亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        α- 硫辛酸的免疫調(diào)節(jié)作用

        2018-01-23 07:36:39李勝光
        中國免疫學(xué)雜志 2018年1期
        關(guān)鍵詞:胰島素小鼠信號(hào)

        郭 娟 劉 瑋 李勝光

        (解放軍總醫(yī)院第一附屬醫(yī)院風(fēng)濕科,北京 100048)

        α- 硫辛酸(α- Lipoic Acid,ALA)是由線粒體生成的二硫酚化合物,廣泛存在于動(dòng)植物體內(nèi)。在生理狀態(tài)下,人體內(nèi)的ALA作為線粒體丙酮酸脫氫酶和α- 酮戊二酸脫氫酶復(fù)合物的輔酶,保護(hù)線粒體免受氧化攻擊。ALA是硫辛酸的氧化態(tài),雙氫硫辛酸是硫辛酸的還原態(tài),兩者組成一對(duì)強(qiáng)力的氧化還原對(duì)。它們能夠直接清除眾多活性氧自由基(Reactive oxygen species ,ROS),作為金屬螯合劑減輕重金屬離子對(duì)機(jī)體的氧化損傷;還能參與體內(nèi)其他抗氧化劑的再生,因而被譽(yù)為“萬能抗氧化劑”,且ALA及雙氫硫酸較好的水溶性和脂溶性使其在細(xì)胞內(nèi)外發(fā)揮抗氧化作用[1,2]。

        基于其強(qiáng)有力的抗氧化功能和良好的安全性,ALA被廣泛應(yīng)用于糖尿病及其并發(fā)癥、神經(jīng)性疾病和心血管疾病。隨著相關(guān)研究的不斷深入,我們對(duì)ALA的作用機(jī)制有了更多的認(rèn)識(shí),包括保護(hù)胰島細(xì)胞,增加胰島素敏感性,加快神經(jīng)傳導(dǎo)及改善血管內(nèi)皮功能[3]。除此之外,越來越多的實(shí)驗(yàn)數(shù)據(jù)提示ALA可能具有免疫調(diào)節(jié)作用。

        近年來,氧化應(yīng)激在某些自身免疫疾病發(fā)生發(fā)展中的作用獲得普遍認(rèn)可。研究已證實(shí)ROS與免疫系統(tǒng)交互影響:一方面,ROS幾乎在每一種免疫細(xì)胞的信號(hào)傳導(dǎo)中發(fā)揮著生理作用。如巨噬細(xì)胞分泌ROS發(fā)揮抗菌作用;調(diào)節(jié)性T細(xì)胞(Treg)通過釋放ROS抑制其他T細(xì)胞的功能等[4]。另一方面,免疫細(xì)胞發(fā)生病理性改變時(shí)產(chǎn)生過量的ROS,加劇炎癥和免疫系統(tǒng)進(jìn)一步失衡。如氧化應(yīng)激是系統(tǒng)性紅斑狼瘡(Systemic lupus erythematosus,SLE)普遍存在的病理狀態(tài)[5],促進(jìn)免疫紊亂的發(fā)生;而免疫紊亂則進(jìn)一步加劇氧化應(yīng)激水平,兩者共同參與了SLE的發(fā)生和發(fā)展。體外實(shí)驗(yàn)發(fā)現(xiàn)系統(tǒng)性硬化癥皮膚成纖維細(xì)胞硫辛酸及硫辛酸合成酶含量減低[6],DHLA可逆轉(zhuǎn)皮膚纖維化發(fā)生。由此可以推測,抗氧化劑可用于治療某些自身免疫性疾病,前者在清除ROS的基礎(chǔ)上,極可能發(fā)揮免疫調(diào)節(jié)作用。通過文獻(xiàn)復(fù)習(xí),筆者對(duì)ALA的免疫調(diào)節(jié)的證據(jù)和可能機(jī)制進(jìn)行綜述。

        1 ALA對(duì)免疫系統(tǒng)的調(diào)節(jié)功能

        1.1T細(xì)胞 多發(fā)性硬化(Multiple sclerosis,MS)是中樞神經(jīng)系統(tǒng)(Central nervous system,CNS)的自身免疫病,以機(jī)體出現(xiàn)髓鞘特異性T細(xì)胞并通過血腦屏障進(jìn)入CNS長期生存為特征。實(shí)驗(yàn)性自身免疫性腦脊髓炎(EAE)是MS最常用的動(dòng)物模型。多項(xiàng)研究發(fā)現(xiàn)使用ALA干預(yù)EAE建模過程,能夠減少病變部位炎癥細(xì)胞浸潤,減輕疾病的嚴(yán)重程度[7- 9]。最近,Wang等[8]證實(shí)ALA減少EAE病變組織的Th17和Th1細(xì)胞數(shù)量,增加脾臟Treg細(xì)胞數(shù)量,提示ALA對(duì)T細(xì)胞分化和增殖的免疫調(diào)節(jié)作用。另有實(shí)驗(yàn)證實(shí)ALA上調(diào)高脂飲食小鼠空腸T細(xì)胞分化相關(guān)基因的表達(dá),并使其恢復(fù)到正常水平(syk、CD86、CD28、CD2和CD25),充分提示ALA參與調(diào)控T細(xì)胞的分化過程[10]。研究報(bào)道ALA能夠通過激活人外周血T細(xì)胞前列腺素受體EP2和EP4增加cAMP合成[11],導(dǎo)致IL- 2及IL- 2Rα(CD25)表達(dá)的減少,繼而影響T細(xì)胞的增殖及激活[12]。

        更多的研究提示ALA從多種途徑調(diào)節(jié)T細(xì)胞的功能:ALA能夠改善AIDS患者CD4+T細(xì)胞受損的線粒體功能[13];下調(diào)人外周血T細(xì)胞表面CD4表達(dá)[14];抑制CD4+T細(xì)胞分泌IFN- γ和IL- 4從而減輕特應(yīng)性皮炎小鼠皮損的嚴(yán)重程度[15]。

        除影響T細(xì)胞的增殖、分化和分泌功能,ALA還能夠抑制T細(xì)胞的遷移功能。Ying等[16]的研究發(fā)現(xiàn)在渡邊兔動(dòng)脈粥樣硬化模型中,ALA干預(yù)后T細(xì)胞對(duì)趨化因子的反應(yīng)下降,進(jìn)而減少了動(dòng)脈粥樣硬化斑塊中的T細(xì)胞浸潤。另有研究提示ALA抑制以下免疫細(xì)胞的遷移活動(dòng):EAE小鼠T細(xì)胞、EAE大鼠淋巴細(xì)胞和單核細(xì)胞、Jurkat細(xì)胞[9,17,18]。相關(guān)的機(jī)制研究提示遷移功能的抑制與ALA下調(diào)T細(xì)胞表面的極遲反應(yīng)抗原4表達(dá),并抑制微環(huán)境中的基質(zhì)金屬蛋白酶9活性[18]。

        1.2B細(xì)胞 高脂飲食小鼠表現(xiàn)為免疫細(xì)胞數(shù)量減少和功能下降?;虮磉_(dá)譜研究提示:(1)高脂飲食可下調(diào)小鼠空腸B細(xì)胞受體(B cell receptor,BCR)的信號(hào)通路基因(CD19、Cr2、Ighg和Igh- 6)的表達(dá),ALA干預(yù)后這些基因明顯上調(diào),其中Ighg甚至恢復(fù)正常水平[10];(2)高脂飲食促進(jìn)脾臟細(xì)胞凋亡,在ALA干預(yù)后獲明顯改善[19]。高脂飲食可同時(shí)減少外周血B細(xì)胞數(shù)量,ALA的治療作用可能與上調(diào)脾臟 BCR信號(hào)通路相關(guān)基因的表達(dá)水平(Fos、Akt3、Pi3k、Rac1、Igh- 6、Ighg)有關(guān)[20]。這一系列實(shí)驗(yàn)證實(shí)ALA參與B細(xì)胞的增殖、凋亡及功能的調(diào)控。

