(1.北京師范大學環(huán)境學院,水環(huán)境模擬國家重點實驗室,北京100875;2.北京市土肥工作站,北京100029;3.中國科學院南京土壤研究所,土壤環(huán)境與污染修復重點實驗室,南京210008)
內分泌干擾物(endocrine disrupting chemicals,EDCs)污染已成為繼氣候變暖和臭氧層破壞之后的另一重大環(huán)境問題。內分泌干擾物進入人或動物體內通過模擬生物體自身激素效應,能阻斷、刺激或抑制生物體內激素的合成、轉運等,進而影響其自身平衡、代謝、免疫、生殖、發(fā)育等過程,對機體的生殖、神經(jīng)和免疫系統(tǒng)造成危害[1]。類固醇雌激素(steroid estrogens,SEs)是一類內分泌干擾物,常見的有17α-雌二醇、17β-雌二醇、雌三醇、雌酮等[2]。隨著分析檢測技術的進步,近年來,國內外屢有在水體、土壤、河流底泥及畜禽糞便中檢出類固醇雌激素的報道[3-4]。
作為一類低濃度、高毒性的污染物,幾ng/L類固醇雌激素就可以危害生物機體的正常運作。如17β-雌二醇在河水中的質量濃度為1 ng/L時就會造成雄魚的雌性化[5]。這類污染物的環(huán)境暴露已對生態(tài)系統(tǒng)構成了安全隱患。因此,對環(huán)境中類固醇雌激素進行研究顯得尤為重要。
環(huán)境中的類固醇雌激素主要可以分為天然雌激素和人工合成雌激素。天然雌激素包括雌酮(estrone,E1)、17α-雌二醇(17α-estradiol,17α-E2)、17β-雌二醇(17β-estradiol,17β-E2)和雌三醇(estriol,E3),人工合成雌激素包括乙炔雌二醇(ethinylestradiol,EE2)和炔雌醇甲醚(mestranol,MeEE2)等[6],它們的結構及物理化學性質如表1所示。這幾種雌激素的辛醇/水分配系數(shù)范圍為2.81~4.67,具有較強疏水性,在水中的溶解度較低,其中天然雌激素的溶解度普遍大于人工合成雌激素。從圖1中可以看出,它們具有類似的分子結構,均具有4個碳環(huán),其差異在于不同位置的碳結合了不同的官能團。E1在C-17位上是碳基而非羥基,E3在C-16位和C-17位上均有羥基,所以具有4種異構體。17β-E2和17α-E2雖然具有相同的物理化學性質,但其中C-17位所連接的羧基具有不同的空間結構,兩者的雌激素效應相差500倍,相對值分別為100和0.26??梢姡煌慕Y構將極大地影響雌激素效應。上述幾種類固醇雌激素的雌激素效應從大到小排序依次為:EE2>17β-E2>E3>MeEE2>E1>17α-E2(表1)。
E1、17β-E2、17α-E2、E3這幾種天然雌激素之間可以互相轉化,其中17α-E2與17β-E2在環(huán)境中會被氧化為E1,而E1可以通過還原反應轉化為17α-E2與17β-E2,17α-E2也可以通過外消旋化作用轉化為17β-E2[7],E1也能降解為E3。環(huán)境中的類固醇雌激素分為結合態(tài)和游離態(tài),其中,結合態(tài)雌激素主要通過人類和畜禽的尿液排放,而游離態(tài)雌激素則大多存在于糞便中[8]。根據(jù)HUTCHINS等[9]提出的雌激素轉化路徑(圖2),雌激素以結合態(tài)排出,這種共軛體本身沒有生物活性,但水解后生成有活性的游離雌激素,游離態(tài)的雌激素也能與葡糖苷酸和硫酸鹽酯化形成結合態(tài)雌激素。
表1 幾種類固醇雌激素的物理化學特征[10-14]Table 1 Physical and chemical properties of steroid estrogens[10-14]
圖1 通用結構式C位置編號Fig.1 Basic steroid estrogen structure with carbon labeled
圖2 典型雌激素轉化路徑[9]Fig.2 Transformation pathways of typical estrogens[9]
外源性雌激素進入生物體內可模擬細胞內雌激素作用或改變其雌激素活性,從而影響人和動物性分化以及體內正常代謝功能,干擾生物正常的生長、發(fā)育、生殖等過程,甚至產(chǎn)生致死、致癌和致畸等作用。已有一些雌激素環(huán)境殘留報道,如:BUXTON等[15]對美國30個州的139處地表水進行調查取樣表明,40%的水體受到了不同程度的雌激素污染;TABATA等[16]對日本100余條河流中的雌激素含量調查結果顯示,近80%的河水樣品被檢測出雌激素。雌激素在幾ng/L時就顯現(xiàn)出高危害性,誘導雄魚產(chǎn)生卵黃蛋白原進而使其變性[5]。
