, , *
(1.Department of Radiology, Hainan General Hospital, Haikou 570311, China;2.University of South China, Hengyang 421001, China)
膠質(zhì)瘤是發(fā)生于神經(jīng)外胚層的腫瘤。2016年WHO對(duì)中樞神經(jīng)系統(tǒng)腫瘤的新分類中,首次將分子遺傳學(xué)標(biāo)志物應(yīng)用于中樞神經(jīng)系統(tǒng)腫瘤的分類和分型[1],體現(xiàn)了膠質(zhì)瘤分子遺傳學(xué)變異的同源性,使臨床診斷更加客觀,對(duì)指導(dǎo)個(gè)體化治療和精確評(píng)估預(yù)后具有重要意義。MRI是診斷膠質(zhì)瘤最常用的方法,但常規(guī)MRI難以對(duì)膠質(zhì)瘤進(jìn)行準(zhǔn)確分級(jí)。近年來,fMRI(包括MRS、PWI、DWI和DTI等)技術(shù)快速發(fā)展,可提供腫瘤的生物功能、血流動(dòng)力學(xué)、細(xì)胞代謝和細(xì)胞結(jié)構(gòu)等信息;但隨著分子病理學(xué)和分子生物學(xué)的突破,臨床需要可以精確分級(jí)診斷膠質(zhì)瘤的無創(chuàng)方法。通過分析醫(yī)學(xué)圖像的灰階信息,紋理分析可提供多種視覺不能獲得的重要信息,有助于判斷膠質(zhì)瘤的特征、評(píng)估預(yù)后、監(jiān)測(cè)膠質(zhì)瘤治療反應(yīng)等,有望成為診斷膠質(zhì)瘤的輔助影像學(xué)方法[2]。
圖像紋理描述圖像或其中某區(qū)域的空間顏色分布和光強(qiáng)分布,可反映圖像的內(nèi)在和外在特性。圖像紋理特征分析是指通過計(jì)算機(jī)圖像處理技術(shù)提取出紋理特征參數(shù),從而對(duì)圖像灰階分布特征、像素間關(guān)系和空間特征進(jìn)行定量和定性描述,可提供肉眼無法識(shí)別的特征信息。與常規(guī)圖像相比,紋理分析不依賴于影像科醫(yī)師的專業(yè)技能、臨床經(jīng)驗(yàn)及主觀因素,所提供的是病變圖像的客觀信息;其常用獲取量化參數(shù)的方法包括統(tǒng)計(jì)法、基于模型法、結(jié)構(gòu)分析法、信號(hào)處理方法等。醫(yī)學(xué)圖像多為無規(guī)則性的結(jié)構(gòu)圖像,適用于此類圖像的方法主要為統(tǒng)計(jì)法,后者基于圖像像素的灰度值的分布與相互關(guān)系,尋找反映這些關(guān)系的特征,常用數(shù)字紋理特征包括圖像局部區(qū)域的自相關(guān)函數(shù)、灰度共生矩陣、灰度游程及灰度分布的各種統(tǒng)計(jì)量等。
2.1 膠質(zhì)瘤術(shù)前分級(jí)診斷 近年來,隨著MRI技術(shù)和設(shè)備性能的不斷提高,各種成像序列不斷出現(xiàn),多模態(tài)MRI彼此優(yōu)勢(shì)互補(bǔ),可全面反映腫瘤的特征,如雙指數(shù)模型和拉伸指數(shù)模型的應(yīng)用,提高了ADC值的準(zhǔn)確性[3]。采用1H-MRS技術(shù)的研究[4]表明,高級(jí)別膠質(zhì)瘤的膽堿/肌酸(Cho/Cr)和膽堿/N-乙酰天門冬氨酸(Cho/NAA)值均高于低級(jí)別膠質(zhì)瘤。但是,多模態(tài)MRI一方面增加了放射科醫(yī)師的工作量,另一方面,其診斷準(zhǔn)確率受放射科醫(yī)師的經(jīng)驗(yàn)和主觀因素的影響。Eliat等[5]發(fā)現(xiàn)MR動(dòng)態(tài)對(duì)比增強(qiáng)(dynamic contrast-enhanced, DCE)聯(lián)合紋理分析可鑒別膠質(zhì)神經(jīng)元腫瘤與膠質(zhì)母細(xì)胞瘤。Zacharaki等[6]采用Gabor變換法對(duì)102例腦腫瘤(包括轉(zhuǎn)移瘤、腦膜瘤和膠質(zhì)瘤)行DCE聯(lián)合紋理分析,結(jié)果表明其鑒別診斷膠質(zhì)瘤與腦膜瘤的準(zhǔn)確率、敏感度和特異度分別為85%、87%和79%;鑒別Ⅱ級(jí)膠質(zhì)瘤與Ⅲ、Ⅳ級(jí)膠質(zhì)瘤的準(zhǔn)確率、敏感度和特異度分別為88%、85%和96%。