        1.3固有免疫細(xì)胞(NK細(xì)胞、巨噬細(xì)胞和單核細(xì)胞) 天然殺傷細(xì)胞(NK cell)的功能主要由細(xì)胞毒作用和細(xì)胞因子的分泌組成:前者與溶酶體酶的釋放有關(guān);后者以IFN- γ分泌為代表,IFN- γ是巨噬細(xì)胞的強(qiáng)力激活劑。ALA能夠抑制IL- 12/IL- 18介導(dǎo)的人NK細(xì)胞的IFN- γ分泌和細(xì)胞毒性,通過依賴或者不依賴G蛋白偶聯(lián)受體(GPCRs)的方式增加細(xì)胞內(nèi)cAMP的生成[21,22]℃AMP誘導(dǎo)生成的PGE2能夠抑制IL- 15介導(dǎo)的NK細(xì)胞的細(xì)胞毒性和IFN- γ分泌[23]。因此,ALA能夠從多個(gè)方面抑制NK細(xì)胞的功能。

        研究者發(fā)現(xiàn)ALA通過直接和間接的方式調(diào)控巨噬細(xì)胞的活化、吞噬和遷移功能:ALA抑制EAE小鼠巨噬細(xì)胞吞噬髓磷脂[24],減少自身抗原的遞呈;減少肥胖胰島素抵抗小鼠內(nèi)臟脂肪組織的巨噬細(xì)胞浸潤和激活,抑制巨噬細(xì)胞分泌TNF- α和MCP- 1[25],減輕內(nèi)臟脂肪組織炎癥。ALA通過Nrf2信號(hào)通路上調(diào)單核細(xì)胞的血紅色氧合酶- 1(HO- 1)表達(dá),繼而抑制細(xì)胞因子的分泌[26]。還能夠通過抑制單核細(xì)胞的遷移功能并穩(wěn)定血腦屏障內(nèi)皮的功能而減輕EAE大鼠的中樞神經(jīng)炎癥細(xì)胞浸潤[9]。

        2 ALA免疫調(diào)節(jié)的潛在靶點(diǎn)

        ALA已經(jīng)廣泛運(yùn)用于臨床數(shù)十年,積累了大量的實(shí)驗(yàn)數(shù)據(jù),根據(jù)相關(guān)的實(shí)驗(yàn)結(jié)果分析,筆者提出下列ALA免疫調(diào)節(jié)的潛在靶點(diǎn)。

        2.1線粒體跨膜電位(mitochondrial membrane potential,ΔΨm) 線粒體是細(xì)胞的能量站,為三羧酸循環(huán)和氧化磷酸化提供場所,并參與細(xì)胞分化、調(diào)控細(xì)胞生長周期和細(xì)胞死亡。ΔΨm的穩(wěn)定有利于維持細(xì)胞的正常生理功能。電子傳遞鏈和ATP合酶維持的線粒體內(nèi)膜兩側(cè)的電化學(xué)梯度產(chǎn)生ΔΨm,因此ΔΨm、ATP和ROS三者的水平密切相關(guān)[27]。線粒體通透性轉(zhuǎn)變孔(mPTP)是位于線粒體內(nèi)外膜上的一組蛋白復(fù)合體,為非特異性通道,能維持ΔΨm及細(xì)胞內(nèi)外的離子平衡:mPTP過度開放,ΔΨm出現(xiàn)不可逆地降低直至耗盡,誘導(dǎo)細(xì)胞凋亡或壞死[28]。生理狀態(tài)下,T細(xì)胞的激活或凋亡早期出現(xiàn)一過性可逆轉(zhuǎn)的ΔΨm升高即線粒體過級(jí)化(MHP)[29];但SLE患者T細(xì)胞中MHP持續(xù)存在,導(dǎo)致ROS升高和ATP耗竭:一方面,MHP和ATP耗竭促進(jìn)T細(xì)胞壞死,繼而激活巨噬細(xì)胞和樹突狀細(xì)胞加劇炎癥[30];另一方面,ROS水平升高促進(jìn)T細(xì)胞自發(fā)凋亡及IL- 10的釋放[31]。T細(xì)胞凋亡的增加導(dǎo)致自身抗原的釋放和疾病活動(dòng);而IL- 10水平上升進(jìn)一步誘導(dǎo)T細(xì)胞凋亡并促進(jìn)B細(xì)胞過度活化[32- 35]。研究證明在一定的濃度范圍內(nèi),ALA和DHLA促進(jìn)大鼠肝細(xì)胞線粒體mPTP開放[3,36]。因此,推測 ALA可能從多個(gè)方面改善SLE的線粒體功能失調(diào),開放mPTP降低ΔΨm,改善SLE患者T細(xì)胞病理性的MHP;直接中和ROS,進(jìn)而糾正T、B細(xì)胞的功能失調(diào)。

        2.2哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信號(hào)通路 mTOR是一種絲氨酸/蘇氨酸激酶,和不同蛋白質(zhì)結(jié)合,可形成2種不同復(fù)合物,即mTOR復(fù)合物1(mTOR complex 1,mTORCl)和mTORC2。mTORC1廣泛存在于各種生物細(xì)胞,在調(diào)節(jié)細(xì)胞生長和代謝的過程中起到非常重要的作用[37]。

        在細(xì)胞質(zhì)中,mTORC1是許多信號(hào)級(jí)聯(lián)反應(yīng)共同的中間環(huán)節(jié),生長因子、ATP/ADP水平、血糖、氧含量、TNF- α、基因毒應(yīng)激和Wnt等信號(hào)轉(zhuǎn)導(dǎo)通路通過多種途徑調(diào)控mTORC1活性:其中激酶Ras/Erk、PI3K/Akt和IKKβ為正向調(diào)控,而Dsh/GSK3和LKBl/AMPK為負(fù)向調(diào)控。mTORC1激活后抑制細(xì)胞自噬功能;通過磷酸化真核細(xì)胞翻譯起始因子4E結(jié)合蛋白1和核糖體S6蛋白激酶1促進(jìn)蛋白質(zhì)合成;通過活化轉(zhuǎn)錄因子固醇調(diào)節(jié)元件結(jié)合蛋白1(SREBP1)和過氧化物酶體增殖物激活受體γ(PPARγ)促進(jìn)脂質(zhì)合成;通過活化過氧化物酶體增殖物激活受體γ 輔助活化因子- 1α(PGC1- α)調(diào)控線粒體的氧化代謝和生物合成[38]。研究發(fā)現(xiàn),位于線粒體外膜mTORC1與mPTP蛋白相連,通過感受ΔΨm的變化,單獨(dú)發(fā)揮調(diào)控線粒體代謝的功能;抑制mTORC1活性可以降低線粒體氧耗、ATP合成和ΔΨm[39,40]。