近年來,針對環(huán)境中雌激素對水生生物發(fā)育和生殖毒性的研究不斷增多,分別在分子水平、細胞水平、組織水平及表型層面上進行了不同的研究。BRION等[17]和張續(xù)等[18]在對雄性成年斑馬魚的研究中發(fā)現(xiàn),低質量濃度的17β-E2不能引起斑馬魚體長、體質量變化,但10 μg/L 17β-E2可引起成年雄性斑馬魚肥滿度指數(shù)顯著升高。ZHA等[19]報道了稀有鮑鯽在5.0和25.0 ng/L EE2處理組暴露28 d后,出現(xiàn)肝細胞細胞核增加和肝細胞肥大等現(xiàn)象。李國超[20]通過實驗發(fā)現(xiàn),17β-E2能使斑馬魚發(fā)生畸形(心包水腫、體軸彎曲和色素沉著)甚至死亡,其畸形程度、死亡率和畸形率隨17β-E2濃度的升高呈現(xiàn)明顯的劑量-依賴效應。雌激素除了影響生物機體的心血管功能、骨代謝、腦功能等,還對性分化和生殖功能具有重要的調節(jié)效應[21]。17β-E2能延遲斑馬魚胚胎孵化,導致性腺中精子細胞比例下降,性腺發(fā)育遲緩[17,22]。黑頭魚暴露在EE2質量濃度大于4.0 ng/L的水環(huán)境中會全部發(fā)育成雌性[23]。此外,雌激素還能直接影響雄性動物精子水平。如:17β-E2可以明顯提高成熟的雄性金黃地鼠精子的運動參數(shù),包括活動力、直線運動速率、曲線運動速率、尾部鞭打頻率、頭部側向位移的平均振幅[24];對精子活力較低病人的精子也可產(chǎn)生直接的刺激作用[25]。
研究發(fā)現(xiàn),由于雌激素暴露導致雄性個體出現(xiàn)卵黃蛋白原或雌性化器官現(xiàn)象[26],可能會使生物種群結構發(fā)生變化。目前,在魚類、兩棲類和鳥類中都發(fā)現(xiàn)了由于雌激素暴露導致群落中雌性個體占優(yōu)勢的生物種群現(xiàn)象[27]。魚類是水生環(huán)境中受雌激素影響最嚴重的生物種群[28],17β-E2暴露可以使雄性虹鱷魚的斑紋轉變?yōu)榇菩园呒y,同時,雄魚的生殖活動也向雌性特點轉變[29]。KIDD等[30]通過7年的實驗觀察發(fā)現(xiàn),長期暴露于含有5~6 ng/L EE2水體中的黑頭鯉魚,其性腺發(fā)育異常,進而導致其種群出現(xiàn)嚴重退化。由此可見,環(huán)境雌激素對人和動物的繁殖和種群結構有著潛在威脅。
近年來,環(huán)境中類固醇雌激素含量分布狀況備受關注。城市污水處理廠是環(huán)境中雌激素的一個源頭,而畜禽養(yǎng)殖廢棄物對環(huán)境中雌激素的貢獻更應引起重視。一方面是養(yǎng)殖過程中產(chǎn)生的廢水、糞便等直接排放使激素污染物進入到河流、湖泊中,另一方面是大量畜禽糞便進行土地利用時,各種激素污染物隨糞肥進入土壤,在農(nóng)田土壤中也被報道出越來越多的殘留問題。
3.1 污水處理廠源
污水處理廠是收納和處理生活污水的主要場所,近年來在污水處理過程中雌激素的降解及濃度變化相繼被報道。北京市朝陽區(qū)某污水處理廠進水中E1、17β-E2、E3、EE2的最高質量濃度分別為110、140、760、330 ng/L,出水中相應激素的去除率超過90%[31]。武漢市某污水處理廠進出水中E1、17β-E2、E3的質量濃度分別是38.6、21.4、53.9 ng/L,出水中E1、17β-E2質量濃度分別是7.2~31.5、0.5~8.6 ng/L,但未檢測到E3[32]。上述研究反映出污水處理廠進水中雌激素濃度較高,這跟我國城市人口數(shù)量多、人均用水量少有關。經(jīng)過處理后,其中大部分雌激素得以去除,某些雌激素濃度甚至低于檢出限,但是絕大多數(shù)雌激素依然保持在幾到幾十ng/L水平。和我國情況類似,日本東京的某污水處理廠進水和出水經(jīng)連續(xù)取樣測定顯示,其進水中E1、17β-E2、E3的質量濃度分別是30~200、10~30、80~300 ng/L,均處于較高水平,經(jīng)過處理后,其出水中E1、17β-E2、E3的質量濃度降至2.8~110、0.49~16.7、0~0.84 ng/L[33]。與我國和日本相比,伊朗德黑蘭的污水處理廠進水中E1、17β-E2、EE2質量濃度分別是11.4、3.0和6.2 ng/L,經(jīng)過處理后分別有72.6%、83.2%和90%的污染物被去除[34]。同樣,德國的一家污水處理廠對雌激素的去除也取得較好效果,進水中雌激素質量濃度為幾十ng/L,經(jīng)過厭氧-缺氧-好氧工藝處理后,出水中雌激素的質量濃度降低到<1 ng/L[35]。綜上可以看出:不同地區(qū)污水處理廠進、出水中雌激素的檢出種類和濃度水平存在較大差異,污水中E1和17β-E2的檢出率高,與當?shù)氐娜丝谔卣鳎ㄈ缧詣e、年齡、體格等)、產(chǎn)業(yè)結構、用水特點和污水收集工藝等有關;污染物的去除效率也存在差異,這和污水處理工藝及運行狀況等因素相關。如HAMID等[36]發(fā)現(xiàn),E1、17β-E2和EE2在3種氧化還原條件(有氧、缺氧和厭氧)下都可生物降解,但在有氧條件下的降解效果最佳。
