馬強(qiáng)
摘 要: 在Web網(wǎng)絡(luò)環(huán)境下,路由器應(yīng)用過程中利用信道傳輸介質(zhì)數(shù)據(jù)會(huì)出現(xiàn)異常干擾數(shù)據(jù),而傳統(tǒng)路由數(shù)據(jù)監(jiān)測(cè)技術(shù)很難準(zhǔn)確辨別異常數(shù)據(jù),并且存在不能承接Web網(wǎng)絡(luò)的缺陷。針對(duì)上述問題,提出Web網(wǎng)絡(luò)下的異常路由數(shù)據(jù)監(jiān)測(cè)技術(shù)。對(duì)監(jiān)控總框架進(jìn)行優(yōu)化設(shè)計(jì),增設(shè)Web網(wǎng)絡(luò)承接模塊,導(dǎo)入多層次監(jiān)測(cè)機(jī)制,通過Contra variant算法實(shí)現(xiàn)異常數(shù)據(jù)監(jiān)測(cè)。設(shè)置仿真實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果表明,提出的數(shù)據(jù)監(jiān)測(cè)技術(shù)能夠有效地監(jiān)控路由異常數(shù)據(jù)。
關(guān)鍵詞: Web網(wǎng)絡(luò); 異常路由數(shù)據(jù); 監(jiān)測(cè)節(jié)點(diǎn); 多層次監(jiān)測(cè); Contra variant算法; 數(shù)據(jù)監(jiān)測(cè)技術(shù)
中圖分類號(hào): TN711?34; TN913 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2018)02?0018?03
Abstract: In the Web network environment, abnormal interference data exists when using the channel to transmit medium data during the router application process. It is difficult for the traditional routing data monitoring technology to accurately identify the abnormal data, and the defects of Web network cannot be overcome. In view of the above problems, the abnormal routing data monitoring technology in the Web network environment is proposed. The abnormal data monitoring is implemented with the Contra variant algorithm while optimizing the design of overall monitoring framework, adding the Web network support module, introducing the multi?level monitoring mechanism. The simulation experiment was carried out. The experimental results show that the proposed data monitoring technology can effectively monitor the abnormal routing data.
Keywords: Web network; abnormal routing data; monitoring node; multi?level monitoring; Contra variant algorithm; data monitoring technology
0 引 言
伴隨Web網(wǎng)絡(luò)快速崛起,使用路由裝置進(jìn)行數(shù)據(jù)傳輸已經(jīng)是非常普遍的事情。傳統(tǒng)路由裝置的數(shù)據(jù)監(jiān)控技術(shù)能夠保證路由的數(shù)據(jù)暢通,但在Web網(wǎng)絡(luò)環(huán)境下,常規(guī)數(shù)據(jù)監(jiān)控技術(shù)無法對(duì)路由異常數(shù)據(jù)進(jìn)行精準(zhǔn)的監(jiān)控,同時(shí)傳統(tǒng)數(shù)據(jù)監(jiān)控技術(shù)不能承接Web網(wǎng)絡(luò)運(yùn)行模式,為此,本文提出Web網(wǎng)絡(luò)下的異常路由數(shù)據(jù)監(jiān)測(cè)技術(shù)。把傳統(tǒng)的經(jīng)典Apriori算法優(yōu)化為Contra variant算法,Contra variant算法不依賴Web網(wǎng)絡(luò)中BGP會(huì)話,因此能夠?qū)Ξ惓B酚蓴?shù)據(jù)進(jìn)行多次合理計(jì)算,Contra variant算法能夠與多個(gè)異常數(shù)據(jù)監(jiān)測(cè)服務(wù)器協(xié)同監(jiān)測(cè),監(jiān)控過程的可信性與覆蓋率均得到提高。為了保證設(shè)計(jì)方法的有效性,設(shè)計(jì)了仿真模擬實(shí)驗(yàn),通過傳統(tǒng)監(jiān)控方法與本文監(jiān)控方法相比較,驗(yàn)證了所提方法的有效性。