        生理狀態(tài)下,mTORC1信號(hào)通路在免疫系統(tǒng)中發(fā)揮重要調(diào)節(jié)作用,影響大部分固有免疫細(xì)胞和適應(yīng)性免疫細(xì)胞的細(xì)胞發(fā)育和功能[41]。激活的mTORC1信號(hào)通路保證樹突狀細(xì)胞、巨噬細(xì)胞和中性粒細(xì)胞TLR的病原體識(shí)別功能;阻斷mTORC1信號(hào)通路損害固有免疫細(xì)胞功能,如樹突狀細(xì)胞的分化、抗原攝取、成熟和遷移,巨噬細(xì)胞的吞噬和趨化性,NK細(xì)胞的增殖和細(xì)胞毒性。在適應(yīng)性免疫應(yīng)答中,激活的mTORC1分子對(duì)于維持T細(xì)胞和B細(xì)胞的穩(wěn)定和活化意義重大,并促進(jìn)初始CD4+T細(xì)胞向Th1和Th17分化;抑制mTORC1活性則促進(jìn)初始CD4+T細(xì)胞向Treg分化[42,43],也促使初始CD8+T細(xì)胞向記憶性CD8+T細(xì)胞分化。

        研究表明多種自身免疫病的發(fā)病可能與免疫系統(tǒng)的mTORC1信號(hào)通路過度激活相關(guān):1型糖尿病、MS、SLE和類風(fēng)濕關(guān)節(jié)炎(RA)[44- 48]。 mTORC1特異性抑制劑雷帕霉素改善1型糖尿病病情,與增加Treg數(shù)量并增強(qiáng)其抑制功能有關(guān)[49,50]。SLE患者T細(xì)胞的mTORC1過度激活,阻斷CD4+CD25+T細(xì)胞的FOXP3表達(dá),導(dǎo)致SLE患者Treg細(xì)胞數(shù)量和功能的下降[51- 54]。mTORC1過度激活也引起CD3+CD4-CD8-T cells雙陰性T細(xì)胞壞死和IL- 4分泌增加,IL- 4導(dǎo)致SLE患者CD25+CD19+B細(xì)胞(Breg)幾乎消失殆盡[52],而Breg抑制CD4+效應(yīng)性T細(xì)胞增殖,上調(diào)Treg細(xì)胞FOXP3和CTLA- 4的表達(dá)[55]。雷帕霉素治療SLE初顯成效[5,47],除改善上述異常外,它還降低SLE患者T細(xì)胞基線和TCR激活后的胞內(nèi)鈣離子的水平[56]。但雷帕霉素不能改善SLE患者T細(xì)胞MHP狀態(tài),反映了其對(duì)T細(xì)胞線粒體功能失調(diào)治療的局限性。IL- 22刺激RA患者的滑膜細(xì)胞增殖,與 PI3K/Akt/mTORC1信號(hào)通路激活相關(guān)[57];抑制該通路減輕滑膜細(xì)胞的侵襲性[58]。在人TNF轉(zhuǎn)基因小鼠的關(guān)節(jié)炎中,mTORC1信號(hào)通路促進(jìn)滑膜破骨細(xì)胞的形成和活化,導(dǎo)致骨侵蝕和軟骨破壞;RA患者破骨細(xì)胞mTORC1信號(hào)通路處于活化狀態(tài)[48],mTORC1抑制劑聯(lián)合甲氨蝶呤治療能夠改善RA患者病情[59]。雖然雷帕霉素能夠特異抑制mTORC1改善上述自身免疫病病情,但是它與FK506相似的副作用可能成為臨床應(yīng)用的障礙。

        研究表明,ALA能夠在不同的病理狀態(tài)下,干預(yù)多種組織細(xì)胞mTORC1上游激酶的活性[1]。

        2.2.1IKKβ、Ras/Erk1/2和PI3K/Akt和正向調(diào)控mTORC1 在RA患者成纖維樣滑膜細(xì)胞和人臍靜脈內(nèi)皮細(xì)胞,ALA能夠阻斷TNF- α誘導(dǎo)IKKβ/NF- κB信號(hào)通路[60,61]。研究表明在腫瘤細(xì)胞和胰島素抵抗小鼠, TNF- α通過激活I(lǐng)KKβ正向調(diào)控mTORC1通路[62,63]。因此,推測ALA可能通過阻斷IKKβ激酶活性對(duì)mTORC1的活性產(chǎn)生負(fù)向調(diào)節(jié)作用。

        研究表明ALA阻斷Erk通路,改善動(dòng)脈粥樣硬化損傷并抑制血管平滑肌細(xì)胞增殖[64];改善血管緊張素Ⅱ?qū)ρ芷交〖?xì)胞的氧化應(yīng)激損傷[65];下調(diào)糖化血紅蛋白介導(dǎo)的小鼠巨噬細(xì)胞NF- κB和TGF- β1的表達(dá)[66]。ALA抑制小鼠系膜細(xì)胞5羥色胺(5- HT)和生長因子對(duì)Erk1/2的激活;減少腎小球腎炎小鼠腎臟促纖維因子TGF- β1表達(dá),并阻斷系膜細(xì)胞向肌成纖維細(xì)胞轉(zhuǎn)化[67,68]。ALA通過抑制Akt/S6K1和Erk活性減少促纖維化細(xì)胞因子(PDGF和TGF- β)對(duì)肝星狀細(xì)胞的激活和氧化應(yīng)激損傷,改善硫代乙酰胺誘導(dǎo)的大鼠肝硬化病情[69]。

        ALA對(duì)于小鼠成纖維細(xì)胞的Erk1/2激酶具有雙向調(diào)節(jié)作用,取決于細(xì)胞培養(yǎng)液中是否含有血清[70,71],這在一定程度上可以解釋ALA在不同的病理狀態(tài)下對(duì)同一激酶出現(xiàn)不同調(diào)控方向。

        ALA通過激活大鼠胰島素細(xì)胞的Akt激酶減少過氧化氫介導(dǎo)的細(xì)胞凋亡[72]。ALA可以通過激活A(yù)kt并抑制Erk,起到減少TNF- α和游離脂肪酸對(duì)大鼠骨骼肌細(xì)胞造成氧化應(yīng)激損傷[73]。近期臨床研究觀察到,2型糖尿病患者長期補(bǔ)充ALA可改善胰島素刺激的葡萄糖氧化和糖原合成,發(fā)揮降低胰島素水平及游離脂肪酸的作用[74]。

        ALA抑制PI3K/Akt通路發(fā)揮抗腫瘤作用:抑制人乳腺癌細(xì)胞生長、促進(jìn)腫瘤細(xì)胞凋亡;誘導(dǎo)人肝癌細(xì)胞凋亡[75,76]。ALA也通過抑制PI3K/Akt通路改善糖脂代謝失衡:下調(diào)小鼠脂肪細(xì)胞瘦素表達(dá)、抑制轉(zhuǎn)錄因子Sp1活性[77];改善糖尿病大鼠的胰島素抵抗[78]。

        然而,ALA激活A(yù)kt通路也介導(dǎo)多種細(xì)胞保護(hù)作用,如阻斷內(nèi)質(zhì)網(wǎng)應(yīng)激介導(dǎo)的大鼠甲狀腺細(xì)胞凋亡[79],改善布比卡因、β- 淀粉樣肽和過氧化氫對(duì)大鼠神經(jīng)元的損害,改善缺血再灌注、TNF- α和游離脂肪酸對(duì)大鼠骨骼肌細(xì)胞造成氧化應(yīng)激等,改善過氧化氫介導(dǎo)的大鼠胰島素細(xì)胞凋亡,改善內(nèi)毒素血癥導(dǎo)致的心功能不全、血管內(nèi)皮功能不全,單核細(xì)胞活化和急性炎癥反應(yīng)[72,73,79- 84]。