一般而言,污泥吸附和生物降解過程是污水處理廠中類固醇雌激素的主要去除機制。由于類固醇雌激素具有相對較低的辛醇/水分配系數(shù)(表1),在水中溶解度低,有利于被污泥所吸附[13],且吸附過程是自發(fā)、快速和放熱的,能夠在1 h以內達到平衡[37];類固醇雌激素吸附到污泥表面后能夠被微生物降解為完全無害的物質[38]。對比前文數(shù)據(jù)可以看出,由于污水處理技術、標準等差距,我國污水處理廠出水中雌激素含量仍然處于較高的水平,對地表水體的污染風險應引起足夠的關注。
3.2 畜禽養(yǎng)殖場源
隨著集約化養(yǎng)殖業(yè)的發(fā)展,畜禽養(yǎng)殖所帶來的環(huán)境污染日益引起人們的關注。據(jù)RAMAN等[39]估算,畜禽養(yǎng)殖產(chǎn)生的雌激素排放量約是污水處理廠的10倍;英國畜禽養(yǎng)殖場每年產(chǎn)生的17β-E2總量大約是人產(chǎn)生的4倍[40]。由此看來,畜禽養(yǎng)殖業(yè)已成為環(huán)境中雌激素的一個重要來源。
養(yǎng)殖場糞污中雌激素含量如表2所示。畜禽糞污中的雌激素質量濃度顯著高于污水處理廠的污水,例如美國、日本的養(yǎng)殖場廢水中4種污染物都達到數(shù)千ng/L。這些報道中的數(shù)據(jù)之間差異較大,可能與不同地區(qū)的畜禽種類、養(yǎng)殖規(guī)模、糞便采樣方式、檢測方法等因素有關。另外,不同畜禽類型,其雌激素的主要排放方式、種類和數(shù)量也不盡相同。牛、羊主要通過糞便排出雌激素,而豬通過尿液排泄的雌激素可以達到90%[41-42]。牛、羊雌激素排放量分別為299~540和23~25 μg/d,以E1和E2為主;豬和家禽的雌激素排放量分別為120~2 300和2.5~6.0 μg/d,主要含有 E1、E2 和E3[41-42]。我國畜禽養(yǎng)殖業(yè)發(fā)達,每年動物糞便和尿液的產(chǎn)量可以達到40億t[43]。如此大量的畜禽糞便如果不經(jīng)有效處理直接進入土壤或水體環(huán)境,將會對環(huán)境構成嚴重的威脅。
關于類固醇雌激素的環(huán)境暴露風險,我國已有一些研究報道。有研究[44-46]統(tǒng)計分析了我國1998—2008年間畜禽養(yǎng)殖雌激素產(chǎn)生量的特征,結果表明,各省之間畜禽糞便雌激素排放水平表現(xiàn)出顯著差異,主要原因是各省的畜禽養(yǎng)殖數(shù)量以及養(yǎng)殖結構比重的不同:河南、山東、四川和東北3省是雌激素的產(chǎn)生大省,呈現(xiàn)顯著增長的趨勢;河南省排放的雌激素總量最大,2008年達到7 040.9 kg,是當年上海產(chǎn)生量的49倍;雌激素產(chǎn)生總量增速最快的是吉林省,10年增加了1.2倍;相反,由于政府對養(yǎng)殖數(shù)量及養(yǎng)殖業(yè)結構的調整,北京、上海、山西、河北、江西和安徽等省市的雌激素總產(chǎn)生量呈下降趨勢??傮w來看,西北等省份畜禽糞便雌激素的產(chǎn)生量呈增長趨勢,而直轄市及沿海發(fā)達城市變化不明顯。
對于畜禽養(yǎng)殖業(yè)產(chǎn)生的廢水可以通過氧化塘、厭氧-好氧工藝等生化方法進行處理。ZHENG等[47]研究了氧化塘對養(yǎng)牛場廢水中雌激素的去除效果,經(jīng)連續(xù)式氧化塘處理后,E1、17α-E2和17β-E2質量濃度從250~3 000 ng/L均降低到10 ng/L以下。通過濕地處理與氧化塘結合使用,可以降解掉養(yǎng)豬場廢液中83%~93%的雌激素[48]。日本某養(yǎng)豬場廢水經(jīng)過上流式厭氧污泥床工藝處理后,雌激素的質量濃度也都減少到10 ng/L水平[49]。但并不是所有的生化處理方法都能有效去除雌激素,如有研究報道,厭氧-好氧工藝處理無明顯的雌激素去除能力[48]。對于固體糞便,堆肥處理是有效去除雌激素的方法。牛糞經(jīng)2個月堆腐后,70.7%的雌激素被降解,并且隨著堆腐持續(xù)時間增加而增加[50]。上述研究可以看出,養(yǎng)殖場廢水、糞便經(jīng)處理后,雌激素的含量可以大幅度降低。但是表2中數(shù)據(jù)顯示,養(yǎng)殖場處理后出水中的雌激素仍然處于較高的水平,排放到湖泊、河流等水體勢必會增加環(huán)境風險。如中國臺灣南部某養(yǎng)殖場下游河流檢測到較高質量濃度的雌激素水平,E1最高可達398 ng/L[51]。因此,開展針對養(yǎng)殖場排放的類固醇雌激素的環(huán)境行為規(guī)律及高效處理技術研究顯得尤為重要。