Ryu等[7]對(duì)40例Ⅱ、Ⅲ和Ⅳ級(jí)膠質(zhì)瘤患者行DWI,并獲得相應(yīng)的ADC圖,在包含腫瘤的ADC圖中放置ROI,構(gòu)建整個(gè)腫瘤的紋理分析數(shù)據(jù),結(jié)果發(fā)現(xiàn)ADC直方圖的熵可用于區(qū)分低級(jí)別(Ⅱ級(jí))與高級(jí)別(Ⅲ、Ⅳ級(jí))膠質(zhì)瘤及Ⅲ級(jí)與Ⅳ級(jí)膠質(zhì)瘤,其診斷準(zhǔn)確率分別為80.0%和84.4%。Skogen等[8]采用紋理分析的方法對(duì)95例膠質(zhì)瘤進(jìn)行分級(jí),包括27例低級(jí)別膠質(zhì)瘤和68例高級(jí)別膠質(zhì)瘤,其敏感度為93%,特異度為81%。以上研究均表明,MRI紋理分析可提高膠質(zhì)瘤分級(jí)的準(zhǔn)確率,多個(gè)序列紋理分析將更有助于膠質(zhì)瘤的鑒別[9-10]及分級(jí)診斷,增強(qiáng)診斷信心[11]。
2.2 膠質(zhì)瘤邊界的確定 明確膠質(zhì)瘤的邊界及浸潤(rùn)范圍是臨床確定治療方案的重要依據(jù),對(duì)于確定手術(shù)切除范圍尤其重要。常規(guī)MRI只能大體區(qū)分腫瘤邊界,由于血腦屏障的破壞,增強(qiáng)掃描亦不能在術(shù)前完全準(zhǔn)確、定量地評(píng)估腫瘤邊界;而紋理分析可提供更多量化信息特征,進(jìn)而比較精準(zhǔn)地區(qū)分膠質(zhì)瘤腫瘤組織與腫瘤周圍正常組織。張益杰等[12]采用支持向量機(jī)(support vector machine, SVM)方法對(duì)24例高級(jí)別膠質(zhì)瘤進(jìn)行紋理分析,于增強(qiáng)序列圖像提取灰度圖像的統(tǒng)計(jì)信息特征,結(jié)果發(fā)現(xiàn)其區(qū)別膠質(zhì)瘤腫瘤與腫瘤周邊正常腦組織的準(zhǔn)確率達(dá)(90.72±2.27)%。
2.3 預(yù)測(cè)膠質(zhì)瘤分子標(biāo)記物 2016 年WHO中樞神經(jīng)系統(tǒng)腫瘤分類打破了以往僅依靠顯微鏡進(jìn)行病理分類的傳統(tǒng),使膠質(zhì)瘤分類進(jìn)入分子時(shí)代,其特征性分子遺傳學(xué)標(biāo)志物包括1p/19q-共缺失、異檸檬酸脫氫酶(isocitrate dehydrogenase, IDH)基因突變、O6-甲基鳥嘌呤-DNA-甲基轉(zhuǎn)移酶(MGMT)甲基化和核抗原特異性增殖細(xì)胞(Ki-67)等。這些分子標(biāo)記物對(duì)判斷預(yù)后和選擇治療方案有重要意義,IDH突變和MGMT啟動(dòng)子甲基化均為膠質(zhì)母細(xì)胞瘤不良預(yù)后的獨(dú)立影響因素,顯著影響膠質(zhì)母細(xì)胞瘤患者術(shù)后無進(jìn)展生存期和總生存期[13];同時(shí)根據(jù)MGMT突變可預(yù)測(cè)膠質(zhì)母細(xì)胞瘤患者術(shù)后替莫唑胺化療的敏感性,MGMT基因啟動(dòng)子甲基化的膠質(zhì)瘤患者對(duì)化療、放射治療更敏感[13]。有研究[14]顯示,PWI參數(shù)相對(duì)腦血容量值(relative cerebral blood volume, rCBV)值預(yù)測(cè)IDH突變型膠質(zhì)瘤(WHO Ⅱ、Ⅲ級(jí))的準(zhǔn)確率為88%,其主要原理為IDH突變代謝物2-HG與保持低氧誘導(dǎo)因子1A(hypoxia-inducing factor-1A,HIF-1A)水平降低有關(guān);而HIF-1A是腫瘤血管生成的重要誘導(dǎo)因子,因此,IDH突變的膠質(zhì)瘤rCBV水平可能低于野生型膠質(zhì)瘤。1p/19q-共缺失是膠質(zhì)瘤的分子特征和用于診斷的可靠分子標(biāo)志物,且存在1p/19q-共缺失的患者放射治療和藥物化療后無進(jìn)展生存期和總生存期更長(zhǎng)[15]。