        2.2.2AMPK(負(fù)向調(diào)控mTORC1) ALA激活A(yù)MPK,上調(diào)白色脂肪組織分泌脂聯(lián)素改善高脂飲食大鼠的胰島素抵抗[85];下調(diào)促纖維化細(xì)胞因子表達(dá)、減少膠原沉積改善糖尿病大鼠心肌病變[86];促進(jìn)自發(fā)性高血壓大鼠血管舒張[87];上調(diào)人肝細(xì)胞的脂肪組織甘油三酯水解酶(ATGL)表達(dá),減少胞內(nèi)脂肪堆積[88];下調(diào)肝組織固醇調(diào)節(jié)元件結(jié)合蛋白- 1C(SREBP- 1c)、和肝X受體表達(dá),減少肝細(xì)胞脂肪生成[89];上調(diào)糖尿病小鼠ATGL表達(dá),減少內(nèi)臟脂肪含量[90]。

        高糖和亮氨酸通過AMPK/mTORC1/S6K1通路誘導(dǎo)大鼠骨骼肌胰島素抵抗[91,92]。ALA增強(qiáng)骨骼肌細(xì)胞mTORC1上游抑制因子TSC2的磷酸化,同時(shí)激活A(yù)MPK改善胰島素抵抗:增強(qiáng)骨骼肌細(xì)胞的胰島素敏感性[93];下調(diào)胰島素β細(xì)胞S6K1表達(dá),抑制分泌胰島素[94]。

        盡管在下丘腦細(xì)胞,ALA表現(xiàn)為抑制AMPK活性[95- 97],但其結(jié)果是抑制食欲,協(xié)同ALA在外周組織激活A(yù)MPK活性改善胰島素抵抗和減少脂肪生成、堆積,最終表現(xiàn)對(duì)治療肥胖和糖尿病的益處。

        綜上所述,因疾病狀態(tài)和靶細(xì)胞的不同,ALA對(duì)某些激酶活性的調(diào)節(jié)方向并不一致;但是,仍然提示ALA極有可能具有調(diào)節(jié)mTORC1信號(hào)通路的功能。因此,對(duì)于復(fù)發(fā)率高、療效較差的自身免疫病患者來說,ALA在免疫細(xì)胞mTORC1信號(hào)通路中的調(diào)節(jié)作用更加值得進(jìn)一步研究。

        2.3中性粒細(xì)胞胞外誘捕網(wǎng)(Neutrophil extra- cellular traps,NETs) 中性粒細(xì)胞作為固有免疫系統(tǒng)重要成員,對(duì)病原體發(fā)揮重要的一線防御作用。除外吞噬和分泌炎癥介質(zhì)的防御方式,中性粒細(xì)胞還能釋放NETs來捕獲病原體。NETs是一種由核酸、組蛋白和顆粒蛋白組成的結(jié)構(gòu),它的形成過程伴或不伴有中性粒細(xì)胞的死亡,稱之為NETosis[98]。研究表明NETs不僅能夠抵御病原體的入侵,而且與某些自身免疫病的發(fā)病和血栓的形成有關(guān)[99]。NETs形成后在細(xì)胞外暴露多種自身抗原[100],促進(jìn)自身抗體的生成;NETs上調(diào)促炎因子、趨化因子和黏附分子的表達(dá)從而促進(jìn)炎癥反應(yīng);自身抗體延緩NETs降解,導(dǎo)致NETs持續(xù)存在,加劇炎癥。NETs的形成過程必須依賴于ROS的生成和細(xì)胞自噬[101,102],接受mTOR信號(hào)通路調(diào)節(jié)[103,104];因此,可以推測ALA肯定的ROS清除能力和可能的mTOR信號(hào)通路調(diào)節(jié)功能將影響NETs的形成,進(jìn)而減少自身抗原的形成,并且能夠保護(hù)血管內(nèi)皮。

        2.4NLRP3炎癥復(fù)合體 固有免疫細(xì)胞的NLRP3炎癥復(fù)合體是一種多蛋白復(fù)合體,由NOD樣受體3(NLRP3)、凋亡相關(guān)微粒蛋白(ASC)和半胱天冬酶- 1(caspase- 1)組成的,可活化caspase- 1,調(diào)控IL- 1β和IL- 18的加工和成熟,進(jìn)而參與機(jī)體的固有免疫反應(yīng)。線粒體源性的ROS是調(diào)控NLRP3炎性復(fù)合體活化的關(guān)鍵信號(hào),線粒體外膜的電壓依賴的陰離子通道(VDAC,是mPTP的組成部分)參與調(diào)節(jié)NLRP3活性[105];線粒體受損積累產(chǎn)生過量ROS激活NLRP3炎癥復(fù)合體[106]。NLRP3炎癥復(fù)合體活化的IL- 1β上調(diào)炎癥細(xì)胞Th17分化的關(guān)鍵性轉(zhuǎn)錄因子RORγt 和IRF4的表達(dá)[107,108];Th17可分泌IL- 17和IL- 23,趨化中性粒細(xì)胞浸潤炎癥部位[109,110],中性粒細(xì)胞的NLRP3炎癥體進(jìn)一步激活,加劇炎癥,形成正反饋。多項(xiàng)研究表明NLRP3炎癥復(fù)合體的激活與1型糖尿病[111]及某些自身免疫病發(fā)病相關(guān)。自身抗原U1核內(nèi)小核糖核蛋白(U1- snRNP)在抗U1- snRNP抗體存在的情況下,激活人單核細(xì)胞內(nèi)的NLRP3炎癥復(fù)合體,刺激IL- 1β的分泌[112]。原發(fā)性干燥綜合征患者唾液腺中NLRP3、ASC和caspase- 1表達(dá)上調(diào),與患者唇腺活檢的灶性指數(shù)(Focus score)呈正相關(guān)[113]。SLE患者NETs形成增多與巨噬細(xì)胞的NLRP3炎性復(fù)合體激活密切相關(guān),兩者組成正反饋網(wǎng)絡(luò),加劇炎癥發(fā)生[114];SLE患者內(nèi)皮祖細(xì)胞功能失調(diào)與NLRP3炎癥復(fù)合體激活相關(guān)[115]。因此,ALA可能通過調(diào)節(jié)線粒體功能和直接清除ROS這兩個(gè)途徑減少NLRP3炎癥復(fù)合體激活,從而調(diào)節(jié)固有免疫細(xì)胞的功能。

        2.5Nrf2信號(hào)通路 Nrf2是細(xì)胞抗氧化還原的中樞調(diào)節(jié)者。通過與ARE的相互作用,Nrf2可誘導(dǎo)編碼抗氧化蛋白和Ⅱ型解毒酶的表達(dá),在細(xì)胞的防御氧化應(yīng)激保護(hù)中發(fā)揮重要作用[116]。有研究提示Nrf2缺陷小鼠會(huì)出現(xiàn)狼瘡樣改變[117];Nrf2基因多態(tài)性與幼年起病的狼瘡腎炎相關(guān)[118];Nrf2(- /- )小鼠出現(xiàn)自身免疫性溶血性貧血[119];此外,Nrf2缺陷可加重EAE病情[120],而激活Nrf2信號(hào)通路則可改善EAE的神經(jīng)系統(tǒng)炎癥[121]。因此,作為Nrf2的激活劑[1],ALA可以通過該信號(hào)通路發(fā)揮免疫調(diào)節(jié)功能。

        3 ALA良好的安全性

        ALA是人體的自然成分,作為藥物在德國使用超過50年。在多項(xiàng)臨床研究中, ALA每日口服劑量從600~2 400 mg不等,與安慰劑相比未發(fā)現(xiàn)副作用;或者靜脈劑量600 mg/d連續(xù)使用3周沒有發(fā)現(xiàn)嚴(yán)重不良反應(yīng)[1,2]。Sen等[122]通過對(duì)比證實(shí)ALA促進(jìn)Fas介導(dǎo)的Jurkat細(xì)胞凋亡,對(duì)健康人外周血淋巴細(xì)胞的凋亡卻沒有影響[122]。這一實(shí)驗(yàn)結(jié)果也提示ALA免疫調(diào)節(jié)的安全性。