3.3 地表水體中雌激素的暴露水平
地表水中類固醇雌激素暴露問題是最早引起關注的,國內外不斷有關于水體中雌激素殘留水平的報道(表3)。我國研究者采集了滇池的水樣,檢測出E1、17β-E2、E3、EE2 質量濃度范圍分別為 1.2~22.7、ND~8.3、ND~5.3、ND~4.4 ng/L[52]。對嘉陵江磁器口江段分別于2009年和2010年進行2次取樣發(fā)現(xiàn),E1、17β-E2、EE2的最高質量濃度分別達到了32.3、9.5和22.8 ng/L[53]。遼東灣近海海水中也有雌激
素的檢出,但其質量濃度水平相對較低,其中E1為0.71 ng/L,17β-E2、E3、EE2均小于0.1 ng/L[60]。而天津地區(qū)河流中E1、17β-E2、E3、EE2的質量濃度范圍分別為 0.64~55.4、ND~32.4、ND~46.4、ND~35.6 ng/L[61],最高質量濃度明顯高于相關的報道。以上研究反映出我國各類水體中均有類固醇雌激素檢出,且均處于低質量濃度水平,但各地區(qū)污染物水平差異顯著,其中靠近城市的河流、湖泊中往往較高,而近海海水中質量濃度相對較低。國外的水體中也有關于雌激素的大量檢出報道。DUONG等[62]報道表明,亞洲一些國家河水中含有較高濃度的E1、17β-E2和EE2(表3)。在日本的多摩川河中檢測出19.7 ng/L E1和5.3 ng/L 17β-E2[63]。在美國邁阿密河和佛羅里達港灣取樣發(fā)現(xiàn),E1質量濃度范圍分別為0.90~2.9和0.66~5.2 ng/L[64]。相比亞洲國家和美國,歐洲一些國家的檢出水平相對略低:英國某地河流樣品中E1、17β-E2、EE2的質量濃度范圍為0.6~3.2、1.2~3.8、0.4~0.8 ng/L[65],德國Saale河只被檢測出了E3[66]。由此可以看出,世界上很多國家地表水體均受到了不同程度的雌激素污染,但其質量濃度水平差異較大,這可能與各國經(jīng)濟發(fā)展、產(chǎn)業(yè)結構、污水排放標準等因素差異有關。此外,通過比較可
發(fā)現(xiàn),各個國家或地區(qū)地表水(河水和湖水)中雌激素的檢出濃度大于近海區(qū)域,說明人口密集的內陸地區(qū)受人類活動影響水體受雌激素污染的風險更大,而近海區(qū)域水流量大,稀釋作用較強,從而檢出濃度較低。
表2 類固醇雌激素在養(yǎng)殖場中的含量Table 2 Concentration of steroid estrogens from animal feeding operations
表3 類固醇雌激素在地表水體中的質量濃度Table 3 Concentration of steroid estrogens in surface water
3.4 農(nóng)田土壤中雌激素的暴露水平
目前,類固醇雌激素環(huán)境暴露研究多集中于河流、湖泊等地表水體,在土壤中的殘留報道較少。設施菜地因為有機肥使用量較大,極有可能存在雌激素污染問題。ZHANG等[68]開展了調查并證實,中國北方最大的蔬菜種植基地壽光因長期大量施用畜禽糞便已出現(xiàn)溫室土壤中類固醇激素暴露殘留。雨水沖刷土壤會使地表徑流中雌激素濃度升高[69]。當農(nóng)田中豬糞施用量為5 000 kg/hm2時,地表徑流中17β-E2質量濃度可達3 500 ng/L[70],部分吸附于礦物質顆粒和有機膠體上的激素污染物會隨徑流遷移,進而威脅土壤周圍的水生環(huán)境[68]。
迄今為止,有關雌激素的土壤環(huán)境行為研究大多采用室內模擬實驗,普遍認為其進入農(nóng)田后會迅速被土壤吸附[71],并且在幾小時至幾天內即被微生物所降解[72],但由于室內模擬實驗與實際環(huán)境的差異,并不能反映畜禽糞便施用于土壤后雌激素的吸附降解情況。FINLAY-MOORE等[73]研究發(fā)現(xiàn),施用4 500 kg肉雞糞便4 d后,土壤中17β-E2質量分數(shù)從55 ng/kg增加到675 ng/kg。KJAER等[56]測定了經(jīng)畜禽糞便改良3個月后的壤質土,發(fā)現(xiàn)土壤浸出液中E1和17β-E2的質量濃度仍然達到68.1和2.5 ng/L,說明雌激素在實際土壤環(huán)境中并不會在幾天內被徹底降解去除。