù)效率,同時(shí)增加能源生物質(zhì)的經(jīng)濟(jì)價(jià)值,具有廣泛的應(yīng)用前景。

        參考文獻(xiàn)(References):

        [1]汪有良,王寶松,李榮錦,等.柳樹在環(huán)境污染生物修復(fù)中的應(yīng)用.江蘇林業(yè)科技,2006,33(2):40-43.

        WANG Y L, WANG B S, LI R J,etal. Utilization of willow (Salixsp.) in phytoremediation.JournalofJiangsuForestryScience&Technology, 2006,33(2):40-43. (in Chinese with English abstract)

        [2]林惠鳳,黃婧,朱聯(lián)東,等.浮床栽培柳樹在富營(yíng)養(yǎng)化水體中的生長(zhǎng)特性及水質(zhì)凈化效果研究.湖北大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,31(2):210-212.

        LIN H F, HUANG J, ZHU L D,etal. Study on the growth characteristic of willow (SalixbabylonicaLinn) planted on floating bed and its purification efficiency in eutrophicated water body.JournalofHubeiUniversity(NaturalScience), 2009,31(2):210-212. (in Chinese with English abstract)

        [3]隋德宗,王保松,施士爭(zhēng).鹽脅迫對(duì)5個(gè)柳樹無性系幼苗根系生長(zhǎng)發(fā)育的影響.江蘇林業(yè)科技,2007,34(4):5-8.

        SUI D Z, WANG B S, SHI S Z. Effects of salt stress on root growth of 5 willow clones seedling.JournalofJiangsuForestryScience&Technology, 2007,34(4):5-8. (in Chinese with English abstract)

        [4]MARMIROLI M, PIETRINI F, MAESTRI E,etal. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics.TreePhysiology, 2011,31(12):1319-1334.

        [5]楊衛(wèi)東,陳益泰.不同杞柳品種對(duì)鎘(Cd)吸收與忍耐的差異.林業(yè)科學(xué)研究,2008,21(6):857-861.

        YANG W D, CHEN Y T. Differences in uptake and tolerance to cadmium in varieties ofSalixintegra.ForestResearch, 2008,21(6):857-861. (in Chinese with English abstract)

        [6]楊衛(wèi)東,陳益泰.不同品種杞柳對(duì)高鋅脅迫的忍耐與積累研究.中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2009,17(6):1182-1186.

        YANG W D, CHEN Y T. Tolerance of different varieties ofSalixintegrato high zinc stress.ChineseJournalofEco-Agriculture, 2009,17(6):1182-1186. (in Chinese with English abstract)

        [7]ELOWSON S. Willow as a vegetation filter for cleaning of polluted drainage water from agricultural land.BiomassandBioenergy, 1999,16(4):281-290.

        [8]DIMITRIOU I, ERIKSSON J, ADLER A,etal. Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice.EnvironmentalPollution, 2006,142(1):160-169.

        [9]韓永和,李敏.植物-微生物聯(lián)合修復(fù)技術(shù)治理水體富營(yíng)養(yǎng)化.水處理技術(shù),2012,38(3):1-6.

        HAN Y H, LI M. Phyto-microremediation technology on treatment of eutrophic water.TechnologyofWaterTreatment, 2012,38(3):1-6. (in Chinese with English abstract)

        [10]牛之欣,孫麗娜,孫鐵珩.重金屬污染土壤的植物-微生物聯(lián)合修復(fù)研究進(jìn)展.生態(tài)學(xué)雜志,2009,28(11):2366-2373.

        NIU Z X, SUN L N, SUN T H. Plant-microorganism combined remediation of heavy metals-contaminated soils: Its research progress.ChineseJournalofEcology, 2009,28(11):2366-2373. (in Chinese with English abstract)

        [11]LI H, ZHAO H P, HAO H L,etal. Enhancement of nutrient removal from eutrophic water by a plant-microorganisms combined system.EnvironmentalEngineeringScience, 2011,28(8):543-554.

        [12]郭楚玲,鄭天凌,洪華生.多環(huán)芳烴的微生物降解與生物修復(fù).海洋環(huán)境科學(xué),2000,19(3):24-29.

        GUO C L, ZHENG T L, HONG H S. Biodegradation and bioremediation of polycyclic aromatic hydrocarbons.MarineEnvironmentalScience, 2000,19(3):24-29. (in Chinese with English abstract)

        [13]李順鵬,蔣建東.農(nóng)藥污染土壤的微生物修復(fù)研究進(jìn)展.土壤,2004,36(6):577-583.

        LI S P, JIANG J D. Microbial remediation of pesticide-contaminated soil.Soils, 2004,36(6):577-583. (in Chinese with English abstract)

        [14]姜理英,楊肖娥,石偉勇,等.植物修復(fù)技術(shù)中有關(guān)土壤重金屬活化機(jī)制的研究進(jìn)展.土壤通報(bào),2003,34(2):154-157.