        綜上所述,機(jī)體自然成分ALA不僅具有強(qiáng)大的抗氧化能力,而且可通過直接或間接的方式廣泛地對(duì)固有免疫及適應(yīng)性免疫系統(tǒng)進(jìn)行調(diào)節(jié)。諸多實(shí)驗(yàn)結(jié)果提示ALA可能用于自身免疫疾病的治療。目前免疫抑制劑是自身免疫性疾病治療的主要手段,雖能在一定程度上緩解疾病,但較高的復(fù)發(fā)率及較大的藥物副作用是臨床面臨的嚴(yán)峻問題。如果ALA的免疫調(diào)節(jié)作用能夠獲得進(jìn)一步證實(shí),那么對(duì)改善相關(guān)自身免疫性疾病的治療效果意義重大,因此非常值得進(jìn)一步研究。

        [1] Shay KP,Moreau RF,Smith EJ,etal.Alpha- lipoic acid as a dietary supplement:molecular mechanisms and therapeutic potential[J].Biochem Biophys Acta,2009,1790(10):1149- 1160.

        [2] Goraca A,Huk- Kolega H,Piechota A,etal.Lipoic acid- biological activity and therapeutic potential[J].Pharmacol Rep,2011,63(4):849- 858.

        [3] Rochette L,Ghibu S,Richard C,etal.Direct and indirect antioxidant properties of alpha- lipoic acid and therapeutic potential[J].Mol Nutr Food Res,2013,57(1):114- 125.

        [4] Nathan C,Cunningham- Bussel A.Beyond oxidative stress:an immunologist′s guide to reactive oxygen species[J].Nat Rev Immunol,2013,13(5):349- 361.

        [5] Perl A.Oxidative stress in the pathology and treatment of systemic lupus erythematosus[J].Nat Rev Rheumatol,2013,9(11):674- 686.

        [6] Tsou PS,Balogh B,Pinney AJ,etal.Lipoic acid plays a role in sclerodema:insights obtained from scleroderma dermal fibroblasts[J].Arthritis Res Ther,2014,16(5):411- 424.

        [7] Morini M,Roccatagliata L,Dell′Eva R,etal.Alpha- lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis[J].J Neuroimmunol,2004,148(1- 2):146- 153.

        [8] Wang KC,Tsai CP,Lee CL,etal.alpha- Lipoic acid enhances endogenous peroxisome- proliferator- activated receptor- gamma to ameliorate experimental autoimmune encephalomyelitis in mice[J].Clin Sci(Lond),2013,125(7):329- 340.

        [9] Schreibelt G,Musters RJ,Reijerkerk A,etal.Lipoic acid affects cellular migration into the central nervous system and stabilizes blood- brain barrier integrity[J].J Immunol,2006,177(4):2630- 2637.

        [10] Cui J,Le G,Yang R,etal.Lipoic acid attenuates high fat diet- induced chronic oxidative stress and immunosuppression in mice jejunum:a microarray analysis[J].Cell Immunol,2009,260(1):44- 50.

        [11] Schillace RV,Pisenti N,Pattamanuch N,etal.Lipoic acid stimulates cAMP production in T lymphocytes and NK cells[J].Biochem Biophys Res Commun,2007,354(1):259- 264.

        [12] Kuklina EM,Shirshev SV.Role of cAMP- dependent signal transduction in the control of T lymphocyte activation[J].Biochemistry(Mosc),2000,65(6):629- 639.

        [13] Milazzo L,Menzaghi B,Caramma I,etal.Effect of antioxidants on mitochondrial function in HIV- 1- related lipoatrophy:a pilot study[J].AIDS Res Hum Retroviruses,2010,26(11):1207- 1214.

        [14] Marracci GH,Marquardt WE,Strehlow A,etal.Lipoic acid downmodulates CD4 from human T lymphocytes by dissociation of p56(Lck)[J].Biochem Biophys Res Commun,2006,344(3):963- 971.

        [15] Kim GD,Kim TH,Jang AH,etal.alpha- Lipoic acid suppresses the development of DNFB- induced atopic dermatitis- like symptoms in NC/Nga mice[J].Exp Dermatol,2011,20(2):97- 101.

        [16] Ying Z,Kherada N,Farrar B,etal.Lipoic acid effects on established atherosclerosis[J].Life Sci,2010,86(3- 4):95- 102.

        [17] Chaudhary P,Marracci GH,Bourdette DN.Lipoic acid inhibits expression of ICAM- 1 and VCAM- 1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis[J].J Neuroimmunol,2006,175(1- 2):87- 96.

        [18] Marracci GH,McKeon GP,Marquardt WE,etal.Alpha lipoic acid inhibits human T- cell migration:implications for multiple sclerosis[J].J Neurosci Res,2004,78(3):362- 370.

        [19] Cui J,Xiao Y,Shi Y,etal.Comparative proteome analysis of splenic lymphocytes in long- term high- fat diet and dietary supplement with lipoic acid mice[J].Cell Immunol,2010,264(2):156- 162.

        [20] Cui J,Xiao Y,Shi YH,etal.Lipoic acid attenuates high- fat- diet- induced oxidative stress and B- cell- related immune depression[J].Nutrition,2012,28(3):275- 280.

        [21] Salinthone S,Schillace RV,Marracci GH,etal.Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells[J].J Neuroimmunol,2008,199(1- 2):46- 55.

        [22] Salinthone S,Schillace RV,Tsang C,etal.Lipoic acid stimulates cAMP production via G protein- coupled receptor- dependent and- independent mechanisms[J].J Nutr Biochem,2011,22(7):681- 690.

        [23] Joshi PC,Zhou X,Cuchens M,etal.Prostaglandin E2 suppressed IL- 15- mediated human NK cell function through down- regulation of common gamma- chain[J].J Immunol,2001,166(2):885- 891.

        [24] van der Goes A,Brouwer J,Hoekstra K,etal.Reactive oxygen species are required for the phagocytosis of myelin by macrophages[J].J Neuroimmunol,1998,92(1- 2):67- 75.

        [25] Deiuliis JA,Kampfrath T,Ying Z,etal.Lipoic acid attenuates innate immune infiltration and activation in the visceral adipose tissue of obese insulin resistant mice[J].Lipids,2011,46(11):1021- 1032.

        [26] Ogborne RM,Rushworth SA,O′Connell MA.Alpha- lipoic acid- induced heme oxygenase- 1 expression is mediated by nuclear factor erythroid 2- related factor 2 and p38 mitogen- activated protein kinase in human monocytic cells[J].Arterioscler Thromb Vasc Biol,2005,25(10):2100- 2105.

        [27] Perl A,Gergely P Jr,Nagy G,etal.Mitochondrial hyperpolarization:a checkpoint of T- cell life,death and autoimmunity[J].Trends Immunol,2004,25(7):360- 367.

        [28] Siemen D,Ziemer M.What is the nature of the mitochondrial permeability transition pore and what is it not?[J].IUBMB Life,2013,65(3):255- 262.

        [29] Nagy G,Koncz A,Fernandez D,etal.Nitric oxide,mitochondrial hyperpolarization,and T cell activation[J].Free Radic Biol Med,2007,42(11):1625- 1631.

        [30] Sauter B,Albert ML,Francisco L,etal.Consequences of cell death:exposure to necrotic tumor cells,but not primary tissue cells or apoptotic cells,induces the maturation of immunostimulatory dendritic cells[J].J Exp Med,2000,191(3):423- 434.

