王萬忠,饒 磊,王沛芳,郭 翔,張立昕,蔣 濤
(1.河海大學環(huán)境學院,江蘇 南京 210098;2.河海大學力學與材料學院,江蘇 南京 211100)
河流生態(tài)護岸是一種新型的河道護岸,其優(yōu)點在于護岸的可滲透性,大大增加了河岸與河流水體的物質(zhì)交換,為生物營造適宜的生存環(huán)境,同時也增強了水體的自凈能力,因此,在近幾年河流整治過程中生態(tài)護岸被大量應用[1-4]。
河流護岸多孔生態(tài)材料不但具有較好的力學性能,而且材料內(nèi)部連通的多孔結構大幅增加了材料的吸附和過濾能力,同時也為水中的植物和微生物提供了必要的生長環(huán)境[5-7]。近年來國內(nèi)外學者對多孔生態(tài)材料在水利工程及海綿城市建設中的應用做了大量的研究[8-11]。紀榮平等[12]研究發(fā)現(xiàn)生態(tài)混凝土可以降低自然水體的富營養(yǎng)化程度,提高水質(zhì)等級,富營養(yǎng)化水源地水質(zhì)有較明顯的改善;Park等[13]對比了骨料粒徑為5~10 mm和10~20 mm的生態(tài)混凝土對水質(zhì)的凈化效果,發(fā)現(xiàn)骨料粒徑越小,生態(tài)混凝土的水質(zhì)凈化效果越好;朱健等[14]研究發(fā)現(xiàn)當多孔混凝土與水生植物復合應用時,其水質(zhì)凈化效果有明顯提高;鄂歡等[15]模擬了河道槽型結構模型,分析了用生態(tài)混凝土制成的城市河道護坡對水質(zhì)的凈化效果。
多孔生態(tài)砌塊的制備材料包括:粘結材料、骨料、促凝材料、增強材料、負載細菌等幾部分,其中粘結材料包括:普通硅酸鹽水泥(75%)、粉煤灰(20%)、硅粉等(5%);骨料采用粒徑為4~7 mm,7~11 mm,11~20 mm,20~31 mm的碎石(碎石質(zhì)量與粘結材料質(zhì)量比為5∶1);促凝材料選用萘系高效減水劑(加入量為粘結材料質(zhì)量的1%);增強材料采用20~30 mm的短切玻璃纖維(摻雜量為粘結材料質(zhì)量的3%);負載細菌選用反硝化細菌,水與粘結材料質(zhì)量比為0.27。
多孔生態(tài)砌塊的制作工藝是將骨料與60%的水混合攪拌,待骨料被水體充分浸潤后,加入50%的膠凝材料進行攪拌,膠凝材料均勻包裹骨料后加入剩余水泥、水和減水劑進行攪拌,再加入短切玻璃纖維,攪拌均勻后分批次倒入模具,進行插搗密實,砌塊連同模具共同養(yǎng)護48 h后,拆除模具,用塑料薄膜覆蓋砌塊以減少水分流失,并定期灑水養(yǎng)護28 d。
表1 原水中物質(zhì)質(zhì)量濃度
將經(jīng)過標準養(yǎng)護28 d的5種多孔混凝土砌塊(120 mm×60 mm×100 mm)放入裝有自來水的PVC桶中定期監(jiān)測水體的pH,等到多孔混凝土砌塊堿度釋放穩(wěn)定后進行砌塊的掛膜試驗。
圖1 多孔砌塊反硝化菌膜的培養(yǎng)
圖2 多孔生態(tài)砌塊凈化試驗
為研究骨料粒徑(PS)對多孔砌塊透水率(K)的影響,在相同孔隙率條件下對4種不同骨料粒徑的多孔砌塊進行了透水率測試。圖3為水膠比為0.27、骨膠比為5.0、孔隙率為25%條件下不同骨料粒徑條件下多孔砌塊的透水率對比圖。
圖3 不同骨料粒徑條件下多孔砌塊的透水率對比
從圖3可以看出,多孔生態(tài)砌塊的透水率隨著骨料粒徑的增大而增大,骨料粒徑越小透水率越小。這主要是由于骨料粒徑越小,單位體積內(nèi)骨料顆粒之間的接觸點數(shù)量就越多,所形成的節(jié)點骨架越密,孔隙尺寸越小,其中的連通孔隙越復雜[16],當水流通過時,水流與多孔砌塊的接觸面變大使得阻力變大,透水率變小,所以透水率隨著骨料粒徑的減小而減小,同時與磚體的比表面積成反比。
圖4 進出水中質(zhì)量濃度變化情況
圖5 掛膜期間的去除率
圖6 出水中質(zhì)量濃度變化情況
掛膜過程[17]中,最初砌塊表面只有零散分布的點狀菌膠團,隨著掛膜的進行,慢慢形成片狀的菌膜,進而覆蓋整個多孔生態(tài)砌塊的表面,其顏色也由原先的灰色變?yōu)楹稚?圖7)。
(a) 掛膜前 (b) 掛膜后
圖質(zhì)量濃度隨時間的變化曲線
多孔生態(tài)砌塊在重復降解試驗中,降解效率基本維持不變,只要生物膜不被外力破壞,其降解能力可以維持在穩(wěn)定狀態(tài),在后期試驗中隨著生物膜的不斷生長,多孔生態(tài)砌塊可能出現(xiàn)堵塞情況從而使得降解效率下降,在實際應用中要定期進行反沖洗操作以維持多孔生態(tài)砌塊的降解效率。
圖質(zhì)量濃度隨時間變化的曲線
b. 在相同孔隙率條件下,多孔磚的透水率隨著骨料粒徑的增大而增大,隨著比表面積的增大而減小。
[1] 黃顯峰,鄭延科,方國華,等.平原河網(wǎng)地區(qū)河流生態(tài)修復技術研究與實踐[J].水資源保護,2017,33(5):170-176.(HUANG Xianfeng,ZHENG Yanke,FANG Guohua,et al.Research and practices of river ecological restoration technology applied in plain river network area [J].Water Resources Protection,2017,33(5):170-176.(in Chinese))