        JIANG L Y, YANG X E, SHI W Y,etal. Activation of soil heavy metals for phytoremediation.ChineseJournalofSoilScience, 2003,34(2):154-157. (in Chinese with English abstract)

        [15]馮永君,宋未.植物內(nèi)生細(xì)菌.自然雜志,2001,23(5):249-252.

        FENG Y J, SONG W. Endophytic bacteria.NatureMagazine, 2001,23(5):249-252. (in Chinese)

        [16]朱雪竹,倪雪,高彥征.植物內(nèi)生細(xì)菌在植物修復(fù)重金屬污染土壤中的應(yīng)用.生態(tài)學(xué)雜志,2010,29(10):2035-2041.

        ZHU X Z, NI X, GAO Y Z. Applications of endophytic bacteria in phytoremediation of heavy metals-contaminated soils.ChineseJournalofEcology, 2010,29(10):2035-2041. (in Chinese with English abstract)

        [17]WATSON C, PULFORD I D, RIDDELL-BLACK D. Development of a hydroponic screening technique to assess heavy metal resistance in willow (Salix).InternationalJournalofPhytoremediation, 2003,5(4):333-349.

        [18]ROGERS A, MCDONALD K, MUEHLBAUER M F,etal. Inoculation of hybrid poplar with the endophytic bacteriumEnterobactersp 638 increases biomass but does not impact leaf level physiology.GlobalChangeBiologyBioenergy, 2012,4(3):364-370.

        [19]GERMAINE K, KEOGH E, GARCIA-CABELLOS G,etal. Colonisation of poplar trees bygfpexpressing bacterial endophytes.FEMSMicrobiologyEcology, 2004,48(1):109-118.

        [20]LIU J, XIONG Z T, LI T Y,etal. Bioaccumulation and ecophysiological responses to copper stress in two populations ofRumexdentatusL. from Cu contaminated and non-contaminated sites.EnvironmentalandExperimentalBotany, 2004,52(1):43-51.

        [21]GUO L, MA K M. Seasonal dynamics of nitrogen and phosphorus in water and sediment of a multi-level ditch system in Sanjiang Plain, Northeast China.ChineseGeographicalScience, 2011,21(4):437-445.

        [22]TANG Q Y, ZHANG C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research.InsectScience, 2013,20(2):254-260.

        [23]DUTTA S, PODILE A R. Plant growth promoting rhizobacteria (PGPR): The bugs to debug the root zone.CriticalReviewsinMicrobiology, 2010,36(3):232-244.

        [24]RAJKUMAR M, SANDHYA S, PRASAD M N V,etal. Perspectives of plant-associated microbes in heavy metal phytoremediation.BiotechnologyAdvances, 2012,30(6):1562-1574.

        [25]LI J H, WANG E T, CHEN W F,etal. Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang Province of China.SoilBiologyandBiochemistry, 2008,40(1):238-246.

        [26]IDRIS R, TRIFONOVA R, PUSCHENREITER M,etal. Bacterial communities associated with flowering plants of the Ni hyperaccumulatorThlaspigoesingense.AppliedandEnvironmentalMicrobiology, 2004,70(5):2667-2677.

        [27]VESSEY J K. Plant growth promoting rhizobacteria as biofertilizers.PlantandSoil, 2003,255(2):571-586.

        [28]ROSENBLUETH M, MARTINEZ-ROMERO E. Bacterial endophytes and their interactions with hosts.MolecularPlant-MicrobeInteractions, 2006,19(8):827-837.

        [29]SHI Y W, ZHANG X B, LOU K. Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass,Achnatheruminebrians.JournalofInsectScience, 2013,13(1):151.

        [30]TRUYENS S, WEYENS N, CUYPERS A,etal. Changes in the population of seed bacteria of transgenerationally Cd-exposedArabidopsisthaliana.PlantBiology, 2013,15(6):971-981.

        [31]張新成.東南景天內(nèi)生菌分離鑒定及其強(qiáng)化重金屬超積累效應(yīng)與機(jī)制.杭州:浙江大學(xué),2012:97-109.

        ZHANG X C. Isolation and identification of endophytes fromSedumalfrediiand the mechanisms of their enhancement on heavy metal hyperaccumulation. Hangzhou: Zhejiang University, 2012:97-109. (in Chinese with English abstract)

        [32]張福鎖,曹一平.根際動(dòng)態(tài)過程與植物營(yíng)養(yǎng).土壤學(xué)報(bào),1992,29(3):239-250.

        ZHANG F S, CAO Y P. Rhizosphere dynamics and plant nutrition.ActaPedologicaSinica, 1992,29(3):239-250. (in Chinese with English abstract)

        [33]BALDANI J I, BALDANI V L. History on the biological nitrogen fixation research in graminaceous plants: Special emphasis on the Brazilian experience.AnaisdaAcademiaBrasileiradeCiências, 2005,77(3):549-579.