        [31] Gergely P Jr,Niland B,Gonchoroff N,etal.Persistent mitochondrial hyperpolarization,increased reactive oxygen intermediate production,and cytoplasmic alkalinization characterize altered IL- 10 signaling in patients with systemic lupus erythematosus[J].J Immunol,2002,169(2):1092- 1101.

        [32] Emlen W,Niebur J,Kadera R.Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus[J].J Immunol,1994,152(7):3685- 3692.

        [33] Casciola- Rosen LA,Anhalt G,Rosen A.Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes[J].J Exp Med,1994,179(4):1317- 1330.

        [34] Georgescu L,Vakkalanka RK,Elkon KB,etal.Interleukin- 10 promotes activation- induced cell death of SLE lymphocytes mediated by Fas ligand[J].J Clin Invest,1997,100(10):2622- 2633.

        [35] Peng H,Wang W,Zhou M,etal.Role of interleukin- 10 and interleukin- 10 receptor in systemic lupus erythematosus[J].Clin Rheumatol,2013,32(9):1255- 1266.

        [36] Moini H,Packer L,Saris NE.Antioxidant and prooxidant activities of alpha- lipoic acid and dihydrolipoic acid[J].Toxicol Appl Pharmacol,2002,182(1):84- 90.

        [37] Laplante M,Sabatini DM.mTOR signaling at a glance[J].J Cell Sci,2009,122(Pt 20):3589- 3594.

        [38] Cunningham JT,Rodgers JT,Arlow DH,etal.mTOR controls mitochondrial oxidative function through a YY1- PGC- 1alpha transcriptional complex[J].Nature,2007,450(7170):736- 740.

        [39] Desai BN,Myers BR,Schreiber SL.FKBP12- rapamycin- associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction[J].Proc Natl Acad Sci U S A,2002,99(7):4319- 4324.

        [40] Schieke SM,Phillips D,McCoy JP Jr,etal.The mammalian target of rapamycin(mTOR)pathway regulates mitochondrial oxygen consumption and oxidative capacity[J].J Biol Chem,2006,281(37):27643- 27652.

        [41] Yang H,Wang X,Zhang Y,etal.Modulation of TSC- mTOR signaling on immune cells in immunity and autoimmunity[J].J Cell Physiol,2014,229(1):17- 26.

        [42] Battaglia M,Stabilini A,Roncarolo MG.Rapamycin selectively expands CD4+CD25+FoxP3+regulatory T cells[J].Blood,2005,105(12):4743- 4748.

        [43] Kopf H,de la Rosa GM,Howard OM,etal.Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+T regulatory cells[J].Int Immunopharmacol,2007,7(13):1819- 1824.

        [44] Monti P,Scirpoli M,Maffi P,etal.Rapamycin monotherapy in patients with type 1 diabetes modifies CD4+CD25+FOXP3+regulatory T- cells[J].Diabetes,2008,57(9):2341- 2347.

        [45] Long SA,Rieck M,Sanda S,etal.Rapamycin/IL- 2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta- cell function[J].Diabetes,2012,61(9):2340- 2348.

        [46] Dello Russo C,Lisi L,Feinstein DL,etal.mTOR kinase,a key player in the regulation of glial functions:relevance for the therapy of multiple sclerosis[J].Glia,2013,61(3):301- 311.

        [47] Fernandez D,Perl A.mTOR signaling:a central pathway to pathogenesis in systemic lupus erythematosus?[J].Discov Med,2010,9(46):173- 178.

        [48] Cejka D,Hayer S,Niederreiter B,etal.Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis[J].Arthritis Rheum,2010,62(8):2294- 2302.

        [49] Battaglia M,Stabilini A,Draghici E,etal.Induction of tolerance in type 1 diabetes via both CD4+CD25+T regulatory cells and T regulatory type 1 cells[J].Diabetes,2006,55(6):1571- 1580.

        [50] Battaglia M,Stabilini A,Migliavacca B,etal.Rapamycin promotes expansion of functional CD4+CD25+FOXP3+regulatory T cells of both healthy subjects and type 1 diabetic patients[J].J Immunol,2006,177(12):8338- 8347.

        [51] Fernandez DR,Telarico T,Bonilla E,etal.Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES- 1/Rab4- regulated lysosomal degradation[J].J Immunol,2009,182(4):2063- 2073.

        [52] Lai ZW,Borsuk R,Shadakshari A,etal.Mechanistic target of rapamycin activation triggers IL- 4 production and necrotic death of double- negative T cells in patients with systemic lupus erythematosus[J].J Immunol,2013,191(5):2236- 2246.

        [53] Crispin JC,Martinez A,Alcocer- Varela J.Quantification of regulatory T cells in patients with systemic lupus erythematosus[J].J Autoimmun,2003,21(3):273- 276.

        [54] Valencia X,Yarboro C,Illei G,etal.Deficient CD4+CD25highT regulatory cell function in patients with active systemic lupus erythematosus[J].J Immunol,2007,178(4):2579- 2588.

        [55] Kessel A,Haj T,Peri R,etal.Human CD19(+)CD25(high)B regulatory cells suppress proliferation of CD4(+)T cells and enhance Foxp3 and CTLA- 4 expression in T- regulatory cells[J].Autoimmun Rev,2012,11(9):670- 677.

        [56] Fernandez D,Bonilla E,Mirza N,etal.Rapamycin reduces disease activity and normalizes T cell activation- induced calcium fluxing in patients with systemic lupus erythematosus[J].Arthritis Rheum,2006,54(9):2983- 2988.

        [57] Mitra A,Raychaudhuri SK,Raychaudhuri SP.IL- 22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade[J].Cytokine,2012,60(1):38- 42.

        [58] Laragione T,Gulko PS.mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis[J].Mol Med,2010,16(9- 10):352- 358.

        [59] Bruyn GA,Tate G,Caeiro F,etal.Everolimus in patients with rheumatoid arthritis receiving concomitant methotrexate:a 3- month,double- blind,randomised,placebo- controlled,parallel- group,proof- of- concept study[J].Ann Rheum Dis,2008,67(8):1090- 1095.

        [60] Lee CK,Lee EY,Kim YG,etal.Alpha- lipoic acid inhibits TNF- α induced NF- kappa B activation through blocking of MEKK1- MKK4- IKK signaling cascades[J].Int Immunopharmacol,2008,8(2):362- 370.

        [61] Ying Z,Kampfrath T,Sun Q,etal.Evidence that alpha- lipoic acid inhibits NF- kappaB activation independent of its antioxidant function[J].Inflamm Res,2011,60(3):219- 225.

        [62] Lee DF,Kuo HP,Chen CT,etal.IKKbeta suppression of TSC1 function links the mTOR pathway with insulin resistance[J].Int J Mol Med,2008,22(5):633- 638.

        [63] Lee DF,Kuo HP,Chen CT,etal.IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway[J].Cell,2007,130(3):440- 455.

        [64] Lee WR,Kim A,Kim KS,etal.Alpha- lipoic acid attenuates atherosclerotic lesions and inhibits proliferation of vascular smooth muscle cells through targeting of the Ras/MEK/ERK signaling pathway[J].Mol Biol Rep,2012,39(6):6857- 6866.

        [65] Laplante MA,Wu R,El Midaoui A,etal.NAD(P)H oxidase activation by angiotensin II is dependent on p42/44 ERK- MAPK pathway activation in rat′s vascular smooth muscle cells[J].J Hypertens,2003,21(5):927- 936.