SCHUH等[74]對一次性施用豬糞120 m3/hm2的土壤進行了長時間的跟蹤測定,發(fā)現(xiàn)土壤中17β-E2的平均質量分數(shù)從施用豬糞前的0.9ng/kg增加至1年后的202.55 ng/kg,如此大的殘留被認為是土壤組分吸附的雌激素隨雨水再次釋放所致。相比于國外,我國有關土壤中雌激素的研究更為缺乏。韓偉[75]對北京某養(yǎng)殖場附近農(nóng)田土壤中雌激素的分析顯示,E1、17α-E2和17β-E2質量分數(shù)范圍分別為ND~6.51,ND~6.60和ND~6.38 ng/g,但是在氧化塘地下水中檢出高達31.6 ng/L的E1。王代懿[76]的研究顯示,在30個施用畜禽糞便的大棚土壤樣品中均能檢出E1(2103ng/kg)、17α-E2(323ng/kg)、17β-E2(87 ng/kg)、E3(15 ng/kg)。國內外的研究均表明,農(nóng)田土壤在施用畜禽糞便之后,其中的雌激素含量會明顯增加并殘留在土壤中。因此,長期大量施用畜禽糞便帶來的激素污染將是設施蔬菜生產(chǎn)中一個不安全因素。
許多學者對有效地降低畜禽糞便中雌激素的殘留和污染風險也做了許多探究。DERBY等[77]研究表明,通過堆肥方式可以將雌激素減少74%。DELAUNE等[78]用十二水硫酸鋁鉀處理畜禽糞便也取得了不錯的效果:添加20%十二水硫酸鋁鉀的雞糞其降雨徑流中17β-E2減少了57%,說明十二水硫酸鋁鉀遇水形成的膠體顯著降低了17β-E2的溶解性。另外,ZHANG等[79]通過模擬實驗也發(fā)現(xiàn),添加生物質炭的土壤可以較好地吸附固定雌激素,而且有機質含量越低的土壤效果越顯著。綜上,通過對畜禽糞便進行預處理,可以降低其中的雌激素對土壤的污染風險。上述結果為今后有效降低土壤中雌激素污染研究提供了思路。
類固醇雌激素通過污水處理廠或養(yǎng)殖場廢棄物進入環(huán)境后,在水體、土壤系統(tǒng)中將發(fā)生吸附、遷移、降解和轉化等行為。雌激素在土壤介質中有明顯的淋溶遷移行為,如:英國的一項研究發(fā)現(xiàn),河流15 cm處底泥中E1含量是表層的9倍[80],表明雌激素具有從底泥表層向深層轉移的特征;土壤施用豬糞3個月后,距地面1 m深的地下水中E1和17β-E2質量濃度分別達到68.1與2.5 ng/L[81];THOMPSON等[82]在更深層的地下水(23 m)中也檢測到質量濃度相當可觀的17β-E2(16~100 ng/L);ARNON等[83]甚至在某奶牛場氧化塘地下32 m處仍然檢測出了雌激素的存在。由此可見,類固醇雌激素不僅能發(fā)生水平遷移,還有向土壤深層遷移的趨勢,但是現(xiàn)有的對流、擴散和吸附等模型都無法很好地解釋雌激素向下遷移的機制。FAN等[84]研究表明,17β-E2在厭氧條件下的礦化率遠遠低于有氧條件,雌激素向土壤和沉積物深層遷移會延長其環(huán)境殘留時間,增大環(huán)境風險。
進入環(huán)境中的類固醇雌激素會發(fā)生多種物理化學作用,其中吸附是最重要的行為。水體中富含大量的膠體、懸浮物及底泥沉積物,類固醇雌激素可以在固相-液相界面上不斷進行吸附、解吸過程。土壤中的黏土礦物、有機組分易于吸附雌激素。類固醇雌激素在懸浮物、沉積物和土壤上的吸附過程包括初期快速吸附和后期緩慢吸附2個階段,很快達到吸附平衡[85]。CLARA等[86]研究了17β-E2與EE2在活性污泥上的吸附過程,結果表明,吸附符合Freundlich吸附等溫線,而且吸附行為與pH值有關。研究還顯示,17β-E2在河流沉積物、潮土、黑土皆表現(xiàn)為非線性,其中黑土吸附的非線性最強,說明土壤/沉積物吸附17β-E2的能力與有機質含量相關[87]。針對EE2的土壤吸附實驗也得出類似的結論,F(xiàn)reundlich模型和Dubinin-Astakhov模型均能較好的擬合EE2的等溫吸附線,且后者擬合效果更好,EE2的飽和吸附容量隨土壤有機質含量增大而增大[85]。此外,有機質的性質也會影響土壤對EE2的吸附能力,其吸附能力依次為碳黑>非水解性有機質>腐殖酸,說明有機質成熟度越高,吸附能力越強[88]。因此,類固醇雌激素在環(huán)境介質中的吸附行為不僅受自身理化性質的影響,也受到土壤類型、環(huán)境pH、有機質種類和含量等多種因素的影響。此外,研究還發(fā)現(xiàn)黏土礦物對E2的吸附能力順序為蒙脫石>高嶺石>伊利石≥針鐵礦[89],而共存的表面活性劑將抑制土壤對17β-E2的吸附[90]。這些研究均表明,水體沉積物和土壤中的一些黏土礦物、共存污染物等因素都會影響類固醇雌激素的吸附行為。