        [34]MANO H, MORISAKI H. Endophytic bacteria in the rice plant.MicrobesandEnvironments, 2008,23(2):109-117.

        [35]SHAN M J, WANG Y Q, XUE S. Study on bioremediation of eutrophic lake.JournalofEnvironmentalSciences, 2009,21(Suppl. 1):16-18.

        [36]胡綿好,袁菊紅,常會(huì)慶,等.鳳眼蓮-固定化氮循環(huán)細(xì)菌聯(lián)合作用對(duì)富營(yíng)養(yǎng)化水體原位修復(fù)的研究.環(huán)境工程學(xué)報(bào),2009,3(12):2163-2169.

        HU M H, YUAN J H, CHANG H Q,etal.Insituremediation of eutrophic water bodies by the combination of water hyacinth and immobilized nitrogen cycle bacteria.JournalofEnvironmentalEngineering, 2009,3(12):2163-2169. (in Chinese with English abstract)

        [37]陸開宏,胡智勇,梁晶晶,等.富營(yíng)養(yǎng)水體中2種水生植物的根際微生物群落特征.中國(guó)環(huán)境科學(xué),2010,30(11):1508-1515.

        LU K H, HU Z Y, LIANG J J,etal. Characteristics of rhizosphere microbial community structure of two aquatic plants in eutrophic waters.ChinaEnvironmentalScience, 2010,30(11):1508-1515. (in Chinese with English abstract)

        中圖分類號(hào)S 792.12; Q 89

        文獻(xiàn)標(biāo)志碼A

        收稿日期(Received):2015-04-13;接受日期(Accepted):2015-05-28;網(wǎng)絡(luò)出版日期(Published online):2016-03-20

        *通信作者(

        Corresponding author):楊肖娥(http://orcid.org/0000-0002-8634-5901),Tel:+86-571-88982907,E-mail:xyang@zju.edu.cn

        基金項(xiàng)目:國(guó)家科技支撐計(jì)劃(2012BAC17B03-02);國(guó)際合作專項(xiàng)與支撐項(xiàng)目(2010DFB33960,2012BAC17B00);浙江省寧波市科技局重點(diǎn)項(xiàng)目(2012C10003);浙江省水利廳重點(diǎn)項(xiàng)目(RB1310);中央高校科研發(fā)展專項(xiàng)(2015FZA6008).

        第一作者聯(lián)系方式:劉桂青(http://orcid.org/0000-0003-2725-2665),E-mail:shanxi902@126.com

        URL:http://www.cnki.net/kcms/detail/33.1247.S.20160321.1424.004.html

        猜你喜歡
        柳樹生物量
        柳樹
        輪牧能有效促進(jìn)高寒草地生物量和穩(wěn)定性
        不同NPK組合對(duì)芳樟油料林生物量的影響及聚類分析
        草地生物量遙感估算方法綜述
        甘肅科技(2020年21期)2020-04-13 00:33:46
        柳樹
        小柳樹
        會(huì)治病的柳樹
        生物量高的富鋅酵母的開發(fā)應(yīng)用
        柳樹的春天
        基于SPOT-5遙感影像估算玉米成熟期地上生物量及其碳氮累積量
        亚洲一区二区三区毛片| 性激烈的欧美三级视频| 国产乱妇乱子在线视频| 日本女优中文字幕看片| 精品女同av一区二区三区 | 久久亚洲日韩精品一区二区三区| 国产肥熟女视频一区二区三区| 国产精品白浆一区二小说| 久久精品国产久精国产69| 日韩亚洲一区二区三区在线 | 在线免费观看亚洲天堂av| 国产护士一区二区三区| 亚洲国产精品成人久久久| 朝鲜女人大白屁股ass| 久久亚洲国产中v天仙www| 特黄三级一区二区三区| 少妇被粗大的猛进69视频| 亚洲av午夜成人片精品电影| 欧美天天综合色影久久精品| 日韩中文字幕不卡网站| 性一交一乱一乱一视频亚洲熟妇| 一区二区三区中文字幕在线播放 | 亚洲av天天做在线观看| 亚洲国产精品久久久天堂不卡海量| 淫欲一区二区中文字幕| 久久精品国产免费一区二区三区| 人妻精品久久久久中文字幕| 国产激情精品一区二区三区| 欧美激情国产亚州一区二区| 亚洲国产一区二区视频| 国产人妖乱国产精品人妖| 男女裸交无遮挡啪啪激情试看| 国产精品27页| 成年女人18毛片观看| 在线麻豆精东9制片厂av影现网| 97久久精品无码一区二区天美| 91情侣视频| 97中文乱码字幕在线| 精品无码人妻夜人多侵犯18| 国产精品无码a∨精品影院| 国产精品麻豆A啊在线观看 |