        [66] Cohen MP,Shea E,Chen S,etal.Glycated albumin increases oxidative stress,activates NF- kappa B and extracellular signal- regulated kinase(ERK),and stimulates ERK- dependent transforming growth factor- beta 1 production in macrophage RAW cells[J].J Lab Clin Med,2003,141(4):242- 249.

        [67] Grewal JS,Mukhin YV,Garnovskaya MN,etal.Serotonin 5- HT2A receptor induces TGF- beta1 expression in mesangial cells via ERK:proliferative and fibrotic signals[J].Am J Physiol,1999,276(6 Pt 2):F922- 930.

        [68] Budisavljevic MN,Hodge L,Barber K,etal.Oxidative stress in the pathogenesis of experimental mesangial proliferative glomerulonephritis[J].Am J Physiol Renal Physiol,2003,285(6):F1138- 1148.

        [69] Foo NP,Lin SH,Lee YH,etal.alpha- Lipoic acid inhibits liver fibrosis through the attenuation of ROS- triggered signaling in hepatic stellate cells activated by PDGF and TGF- beta[J].Toxicology,2011,282(1- 2):39- 46.

        [70] Shi SS,Day RM,Halpner AD,etal.Homocysteine and alpha- lipoic acid regulate p44/42 MAP kinase phosphorylation in NIH/3T3 cells[J].Antioxid Redox Signal,1999,1(1):123- 128.

        [71] Suzuki YJ,Shi SS,Day RM,etal.Differential regulation of MAP kinase signaling by pro- and antioxidant biothiols[J].Ann N Y Acad Sci,2000,899:159- 167.

        [72] Lee BW,Kwon SJ,Chae HY,etal.Dose- related cytoprotective effect of alpha- lipoic acid on hydrogen peroxide- induced oxidative stress to pancreatic beta cells[J].Free Radic Res,2009,43(1):68- 77.

        [73] Ishiki M,Nishida Y,Ishibashi H,etal.Impact of divergent effects of astaxanthin on insulin signaling in L6 cells[J].Endocrinology,2013,154(8):2600- 2612.

        [74] Derosa G,D′Angelo A,Romano D,etal.A clinical trial about a food supplement containing α- lipoic acid on oxidative stress markers in type 2 diabetic patients[J].Int J Mol Sci,2016,17(11):1802.

        [75] Dozio E,Ruscica M,Passafaro L,etal.The natural antioxidant alpha- lipoic acid induces p27(Kip1)- dependent cell cycle arrest and apoptosis in MCF- 7 human breast cancer cells[J].Eur J Pharmacol,2010,641(1):29- 34.

        [76] Shi DY,Liu HL,Stern JS,etal.Alpha- lipoic acid induces apoptosis in hepatoma cells via the PTEN/Akt pathway[J].FEBS Lett,2008,582(12):1667- 1671.

        [77] Prieto- Hontoria PL,Perez- Matute P,Fernandez- Galilea M,etal.Lipoic acid inhibits leptin secretion and Sp1 activity in adipocytes[J].Mol Nutr Food Res,2011,55(7):1059- 1069.

        [78] Bitar MS,Wahid S,Pilcher CW,etal.Alpha- lipoic acid mitigates insulin resistance in Goto- Kakizaki rats[J].Horm Metab Res,2004,36(8):542- 549.

        [79] Lee SJ,Kim SH,Kang JG,etal.Alpha- lipoic acid inhibits endoplasmic reticulum stress- induced cell death through PI3K/Akt signaling pathway in FRTL5 thyroid cells[J].Horm Metab Res,2011,43(7):445- 451.

        [80] Wang X,Zhang X,Cheng Y,etal.Alpha- lipoic acid prevents bupivacaine- induced neuron injury in vitro through a PI3K/Akt- dependent mechanism[J].Neurotoxicology,2010,31(1):101- 112.

        [81] Deng C,Sun Z,Tong G,etal.alpha- Lipoic acid reduces infarct size and preserves cardiac function in rat myocardial ischemia/reperfusion injury through activation of PI3K/Akt/Nrf2 pathway[J].PLoS One,2013,8(3):e58371.

        [82] Jiang S,Zhu W,Li C,etal.alpha- Lipoic acid attenuates LPS- induced cardiac dysfunction through a PI3K/Akt- dependent mechanism[J].Int Immunopharmacol,2013,16(1):100- 107.

        [83] Zhang WJ,Wei H,Hagen T,etal.Alpha- lipoic acid attenuates LPS- induced inflammatory responses by activating the phosphoinositide 3- kinase/Akt signaling pathway[J].Proc Natl Acad Sci U S A,2007,104(10):4077- 4082.

        [84] Bitar MS,Ayed AK,Abdel- Halim SM,etal.Inflammation and apoptosis in aortic tissues of aged type II diabetes:amelioration with alpha- lipoic acid through phosphatidylinositol 3- kinase/Akt- dependent mechanism[J].Life Sci,2010,86(23- 24):844- 853.

        [85] Prieto- Hontoria PL,Perez- Matute P,Fernandez- Galilea M,etal.Effects of lipoic acid on AMPK and adiponectin in adipose tissue of low- and high- fat- fed rats[J].Eur J Nutr,2013,52(2):779- 787.

        [86] Lee JE,Yi CO,Jeon BT,etal.alpha- Lipoic acid attenuates cardiac fibrosis in Otsuka Long- Evans Tokushima Fatty rats[J].Cardiovasc Diabetol,2012,11:111.

        [87] Cheng PY,Lee YM,Chung MT,etal.Role of AMP- activated protein kinase in alpha- lipoic acid- induced vasodilatation in spontaneously hypertensive rats[J].Am J Hypertens,2012,25(2):152- 158.

        [88] Kuo YT,Lin TH,Chen WL,etal.Alpha- lipoic acid induces adipose triglyceride lipase expression and decreases intracellular lipid accumulation in HepG2 cells[J].Eur J Pharmacol,2012,692(1- 3):10- 18.

        [89] Park KG,Min AK,Koh EH,etal.Alpha- lipoic acid decreases hepatic lipogenesis through adenosine monophosphate- activated protein kinase(AMPK)- dependent and AMPK- independent pathways[J].Hepatology,2008,48(5):1477- 1486.

        [90] Chen WL,Kang CH,Wang SG,etal.alpha- Lipoic acid regulates lipid metabolism through induction of sirtuin 1(SIRT1)and activation of AMP- activated protein kinase[J].Diabetologia,2012,55(6):1824- 1835.

        [91] Saha AK,Xu XJ,Lawson E,etal.Downregulation of AMPK accompanies leucine- and glucose- induced increases in protein synthesis and insulin resistance in rat skeletal muscle[J].Diabetes,2010,59(10):2426- 2434.

        [92] Saha AK,Xu XJ,Balon TW,etal.Insulin resistance due to nutrient excess:is it a consequence of AMPK downregulation?[J].Cell Cycle,2011,10(20):3447- 3451.

        [93] Lee WJ,Song KH,Koh EH,etal.Alpha- lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle[J].Biochem Biophys Res Commun,2005,332(3):885- 891.

        [94] Targonsky ED,Dai F,Koshkin V,etal.alpha- lipoic acid regulates AMP- activated protein kinase and inhibits insulin secretion from beta cells[J].Diabetologia,2006,49(7):1587- 1598.

        [95] Kim MS,Park JY,Namkoong C,etal.Anti- obesity effects of alpha- lipoic acid mediated by suppression of hypothalamic AMP- activated protein kinase[J].Nat Med,2004,10(7):727- 733.