Ki-67反映腫瘤的增殖,與腫瘤分級(jí)呈正相關(guān)[16]。研究[17]表明,ADC直方圖的最低或第5個(gè)百分點(diǎn)的值與Ki-67指數(shù)相關(guān),而高級(jí)別膠質(zhì)瘤平均ADC值與Ki-67指數(shù)無相關(guān)性;亦有研究[7]表明,ADC直方圖的第5個(gè)百分點(diǎn)的值與Ki-67指數(shù)呈負(fù)相關(guān),熵與Ki-67指數(shù)呈正相關(guān)。Yang等[18]對(duì)82例膠質(zhì)瘤患者進(jìn)行紋理分析,評(píng)估5種紋理特征(包括方向梯度直方圖、局部二值模式、游程矩陣、基于分割的分形紋理、Haralick特征),認(rèn)為紋理特征可預(yù)測(cè)膠質(zhì)母細(xì)胞瘤的分子亞型[ROC曲線下面積(area under curve ,AUC)為0.72]和12個(gè)月生存率(AUC=0.69)。Chaddad等[19]發(fā)現(xiàn),紋理特征分析鑒別膠質(zhì)母細(xì)胞瘤分子亞型的準(zhǔn)確率、敏感度和特異度分別為79.31%、91.67%和98.75%。以上研究均表明,可以根據(jù)紋理特征預(yù)測(cè)膠質(zhì)母細(xì)胞瘤的分子亞型和生存率。
2.4 膠質(zhì)瘤的復(fù)發(fā)與放射治療后假性進(jìn)展或放射性壞死的鑒別診斷 假性進(jìn)展是膠質(zhì)瘤患者放射治療后,尤其是聯(lián)合替莫唑胺化療后,早期影像學(xué)表現(xiàn)為原有增強(qiáng)病灶增大或腫瘤內(nèi)出現(xiàn)新的強(qiáng)化區(qū)。腫瘤復(fù)發(fā)時(shí),腫瘤細(xì)胞增殖和新生血管形成,而假性進(jìn)展的病理生理學(xué)基礎(chǔ)為血管增生、擴(kuò)張、正常腦血管內(nèi)皮損傷;而放射性壞死主要表現(xiàn)為腦組織透明變性和纖維素樣壞死[19]。腫瘤復(fù)發(fā)與放射性壞死的治療方案不同,活組織檢查是區(qū)分放射性壞死與腫瘤復(fù)發(fā)的最可靠方法,但腦腫瘤活檢有創(chuàng),且手術(shù)風(fēng)險(xiǎn)較大。常規(guī)MRI難以鑒別腫瘤復(fù)發(fā)與假性進(jìn)展。研究[20-21]表明,DCE PWI鑒別腫瘤復(fù)發(fā)與假性進(jìn)展的敏感度較高,其中rCBV有助于判斷新生血管形成。有作者[22]認(rèn)為假性進(jìn)展患者rCBV值下降,而腫瘤復(fù)發(fā)者rCBV值升高;受損傷的腦組織血腦屏障破壞,對(duì)比劑可快速滲透到血管外,導(dǎo)致DSC PWI不能準(zhǔn)確評(píng)估rCBV。Matsusue等[23]對(duì)15例經(jīng)放射治療的膠質(zhì)瘤患者行DWI、DSC PWI和MRS多模態(tài)MR成像,發(fā)現(xiàn)鑒別診斷腫瘤復(fù)發(fā)與放射性壞死的準(zhǔn)確率明顯優(yōu)于任何單一方法,然而,多模態(tài)MR成像價(jià)格昂貴且耗時(shí)長(zhǎng),在臨床應(yīng)用中不宜推廣。有學(xué)者[24-25]報(bào)道,以計(jì)算機(jī)提取的紋理特征區(qū)分放射性壞死與腫瘤復(fù)發(fā)具有可行性。Chen等[26]對(duì)22例膠質(zhì)母細(xì)胞瘤患者行灰度共生矩陣紋理分析,結(jié)果表明其區(qū)分腫瘤復(fù)發(fā)與放射性壞死的敏感度為75.0%,特異度為100%,準(zhǔn)確率為86.4%。目前紋理分析用于鑒別腫瘤假性進(jìn)展或復(fù)發(fā)尚處于初步探索階段,最近有研究[26]表明DSC PWI圖像的rCBV直方圖的偏度和峰度變化可定量區(qū)分腫瘤假性進(jìn)展與復(fù)發(fā),但峰度和偏度為一階統(tǒng)計(jì)特征,只考慮單個(gè)像素的屬性,不能反映圖像內(nèi)像素的空間關(guān)系,對(duì)其應(yīng)用價(jià)值還需進(jìn)一步觀察。