類固醇雌激素在環(huán)境中的降解包括光降解、化學降解和微生物降解。由表1可知,雌激素蒸汽壓較低,不易揮發(fā),在水體中的揮發(fā)行為可以忽略不計。由于E1、17β-E2和EE2具有感光的酚類結構,因此光解對其具有一定的去除效果。當這3種雌激素同時存在時,168 μW/cm2紫外光輻照強度下的E1、17β-E2和EE2均能在50 min內發(fā)生不同程度的光解,去除率分別為88.7%、26.6%和23.0%[91]。雌激素的降解受含水率、溫度、pH、養(yǎng)分、微生物數(shù)量等環(huán)境條件的影響。XUAN等[92]研究發(fā)現(xiàn),土壤微生物數(shù)量、含水量和溫度會影響E2的降解,其中:未滅菌土的比例由0%增加至33%時,17β-E2的半衰期由29 d明顯降低為0.54 d;土壤含水量由10%提高到20%時,17β-E2的半衰期由1.3 d降到0.69 d;溫度由15℃升高到25℃時,17β-E2的半衰期由4.9 d降到0.92 d。其他研究也有類似的結果,在5~30℃范圍內,17α-E2、EE2降解速率隨溫度升高而增加[73]。此外,雌激素的降解還受共存污染物的影響。在17β-E2單一污染體系中,溶解性有機質(dissolved organic matter,DOM)能明顯促進17β-E2降解,其降解速率常數(shù)由0.062 d-1提高到0.430 d-1[93];而在Cu(Ⅱ)-E2復合污染體系中,17β-E2降解速率常數(shù)由0.006 d-1提高到0.030 d-1。分析認為,由于DOM與Cu(Ⅱ)的絡合改變了Cu(Ⅱ)的沉淀形態(tài),降低了Cu(Ⅱ)對微生物的抑制作用,進而影響了對雌激素的降解速率[93]。XUAN等[92]研究發(fā)現(xiàn),向含有17β-E2的土壤中分別添加40和200 μmol/kg磺胺二甲嘧啶,17β-E2的半衰期較空白對照分別延長了0.48和1.68 d,說明抗生素的存在會抑制17β-E2的降解。而目前各種微量元素和抗生素作為添加劑或藥物廣泛用于畜禽養(yǎng)殖,這意味著大量存在的微量元素和抗生素可能會改變畜禽糞便中微生物對雌激素的降解,從而增大雌激素在環(huán)境中的殘留時間和危害。然而,復合污染往往存在復雜的相互作用機制,目前仍缺乏詳細的機制性研究。因此,研究多種污染物共存下雌激素的降解機制也將是今后重點關注的方向。
類固醇雌激素廣泛分布在環(huán)境介質中,雖然濃度較低但危害巨大。畜禽養(yǎng)殖業(yè)和城市污水廠是環(huán)境雌激素的主要排放源。根據(jù)現(xiàn)有的研究,畜禽糞便的土地利用應該成為關注的重點,其持續(xù)大量的使用,不但會造成土壤中雌激素含量升高,同樣會對人和動物造成潛在風險,對于環(huán)境行為的研究及控制技術的開發(fā)顯得尤為重要。綜上,對今后有關類固醇雌激素的研究展望及建議如下:
1)國內外對于類固醇雌激素的吸附研究大多基于室內的模擬實驗,而針對實際污染場地的研究鮮有報道。室內理想條件下的模擬實驗往往進行一些表觀性描述,雖然得出的結論具有一定的代表性,但是并不符合復雜污染場地的實際情況,所以開展實際污染場地尤其是農(nóng)田系統(tǒng)的研究更有實際價值,例如設施菜地土壤中畜禽糞便使用量較大,由此帶來的雌激素污染問題更值得關注。
2)對于雌激素在土壤、水體等環(huán)境介質中的行為研究,尤其伴隨畜禽糞便或城市污泥等介質進入土壤中的雌激素,其吸附、降解、遷移以及環(huán)境介質相態(tài)間的遷移轉化研究仍然不足。針對多相態(tài)體系開展研究,對掌握激素污染源的環(huán)境行為特征具有重要意義。
3)在實際情況下,土壤或各種水體中的污染總是呈現(xiàn)出多樣性,多種污染物造成的復合污染更復雜,研究難度更大。以往的研究大多是探討某種或幾種特定雌激素的環(huán)境行為,但實際環(huán)境中雌激素往往與其他污染物共存,它們之間會相互作用從而影響其環(huán)境效應,因此,建議關注雌激素與其他污染物共存情況下的環(huán)境行為及作用機制,以期更有效地判斷類固醇雌激素的污染風險及生態(tài)效應。
[1] SWEENEY M F,HASAN N,SOTO A M,et al.Environmental endocrine disruptors:Effects on the human male reproductive system.Reviews in Endocrine and Metabolic Disorders,2015,16(4):341-357.