1 異常路由數(shù)據(jù)監(jiān)測(cè)方法設(shè)計(jì)
本文設(shè)計(jì)的路由異常數(shù)據(jù)監(jiān)測(cè)技術(shù)是在Web網(wǎng)絡(luò)基礎(chǔ)上進(jìn)行構(gòu)建的。為了能夠承接Web網(wǎng)絡(luò)的運(yùn)行模式,改變了傳統(tǒng)異常數(shù)據(jù)監(jiān)測(cè)技術(shù)以識(shí)別模塊為核心的框架[1]。由于路由數(shù)據(jù)監(jiān)測(cè)協(xié)議具有攻擊脆弱性,使用過程對(duì)自身?xiàng)l件協(xié)議的判定十分困難,因此本文設(shè)計(jì)的監(jiān)測(cè)技術(shù)以運(yùn)算模塊為基礎(chǔ)[2?3],對(duì)使用模塊進(jìn)行結(jié)構(gòu)優(yōu)化,對(duì)異常數(shù)據(jù)來源進(jìn)行重新分析、考量,針對(duì)不同異常數(shù)據(jù)實(shí)現(xiàn)有真對(duì)性的監(jiān)測(cè),分析數(shù)據(jù)如表1所示。
通過上述分析,能夠有效監(jiān)測(cè)異常數(shù)據(jù)的方法主要分為三類:信令渠道監(jiān)測(cè)、非執(zhí)行數(shù)據(jù)監(jiān)測(cè)、成效數(shù)據(jù)監(jiān)測(cè)[4]。本文使用多層次結(jié)構(gòu)優(yōu)化原始數(shù)據(jù)監(jiān)測(cè)結(jié)構(gòu),利用結(jié)構(gòu)優(yōu)勢(shì)將三類監(jiān)測(cè)方法同時(shí)運(yùn)行,為了避免三種監(jiān)測(cè)方法出現(xiàn)混亂度,設(shè)計(jì)監(jiān)測(cè)結(jié)構(gòu)如圖1所示。
由圖1可知,本文設(shè)計(jì)的異常路由數(shù)據(jù)監(jiān)測(cè)技術(shù),有效地將三種監(jiān)測(cè)手段相結(jié)合,使用多模塊平行結(jié)構(gòu)方式承接Web網(wǎng)絡(luò)模式,改變傳統(tǒng)監(jiān)測(cè)模式。只需要對(duì)BGP的接收、轉(zhuǎn)發(fā)就可實(shí)現(xiàn)對(duì)異常路由數(shù)據(jù)進(jìn)行監(jiān)測(cè)。
2 實(shí)現(xiàn)多層次監(jiān)測(cè)機(jī)制
2.1 引入Contra variant算法
導(dǎo)入Contra variant算法實(shí)現(xiàn)多層次監(jiān)測(cè)機(jī)制過程中,通過Contra variant算法對(duì)數(shù)據(jù)地址前綴關(guān)系的判定,來區(qū)分監(jiān)測(cè)數(shù)據(jù)異常狀態(tài),數(shù)據(jù)前綴地址由起源地址到置換地址間都是會(huì)發(fā)生異常突變的[5],設(shè)X,Y為多次描素后出現(xiàn)的地址前綴,其前綴地址用A(X,Y)來表述,描述關(guān)系X,Y之間的五種關(guān)系如下:
1) X包含Y;
2) X重合Y;
3) X包含于Y;
4) X相交于Y;
5) X相離于Y。
經(jīng)過判定得到一系列的異常數(shù)據(jù),經(jīng)過語言編程將異常數(shù)據(jù)進(jìn)行統(tǒng)計(jì),實(shí)現(xiàn)多層次檢測(cè)機(jī)制,VB輸出代碼為:endprint
Prefix、AS_PATH
COUNTRIES
COUNTRIES_IPADDRESS非法宣告前綴組的異常數(shù)據(jù)層次輸出代碼為:
Construct knowledge repository Country_ Prefix _ Hijacks
//異常路由數(shù)據(jù)提取及非法宣告前綴監(jiān)測(cè)
Read aspath(AS1,AS2,…,ASn),put ASn intoRoute_Buffer
//查詢異常路由數(shù)據(jù)前綴所屬位置
Check Prefix Origin(Prefix_Country Code)
//通過知識(shí)庫查詢ASn所屬位置
Check Source ASOrigin(ASN_Country_Code)
//分析異常路由數(shù)據(jù)
IF Prefix Origin(Prefix_CountryCode)
Source ASOrigin(ASN_Country_Code)=null
//異常數(shù)據(jù)分析處理
Read aspath(AS1,AS2,…,ASn)nsert
Country_Prefix[] into Country_Prefix_Hi?jacks
//數(shù)據(jù)信息采集
2.2 實(shí)現(xiàn)異常路由數(shù)據(jù)監(jiān)測(cè)部署
本文設(shè)計(jì)的異常路由數(shù)據(jù)監(jiān)測(cè)方法在部署和實(shí)施主要涉及兩類實(shí)體:Contra variant計(jì)算模塊以及異常數(shù)據(jù)層次模塊[6?7]。Contra variant計(jì)算模塊主要承載Contra variant算法處理異常數(shù)據(jù)地址間前綴關(guān)系。對(duì)異常數(shù)據(jù)層次模塊的部署主要包括:
1) 與所屬系統(tǒng)路由器建立 BGP會(huì)話采集機(jī)制,即BGP路由。