[2]鐘福立.大陵河河道綜合整治中生態(tài)護岸建設思路研究[J].黑龍江水利科技,2017,45(3):42-44.(ZHONG Fuli.Study of the thinking of the construction of eco-revetment in the comprehensive improvement of the DA LING river channel[J].Heilongjiang Hydraulic Science and Technology,2017,45(3):42-44.(in Chinese))
[3]關春曼,張桂榮,程大鵬,等.中小河流生態(tài)護岸技術發(fā)展趨勢與熱點問題[J].水利水運工程學報,2014(4):75-81.(GUAN Chunman,ZHANG Guirong,CHENG Dapeng,et al.Development trends and the hot topics of ecological revetment technology for medium and small rivers[J].Hydro-Science and Engineering,2014(4):75-81.(in Chinese))
[4]王艷穎,王超,侯俊,等.木柵欄礫石籠生態(tài)護岸技術及其應用[J].河海大學學報(自然科學版),2007(3):251-254.(WANG Yanying,WANG Chao,HOU Jun,et al.Ecological bank protection technique by wooden fences and grave boxes and its application[J].Journal of Hohai University( Natural Sciences),2007(3):251-254.(in Chinese))
[5]高建明,許國棟,呂錫武.多孔混凝土綜合生態(tài)效應的試驗研究[J].東南大學學報(自然科學版),2008,38(5):794-798.(GAO Jianming,XU Guodong,LYU Xiwu,et al.Experimental study on eco-environmental effect of porous concrete[J].Journal of Southeast University(Natural Science Edition),2008,38(5):794-798.(in Chinese))
[6]吳鳳環(huán),潘偉斌,王照宜.3種天然材料改造直立式護岸對河道水質(zhì)凈化能力的影響[J].水資源保護,2014,30(5):32-37.(WU Fenghuan,PAN Weibin,WANG Zhaoyi.Influences of three natural materials on self-purification capacity of rivers with vertical revetments [J].Water Resources Protection,2014,30(5):32-37.(in Chinese))
[7]陳志山,劉選舉.生態(tài)混凝土凈水技術處理生活污水[J].給水排水,2003,2(5):10-12.(CHEN Zhishan,LIU Xuanju.Water purification technology of eco-concrete treats domestic sewage[J].Water & Wastewater Engineering,2003,2(5):10-12.(in Chinese))
[8]石明巖,鄭海良,劉嘉宇.凈水型生態(tài)混凝土的研究現(xiàn)狀與存在的主要問題[J].安徽農(nóng)業(yè)科學,2011,39(13):8051-8052.(SHI Mingyan,ZHENG Hailiang,LIU Jiayu.Current research on purification water type ecological concrete and existed problems[J].Journal of Anhui Agricultural Sciences,2011,39(13):8051-8052.(in Chinese))
[9]HUANG J,VALEO C,HE J,et al.The Influence of Design parameters on stormwater pollutant removal in permeable pavements[J].Water,Air,& Soil Pollution,2016,227(9):1-17.