[2] 李艷霞,韓偉,林春野,等.畜禽養(yǎng)殖過程中雌激素的排放及其環(huán)境行為.生態(tài)學報,2010,30(4):1058-1065.LI Y X,HAN W,LIN C Y,et al.Excretion of estrogens in the livestock and poultry production and their environmental behaviors.Acta Ecologica Sinica,2010,30(4):1058-1065.(in Chinese with English abstract)
[3] BARTELTHUNT S,SNOW D D,DAMONPOWELL T,et al.Occurrence of steroid hormones and antibiotics in groundwater impacted by livestock waste controlfacilities.Journalof Contaminant Hydrology,2011,123(3/4):94-103.
[4] WANG D P,LUO Z X,ZHANG X,et al.Occurrence,distribution and risk assessment of estrogenic compounds for three source water types in Ningbo City,China.Environmental Earth Sciences,2015,74(7):5961-5969.
[5] HANSEN P D,DIZER H,HOCK B,et al.Vitellogenin:A biomarkerforendocrine disruptors.Trendsin Analytical Chemistry,1998,17(7):448-451.
[6] YIN G G,KOOKANA R S,RU Y J.Occurrence and fate of hormone steroids in the environment.Environment International,2002,28(6):545-551.
[7] KOLOK A S,SELLIN M K.The environmental impact of growthpromoting compounds employed by the United States beef cattle industry:History,current knowledge,and future directions.New York,USA:Springer,2008:1-30.
[8] 林建德,邵堅,馮成洪,等.天然類固醇雌激素源解析、環(huán)境行為及其污染控制.環(huán)境科學與技術,2012,35(5):60-64.LIN J D,SHAO J,FENG C H,et al.Source,environmental behavior and pollution control of natural estrogen in environment.Environment Science&Technology,2012,35(5):60-64.(in Chinese with English abstract)
[9] HUTCHINS S R,WHITE M V,HUDSON F M,et al.Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates.Environmental Science&Technology,2007,41(3):738-744.
[10]COMBALBERT S,HERNANDEZ-RAQUET G.Occurrence,fate,and biodegradation of estrogens in sewage and manure.Applied Microbiology and Biotechnology,2010,86(6):1671-1692.
[11]BOVEE T F H,HELSDINGEN R J R,RIETJENS I M C M,et al.Rapid yeast estrogen bioassays stably expressing human estrogen receptors α and β,and green fluorescent protein:A comparison of different compounds with both receptor types.The Journal of Steroid Biochemistry and Molecular Biology,2004,91(3):99-109.
[12]KIM D G,JIANG S F,JEONG K,et al.Removal of 17αethinylestradiol by biogenic manganese oxides produced by the Pseudomonas putida strain MnB1.Water,Air,&Soil Pollution,2012,223(2):837-846.
[13]LAI K M,JOHNSON K L,SCRIMSHAW M D,et al.Binding of waterborne steroid estrogens to solid phases in river and estuarine systems.Environmental Science&Technology,2000,34(18):3890-3894.
[14]QUINTANA J B,CARPINTEIRO J,RODRGUEZ I,et al.Determination of natural and synthetic estrogens in water by gas chromatography with mass spectrometric detection.Journal of Chromatography A,2004,1024(1/2):177-185.
[15]BUXTON H T,KOLPIN D W.Pharmaceuticals,Hormones,and other Organic Wastewater Contaminants in U.S.Streams.New York,USA:John Wiley&Sons,Inc.,2005:1202-1211.
[16]TABATA A,KASHIWADA S,OHNISHI Y,et al.Estrogenic influences of estradiol-17 beta,p-nonylphenol and bis-phenol-A on Japanese medaka(Oryzias latipes)at detected environmental concentrations.Water Science&Technology:A Journal of the International Association on Water Pollution Research,2001,43(2):109-116.
[17]BRION F,TYLER C R,PALAZZI X,et al.Impacts of 17β-estradiol,including environmentally relevant concentrations,on reproduction after exposure during embryo-larval-,juvenile-and adult-life stages in zebrafish(Danio rerio).Aquatic Toxicology,2004,68(3):193-217.
[18] 張續(xù),黎娟,劉雅思,等.三-(2,3-二溴丙基)異氰脲酸酯和17β-雌二醇復合暴露對雄性斑馬魚的毒性效應.環(huán)境科學學報,2012,32(2):450-456.ZHANG X,LI J,LIU Y S,et al.Toxic effects on adult male zebrafish(Danio rerio)following co-exposure to tris-(2,3-dibromopropyl)isocyanurate and 17β-estradiol.Acta Scientiae Circumstantiae,2012,32(2):450-456.(in Chinese with English abstract)
[19]ZHA J M,WANG Z J,WANG N,et al.Histological alternation and vitellogenin induction in adult rare minnow(Gobiocypris rarus)afterexposure toethynylestradioland nonylphenol.Chemosphere,2007,66(3):488-495.