2.5 膠質(zhì)瘤治療反應(yīng)與療效的評(píng)估 在腫瘤治療前預(yù)測(cè)治療反應(yīng)和在治療過程中監(jiān)測(cè)療效及并發(fā)癥有利于制訂個(gè)性化治療方案。DCE-MRI以對(duì)比劑首過技術(shù)為基礎(chǔ),假設(shè)血腦屏障未破壞,忽略了滲漏到血管外間隙的對(duì)比劑。而膠質(zhì)瘤、尤其是惡性膠質(zhì)瘤幾乎總伴隨血腦屏障破壞,因此在膠質(zhì)瘤中應(yīng)用DCE-MRI測(cè)量的參數(shù)有可能被低估。司志超等[27]應(yīng)用抗血管藥物CA4DP治療大鼠C6膠質(zhì)瘤動(dòng)物模型,采用紋理分析方法對(duì)治療前后的PWI圖像進(jìn)行分析,結(jié)果發(fā)現(xiàn)抗血管藥物治療后早期紋理特征即可出現(xiàn)變化,早于腫瘤血流灌注參數(shù)的變化,提示紋理分析法可對(duì)早期預(yù)測(cè)及判斷膠質(zhì)瘤療效。
影像學(xué)和病理學(xué)均為基于組織形態(tài)的診斷技術(shù),在膠質(zhì)瘤的診斷中具有舉足輕重的作用。在分子及基因水平的不斷發(fā)展,使得病理學(xué)已率先邁入精準(zhǔn)醫(yī)療的大門。而影像學(xué)能否在膠質(zhì)瘤的無創(chuàng)診療中發(fā)揮重要作用,是當(dāng)前膠質(zhì)瘤影像學(xué)在精準(zhǔn)醫(yī)療時(shí)代面臨的新課題。目前MRI紋理分析在膠質(zhì)瘤的診斷、分級(jí)和評(píng)價(jià)療效中發(fā)揮重要作用,在不久的將來,有望精準(zhǔn)探測(cè)膠質(zhì)瘤的各項(xiàng)內(nèi)在特征。另一方面,紋理分析研究還面臨許多挑戰(zhàn):①大多研究均為單中心小樣本探索,且?guī)缀蹙鶠榛仡櫺匝芯?,所得結(jié)論缺乏廣泛驗(yàn)證支持,臨床證據(jù)尚不充分,還需要進(jìn)行前瞻性、多中心、大樣本研究;②目前影像學(xué)設(shè)備缺乏同一的圖像獲取和成像算法標(biāo)準(zhǔn),同一機(jī)器的不同次采集、不同機(jī)器的采集均可影響影像組學(xué)特征的穩(wěn)定性,重復(fù)性較差;③紋理分析特征參數(shù)多,預(yù)測(cè)準(zhǔn)確率受特征參數(shù)、特征篩選方法和分類器的影響,更準(zhǔn)確、廣泛適用的特征選擇和模式識(shí)別方法是紋理分析的發(fā)展方向。
[參考文獻(xiàn)]
[1] Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol, 2016,131(6):803-820.
[2] Li-Chun Hsieh K, Chen CY, Lo CM. Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Comput Biol Med, 2017,83:102-108.
[3] El-Serougy L, Abdel Razek AA, Ezzat A, et al. Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. Neuroradiol J, 2016,29(5):400-407.
[4] Wang Q, Zhang H, Zhang J, et al. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: A systematic review and meta-analysis. Eur Radiol, 2016,26(8):2670-2684.
[5] Eliat PA, Olivié D, Sa?kali S, et al. Can dynamic contrast-enhanced magnetic resonance imaging combined with texture analysis differentiate malignant glioneuronal tumors from other glioblastoma? Neurol Res Int, 2012,2012:195176.