[10]HUANG J,VALEO C,HE J,et al.Three types of permeable pavements in cold climates:hydraulic and environmental performance[J].Journal of Environmental Engineering,2016,142(6):04016025.
[11]RANKIN J E B K.The hydrological performance of a permeable pavement[J].Urban Water Journal,2010,7(2):79-90.
[12]紀榮平,呂錫武,李先寧.生態(tài)混凝土對富營養(yǎng)化水源地水質(zhì)改善效果[J].水資源保護,2007,23(4):91-94.(JI Rongping,LYU Xiwu,LI Xianning.Effect of eco-concrete on improvement of eutrophic source water quality[J].Water Resources Protection,2007,23(4):91-94.(in Chinese))
[13]PARK S B,TIA M.An experimental study on the water-purification properties of porous concrete[J].Cement and Concrete Research,2003,34:184.
[14]朱健,高建明,汪吉星.水生植物、多孔混凝土的綜合水質(zhì)凈化效應[J].混凝土與水泥制品,2009(1):10-13.(ZHU Jian,GAO Jianming,WANG Jixing.Comprehensive purification effect of water quality of the aquatic plant and porous concrete[J].China Concrete and Cement Products,2009(1):10-13.(in Chinese))
[15]鄂歡,齊海紅.生態(tài)混凝土水污染凈化試驗研究[J].吉林水利,2016(8):20-23.(E Huan,QI Haihong.Experimental study on water cleansing by eco-concrete[J].Jilin Water Resources,2016(8):20-23.(in Chinese))
[16]張賢超,尹健,池漪.透水混凝土性能研究綜述[J].混凝土,2010(12):47-50.(ZHANG Xianchao,YI Jian,CHI Yi.Summary of performance for pervious concrete[J].Concrete,2010(12):47-50.(in Chinese))
[17]田娜,朱亮.應用EM技術的膜法生物降解試驗研究[J].水資源保護,2005,21(6):72-74.(TIAN Na,ZHU Liang.Study on biodegradation using biofilm technology of EM [J].Water Resources Protection,2005,21(6):72-74.(in Chinese))
[18]呂小央,張松賀,劉凱輝,等.水生植物-生物膜體系的生態(tài)功能與互作機制研究進展[J].水資源保護,2015,31(2):20-25.(LYU Xiaoyang,ZHANG Songhe,LIU kaihui,et al.Advances in ecological function and interaction mechanism of aquatic macrophyte biofilm system [J].Water Resources Protection,2015,31(2):20-25.(in Chinese))
[19]王戰(zhàn)蔚,張譯丹,李秀穎,等.池塘中氨氮、亞硝酸鹽的危害及控制措施[J].吉林水利,2013(3):39-40,48.(WANG Zhanwei,ZHANG Yidan,LI Xiuying,et al.Hazards of ammonia,nitrogen and nitrite in pond and control measures[J].Jilin Water Resources,2013(3):39-40,48.(in Chinese))
[20]李玲玲,劉曉萍,楊兆雪.低C/N比污水反硝化過程中亞硝態(tài)氮累積特性研究[J].環(huán)境污染與防治,2016,38(12):72-77.(LI Lingling,LIU Xiaoping,YANG Zhaoxue.Study on nitrite-N accumulation characteristics during denitrification process in low C/N ratio sewage[J].Environmental Pollution & Control,2016,38(12):72-77.(in Chinese))
[21]楊柳燕,王楚楚,孫旭,等.淡水湖泊微生物硝化反硝化過程與影響因素研究[J].水資源保護,2016,32(1):12-22.(YANG Liuyan,WANG Chuchu,SUN Xu,et al.Study on microbial nitrification and denitrification processes and influence factors in freshwater lakes [J].Water Resources Protection,2016,32(1):12-22.(in Chinese))
[22]蔣然,李召旭.典型河口區(qū)硝態(tài)氮短程還原成銨的活性氮累積途徑研究進展[J].水資源保護,2014,30(4):10-13.(JIANG Ran,LI Zhaoxu.Active nitrogen accumulation mechanism in typical estuarine regions based on dissimilatory nitrate reduction to ammonium [J].Water Resources Protection,2014,30(4):10-13.(in Chinese))