2) 與其相關(guān)異常數(shù)據(jù)監(jiān)測(cè)服務(wù)器協(xié)同監(jiān)測(cè)BGP路由可信性[8]。
3) 監(jiān)測(cè)路由異常數(shù)據(jù),發(fā)現(xiàn)虛假BGP路由,并進(jìn)行數(shù)據(jù)采集。
異常路由數(shù)據(jù)層次模塊實(shí)施過程:
1) 異常路由數(shù)據(jù)監(jiān)測(cè)服務(wù)器具有極強(qiáng)的廣域性,因此一個(gè)自治系統(tǒng)中只能布置一個(gè)異常數(shù)據(jù)監(jiān)測(cè)服務(wù)器[9];
2) 異常路由數(shù)據(jù)監(jiān)測(cè)服務(wù)器之間通信是應(yīng)用層協(xié)議,不依賴BGP會(huì)話,因此實(shí)施過程中需要增設(shè)轉(zhuǎn)換模塊。
3 仿真試驗(yàn)與分析
3.1 實(shí)驗(yàn)設(shè)置
本文設(shè)計(jì)的異常路由數(shù)據(jù)監(jiān)測(cè)方法,實(shí)驗(yàn)過程主要通過不同路由監(jiān)測(cè)節(jié)點(diǎn)(Node)產(chǎn)生異常數(shù)據(jù),使用第三方應(yīng)用測(cè)試軟件進(jìn)行模擬實(shí)驗(yàn)[10]。分別選用Node=200,Node=400,Node=600,Node=800節(jié)點(diǎn)數(shù)據(jù),設(shè)置傳統(tǒng)異常數(shù)據(jù)監(jiān)測(cè)方法與本文方法進(jìn)行異常路由數(shù)據(jù)分析,采用控制限量比對(duì)方法,計(jì)算準(zhǔn)確率、覆蓋率及收益率,分別對(duì)結(jié)果進(jìn)行分析統(tǒng)計(jì)。
3.2 實(shí)驗(yàn)結(jié)果與分析
采用監(jiān)測(cè)網(wǎng)絡(luò)采集異常路由數(shù)據(jù)對(duì)特定ISP前綴進(jìn)行MOAS沖突測(cè)試,將測(cè)試結(jié)果進(jìn)行人工比對(duì),計(jì)算其準(zhǔn)確率如圖2所示。
Node=200,Node=400,Node=600,Node=800數(shù)據(jù)下,傳統(tǒng)異常數(shù)據(jù)監(jiān)測(cè)方法能夠發(fā)現(xiàn)異常路由數(shù)據(jù),并進(jìn)行合理控制,傳統(tǒng)異常數(shù)據(jù)監(jiān)測(cè)方法準(zhǔn)確率表現(xiàn)最低,當(dāng)loop=8時(shí)達(dá)到最大,之后緩慢下降。Contra variant算法中,Node=800,Node=600呈上升趨勢(shì)后保持高準(zhǔn)確率,Node=400時(shí),loop=8時(shí)達(dá)到最大即準(zhǔn)確率為95%后,緩慢下降,Node=200時(shí)沒有下降過程,準(zhǔn)確率不斷上升后保持平衡。由圖2可知Node=800,Node=600適合高性能監(jiān)測(cè),Node=200適合普通監(jiān)測(cè)。
Node=200速度變化最為明顯,第一階段增長(zhǎng)速度為其他監(jiān)測(cè)節(jié)點(diǎn)中最大,保持平衡時(shí)間最長(zhǎng),第二階段增長(zhǎng)速度同為其他監(jiān)測(cè)節(jié)點(diǎn)最大,體現(xiàn)出Node=200時(shí)的機(jī)動(dòng)性和靈活性。Node=800速度變化最不明顯,loop對(duì)覆蓋率增長(zhǎng)速度影響不大,從而體現(xiàn)高性能、穩(wěn)定性和準(zhǔn)確性。本文設(shè)計(jì)的異常路由數(shù)據(jù)監(jiān)測(cè)方法與傳統(tǒng)異常數(shù)據(jù)監(jiān)測(cè)方法相比,因計(jì)算機(jī)沖突測(cè)試增加,傳統(tǒng)方法在不同時(shí)刻覆蓋率均低于本文設(shè)計(jì)的異常路由數(shù)據(jù)監(jiān)測(cè)方法,如圖3所示。
由圖3可知,Node=200收益率最優(yōu)、具有良好機(jī)動(dòng)性,所以收益率比較客觀。Node=800收益率逐漸增加,因?yàn)槠涓咝阅堋⒏呦?、覆蓋穩(wěn)定等原因,使收益率低于Node=200,Node=400和Node=600,但當(dāng)loop達(dá)到一定數(shù)值時(shí),其本文設(shè)計(jì)的異常路由數(shù)據(jù)監(jiān)測(cè)方法均保持一定,沒有較大的收益率之差。本文設(shè)計(jì)的異常路由數(shù)據(jù)監(jiān)測(cè)方法因具有優(yōu)良性能和較低硬件維護(hù)成本,所以收益率優(yōu)于傳統(tǒng)異常數(shù)據(jù)監(jiān)測(cè)方法。
4 結(jié) 論
本文通過理論研究和仿真實(shí)驗(yàn),有效證明了Web網(wǎng)絡(luò)下的異常路由數(shù)據(jù)監(jiān)測(cè)方法,解決了經(jīng)典算法路由監(jiān)測(cè)系統(tǒng)不能承載Web網(wǎng)絡(luò)及性能不足,同時(shí)提升了系統(tǒng)覆蓋率和準(zhǔn)確性。
參考文獻(xiàn)
[1] 徐恪,趙玉東,陳文龍,等.防御數(shù)據(jù)竊聽攻擊的路由交換范式體系[J].計(jì)算機(jī)學(xué)報(bào),2017,40(7):1649?1663.