        [96] Lee WJ,Koh EH,Won JC,etal.Obesity:the role of hypothalamic AMP- activated protein kinase in body weight regulation[J].Int J Biochem Cell Biol,2005,37(11):2254- 2259.

        [97] Kim MS,Lee KU.Role of hypothalamic 5′- AMP- activated protein kinase in the regulation of food intake and energy homeostasis[J].J Mol Med(Berl),2005,83(7):514- 520.

        [98] Yipp BG,Kubes P.NETosis:how vital is it?[J].Blood,2013,122(16):2784- 2794.

        [99] Fuchs TA,Brill A,Duerschmied D,etal.Extracellular DNA traps promote thrombosis[J].Proc Natl Acad Sci U S A,2010,107(36):15880- 15885.

        [100] Darrah E,Andrade F.NETs:the missing link between cell death and systemic autoimmune diseases?[J].Front Immunol,2013,3:428.

        [101] Hahn S,Giaglis S,Chowdhury CS,etal.Modulation of neutrophil NETosis:interplay between infectious agents and underlying host physiology[J].Semin Immunopathol,2013,35(4):439- 453.

        [102] Remijsen Q,Vanden Berghe T,Wirawan E,etal.Neutrophil extracellular trap cell death requires both autophagy and superoxide generation[J].Cell Res,2011,21(2):290- 304.

        [103] Itakura A,McCarty OJ.Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy[J].Am J Physiol Cell Physiol,2013,305(3):C348- 354.

        [104] McInturff AM,Cody MJ,Elliott EA,etal.Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia- inducible factor 1 alpha[J].Blood,2012,120(15):3118- 3125.

        [105] Tschopp J,Schroder K.NLRP3 inflammasome activation:The convergence of multiple signalling pathways on ROS production?[J].Nat Rev Immunol,2010,10(3):210- 215.

        [106] Zhou R,Yazdi AS,Menu P,etal.A role for mitochondria in NLRP3 inflammasome activation[J].Nature,2011,469(7329):221- 225.

        [107] Chung Y,Chang SH,Martinez GJ,etal.Critical regulation of early Th17 cell differentiation by interleukin- 1 signaling[J].Immunity,2009,30(4):576- 587.

        [108] Brustle A,Heink S,Huber M,etal.The development of inflammatory T(H)- 17 cells requires interferon- regulatory factor 4[J].Nat Immunol,2007,8(9):958- 966.

        [109] Steinman L.A rush to judgment on Th17[J].J Exp Med,2008,205(7):1517- 1522.

        [110] Kroenke MA,Carlson TJ,Andjelkovic AV,etal.IL- 12- and IL- 23- modulated T cells induce distinct types of EAE based on histology,CNS chemokine profile,and response to cytokine inhibition[J].J Exp Med,2008,205(7):1535- 1541.

        [111] Grishman EK,White PC,Savani RC.Toll- like receptors,the NLRP3 inflammasome,and interleukin- 1beta in the development and progression of type 1 diabetes[J].Pediatr Res,2012,71(6):626- 632.

        [112] Shin MS,Kang Y,Lee N,etal.U1- small nuclear ribonucleoprotein activates the NLRP3 inflammasome in human monocytes[J].J Immunol,2012,188(10):4769- 4775.

        [113] Baldini C,Rossi C,Ferro F,etal.The P2X7 receptor- inflammasome complex has a role in modulating the inflammatory response in primary Sjogren′s syndrome[J].J Intern Med,2013,274(5):480- 489.

        [114] Kahlenberg JM,Carmona- Rivera C,Smith CK,etal.Neutrophil extracellular trap- associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages[J].J Immunol,2013,190(3):1217- 1226.

        [115] Kahlenberg JM,Thacker SG,Berthier CC,etal.Inflammasome activation of IL- 18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus[J].J Immunol,2011,187(11):6143- 6156.

        [116] Ma Q.Role of nrf2 in oxidative stress and toxicity[J].Annu Rev Pharmacol Toxicol,2013,53:401- 426.

        [117] Yoh K,Itoh K,Enomoto A,etal.Nrf2- deficient female mice develop lupus- like autoimmune nephritis[J].Kidney Int,2001,60(4):1343- 1353.

        [118] Cordova EJ,Velazquez- Cruz R,Centeno F,etal.The NRF2 gene variant,- 653G/A,is associated with nephritis in childhood- onset systemic lupus erythematosus[J].Lupus,2010,19(10):1237- 1242.

        [119] Lee JM,Chan K,Kan YW,etal.Targeted disruption of Nrf2 causes regenerative immune- mediated hemolytic anemia[J].Proc Natl Acad Sci U S A,2004,101(26):9751- 9756.

        [120] Johnson DA,Amirahmadi S,Ward C,etal.The absence of the pro- antioxidant transcription factor Nrf2 exacerbates experimental autoimmune encephalomyelitis[J].Toxicol Sci,2010,114(2):237- 246.

        [121] Pareek TK,Belkadi A,Kesavapany S,etal.Triterpenoid modulation of IL- 17 and Nrf- 2 expression ameliorates neuroinflammation and promotes remyelination in autoimmune encephalomyelitis[J].Sci Rep,2011,1:201.

        [122] Sen CK,Sashwati R,Packer L.Fas mediated apoptosis of human Jurkat T- cells:intracellular events and potentiation by redox- active alpha- lipoic acid[J].Cell Death Differ,1999,6(5):481- 491.

        猜你喜歡
        胰島素小鼠信號(hào)
        信號(hào)
        鴨綠江(2021年35期)2021-04-19 12:24:18
        完形填空二則
        小鼠大腦中的“冬眠開關(guān)”
        自己如何注射胰島素
        基于FPGA的多功能信號(hào)發(fā)生器的設(shè)計(jì)
        電子制作(2018年11期)2018-08-04 03:25:42
        米小鼠和它的伙伴們
        基于LabVIEW的力加載信號(hào)采集與PID控制
        門冬胰島素30聯(lián)合二甲雙胍治療老年初診2型糖尿病療效觀察
        糖尿病的胰島素治療
        加味四逆湯對(duì)Con A肝損傷小鼠細(xì)胞凋亡的保護(hù)作用
        亚洲嫩模高清在线视频| 不卡一卡二卡三乱码免费网站| 男女裸交无遮挡啪啪激情试看| 中文字幕久久久精品无码| 国产男女做爰猛烈视频网站| 国产一区二区三区青青草 | 久久96国产精品久久久| 国产乱妇乱子视频在播放 | 亚洲精品美女久久久久网站| av一区二区在线网站| 国产日韩精品欧美一区喷水| 无码h黄动漫在线播放网站| 亚洲AV无码一区二区三区少妇av | 国产精品女同一区二区免| 亚洲综合色无码| 国产剧情麻豆女教师在线观看| 亚洲人成影院在线高清| 白嫩少妇高潮喷水av| 欧美成人看片一区二区三区尤物| 久草热8精品视频在线观看| 无码成人AV在线一区二区| 丝袜美腿国产一区二区| 免费看av在线网站网址| 国产亚洲欧美成人久久片| 色偷偷亚洲女人的天堂| 男人天堂网2017| 人人妻人人澡人人爽欧美二区| 亚洲男人天堂av在线| 中文字幕一区二区三区| 日韩日韩日韩日韩日韩日韩| 亚洲不卡av不卡一区二区| 国产精品亚洲精品日产久久久| 亚洲国产中文字幕在线视频综合 | 极品少妇被黑人白浆直流| 国产性生交xxxxx免费| 精品国产高清a毛片| 精品亚洲国产日韩av一二三四区| 亚洲成a∨人片在线观看不卡| 99视频在线国产| 开心五月激动心情五月| 国产a在亚洲线播放|