[6] Zacharaki EI, Wang S, Chawla S, et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med, 2009,62(6):1609-1618.
[7] Ryu YJ, Choi SH, Park SJ, et al. Glioma: Application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One, 2014,9(9):e108335.
[8] Skogen K, Schulz A, Dormagen JB, et al. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur J Radiol, 2016,85(4):824-829.
[9] 王敏紅,馮湛.MR紋理分析鑒別診斷腦膠質(zhì)母細(xì)胞瘤和單發(fā)轉(zhuǎn)移瘤的價(jià)值.中國(guó)醫(yī)學(xué)影像技術(shù),2017,33(12):1784-1787.
[10] 張國(guó)琴,陳鑫,張思靜,等.T2WI直方圖鑒別診斷腦膠質(zhì)母細(xì)胞瘤與單發(fā)轉(zhuǎn)移瘤的價(jià)值.中國(guó)醫(yī)學(xué)影像技術(shù),2017,33(12):1779-1783.
[11] Hsieh KL, Tsai RJ, Teng YC, et al. Effect of a computer-aided diagnosis system on radiologists' performance in grading gliomas with MRI. PLoS One, 2017,12(2):e0171342.
[12] 張益杰,程敬亮,李婭.磁共振圖像的紋理分析在界定高級(jí)別腦膠質(zhì)瘤邊界中的應(yīng)用.臨床放射學(xué)雜志,2017,36(3):315-318.
[13] Rivera AL, Pelloski CE, Gilbert MR, et al. MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol, 2010,12(2):116-121.
[14] Kickingereder P, Sahm F, Radbruch A, et al. IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Sci Rep, 2015,5:16238.
[15] Fellah S, Caudal D, De Paula AM, et al. Multimodal MR imaging (diffusion, perfusion, and spectroscopy): Is it possible to distinguish oligodendroglial tumor grade and 1p/19q codeletion in the pretherapeutic diagnosis. AJNR Am J Neuroradiol, 2013,34(7):1326-1333.
[16] Kiss R, Dewitte O, Decaestecker C, et al. The combined determination of proliferative activity and cell density in the prognosis of adult patients with supratentorial high-grade astrocytic tumors. Am J Clin Pathol, 1997,107(3):321-331.
[17] Higano S, Yun X, Kumabe T, et al. Malignant astrocytic tumors: Clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology, 2006,241(3):839-846.
[18] Yang D, Rao G, Martinez J, et al. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med Phys, 2015,42(11):6725-6735.
[19] Chaddad A, Tanougast C. Extracted magnetic resonance texture features discriminate between phenotypes and are associated with overall survival in glioblastoma multiforme patients. Med Biol Eng Comput, 2016,54(11):1707-1718.
[20] Li Z, Zhou Q, Li Y, et al. Mean cerebral blood volume is an effective diagnostic index of recurrent and radiation injury in glioma patients: A meta-analysis of diagnostic test. Oncotarget,2017,8(9):15642-15650.
[21] Snelling B, Shah AH, Buttrick S, et al. The Use of MR perfusion imaging in the evaluation of tumor progression in gliomas. J Korean Neurosurg Soc, 2017,60(1):15-20.
[22] 王季華,張?jiān)谠?李曉梅,等.MRS聯(lián)合ASL在高級(jí)別腦膠質(zhì)瘤假性進(jìn)展診斷中的應(yīng)用.醫(yī)學(xué)影像學(xué)雜志,2016,26(7):1153-1156.
[23] Matsusue E, Fink JR, Rockhill JK, et al. Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology, 2010,52(4):297-306.
[24] Tiwari P, Prasanna P, Wolansky L, et al. Computer-extracted texture features to distinguish cerebral radionecrosis from recurrent brain tumors on multiparametric MRI: A feasibility study. AJNR Am J Neuroradiol, 2016,37(12):2231-2236.
[25] Pallavi T, Prateek P, Lisa R, et al. Texture descriptors to distinguish radiation necrosis from recurrent brain tumors on multi-parametric MRI. Proc SPIE Int Soc Opt Eng, 2014,9035:90352B.
[26] Chen X, Wei X, Zhang Z, et al. Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI. Clin Imaging, 2015,39(5):775-780.
[27] 司志超,龐琦,王漢斌,等.紋理分析法對(duì)膠質(zhì)瘤早期抗血管治療的療效評(píng)價(jià).中華神經(jīng)外科雜志,2007,23(3):214-216.
中國(guó)醫(yī)學(xué)影像技術(shù)2018年6期