XU Ke, ZHAO Yudong, CHEN Wenlong, et al. Paradigm?based routing & switching system for data interception attacks [J]. Chinese journal of computers, 2017, 40(7): 1649?1663.
[2] 全宇.交互式網(wǎng)絡(luò)資源分配均衡性監(jiān)測(cè)仿真[J].計(jì)算機(jī)仿真,2017,34(7):445?448.endprint
QUAN Yu. Interactive network resource allocation balanced monitoring simulation [J]. Computer simulation, 2017, 34 (7): 445?448.
[3] 姚海容.路由交換數(shù)據(jù)在線時(shí)間復(fù)雜度預(yù)測(cè)鏈路漏洞檢測(cè)[J].科技通報(bào),2015,31(9):212?219.
YAO Hairong. Routing exchange data online time complexity forecasting link leak detection [J]. Bulletin of science and technology, 2015, 31(9): 212?219.
[4] 楊靜.大型云計(jì)算信息系統(tǒng)的異常數(shù)據(jù)檢測(cè)模型仿真[J].計(jì)算機(jī)仿真,2015,32(11):378?381.
YANG Jing. Simulation of Abnormal data detection model for large scale cloud computing information system [J]. Computer simulation, 2015, 32(11): 378?381.
[5] 王樂,王芳.數(shù)據(jù)庫異常數(shù)據(jù)的檢測(cè)仿真研究[J].計(jì)算機(jī)仿真,2016,33(1):430?433.
WANG Le, WANG Fang. Simulation of database with data mining [J]. Computer simulation, 2016, 33(1): 430?433.
[6] 劉豐華.基于傳感器網(wǎng)絡(luò)的船艙環(huán)境監(jiān)視系統(tǒng)[J].艦船科學(xué)技術(shù),2015,37(3):214?217.
LIU Fenghua. A novel ship cabin monitoring system based on wireless sensor network [J]. Ship science and technology, 2015, 37(3): 214?217.
[7] 王娜,杜學(xué)繪,王文娟,等.邊界網(wǎng)關(guān)協(xié)議安全研究綜述[J].計(jì)算機(jī)學(xué)報(bào),2017,40(7):1626?1648.
WANG Na, DU Xuehui, WANG Wenjuan, et al. A survey of the border gateway protocol security [J]. Chinese journal of computers, 2017, 40(7): 1626?1648.
[8] 高彩芳,馮振乾,虞萬榮,等.適用于空間網(wǎng)絡(luò)的通用路由協(xié)議設(shè)計(jì)與實(shí)現(xiàn)[J].小型微型計(jì)算機(jī)系統(tǒng),2015,36(10):2270?2274.
GAO Caifang, FENG Zhenqian, YU Wanrong, et al. Design and implementation of a general routing protocol for space network [J]. Journal of Chinese computer systems, 2015, 36(10): 2270?2274.
[9] 良梓,任哲坡,吳曉軍.DTN中基于時(shí)間因素的擁塞感知路由算法[J].計(jì)算機(jī)工程與應(yīng)用,2015,51(5):97?101.
LIANG Zi, REN Zhepo, WU Xiaojun. Congestion?aware routing algorithm based on time factor in DTN [J]. Computer engineering and applications, 2015, 51(5): 97?101.
[10] 鄧燕,張新有,邢煥來.一種基于傳輸容量控制的DTN動(dòng)態(tài)分段編碼路由算法[J].計(jì)算機(jī)應(yīng)用研究,2017,34(9):2753?2757.
DENG Yan, ZHANG Xinyou, XING Huanlai. Routing algorithm for DTN based on dynamic segmented network coding and transmission capacity control [J]. Application research of computers, 2017, 34(9): 2753?2757.endprint