[20]李國超.17β-雌二醇對斑馬魚的毒性研究.北京:中國農(nóng)業(yè)科學院,2015:11-13.LI G C.Toxicity of 17 beta-estradiol for zebrafish.Beijing:Chinese Academy of Agricultural Sciences,2015:11-13.(in Chinese with English abstract)
[21]GRUBER C J,TSCHUGGUEL W,SCHNEEBERGER C,et al.Production and actions of estrogens.New England Journal of Medicine,2002,346(5):340-352.
[22]HILL R L Jr,JANZ D M.Developmental estrogenic exposure in zebrafish(Danio rerio):I.Effects on sex ratio and breeding success.Aquatic Toxicology,2003,63(4):417-429.
[23]LANGE R,HUTCHINSON T H,CROUDACE C P,et al.Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephalespromelas).Environmental Toxicology and Chemistry,2001,20(6):1216-1227.
[24]JIN W Z,ARAI K Y,WATANABE G,et al.The stimulatory role of estrogen on sperm motility in the male golden hamster(Mesocricetus auratus).Journal of Andrology,2005,26(4):478-484.
[25]MISAO R,NIWA K,MORISHITA S,et al.Immunohistochemical detection of estrogen and progesterone receptors in spermatozoa of infertile men.International Journal of Fertility and Womens Medicine,1997,42(6):421-425.
[26]GABET V,MIEGE C,BADOS P,et al.Analysis of estrogens in environmental matrices.Trends in Analytical Chemistry,2007,26(11):1113-1131.
[27]ANGUS R A,STANKO J,JENKINS R L,et al.Effects of 17αethynylestradiol on sexual development of male western mosquitofish(Gambusia affinis).Comparative Biochemistry and Physiology Part C:Toxicology&Pharmacology,2005,140(3/4):330-339.
[28]NIMROD A C,BENSON W H.Reproduction and development of Japanese medaka following an early life stage exposure to xenoestrogens.Aquatic Toxicology,1998,44(1/2):141-156.
[29]BIEGEL L B,FLAWS J A,HIRSHFIELD A N,et al.90-day feeding and one-generation reproduction study in Crl:CD BR rats with 17β-estradiol.Toxicological Sciences,1998,44(2):116-142.
[30]KIDD K A,BLANCHFIELD P J,MILLS K H,et al.Collapse of a fish population after exposure to a synthetic estrogen.Proceedings of the National Academy of Sciences of the USA,2007,104(21):8897-8901.
[31]ZHOU Y Q,ZHA J M,XU Y P,et al.Occurrences of six steroid estrogens from different effluents in Beijing, China.Environmental Monitoring&Assessment,2012,184(3):1719-1729.
[32]JIN S W,YANG F X,LIAO T,et al.Seasonal variations of estrogenic compounds and their estrogenicities in influent and effluent from a municipal sewage treatment plant in China.Environmental Toxicology and Chemistry,2008,27(1):146-153.
[33]NAKADA N,TANISHIMA T,SHINOHARA H,etal.Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment.Water Research,2006,40(17):3297-3303.
[34]MOHAGHEGHIAN A,NABIZADEH R,MESDGHINIA A,et al.Distribution of estrogenic steroids in municipal wastewater treatment plants in Tehran,Iran.Journal of Environmental Health Science and Engineering,2014,12:97.
[35]ANDERSEN H,SIEGRIST H,HALLING-SRENSEN B,et al.Fate of estrogens in a municipal sewage treatment plant.Environmental Science&Technology,2003,37(18):4021-4026.
[36]HAMID H,ESKICIOGLU C.Fate of estrogenic hormones in wastewater and sludge treatment:A review of properties and analytical detection techniques in sludge matrix.Water Research,2012,46(18):5813-5833.
[37]RACZ L,GOEL R K.Fate and removal of estrogens in municipal wastewater.Journal of Environmental Monitoring,2010,12(1):58-70.
[38]KHANAL S K,XIE B,THOMPSON M L,et al.Fate,transport,and biodegradation of natural estrogens in the environment and engineered systems.Cheminform,2007,38(1):6537-6546.
[39]RAMAN D R,WILLIAMS E L,LAYTON A C,et al.Estrogen content of dairy and swine wastes.Environmental Science&Technology,2004,38(13):3567-3573.
[40]JOHNSON A C,WILLIAMS R J,MATTHIESSEN P.The potential steroid hormone contribution of farm animals to freshwaters,the United Kingdom as a case study.Science of the Total Environment,2006,362(1/2/3):166-178.
[41]HANSELMAN T A,GRAETZ D A,WILKIE A C.Manure-borne estrogens as potential environmental contaminants:A review.Environmental Science&Technology,2003,37(24):5471-5478.
[42]SHEMESH M,SHORE L S.Naturally produced steroid hormones and their release into the environment.Pure and Applied Chemistry,2003,75(11/12):1859-1871.
[43]ZHANG F S,LI Y X,YANG M,et al.Copper residue in animal manures and the potential pollution risk in northeast China.Journal of Resources and Ecology,2012,2(1):91-96.
[44]LI Y X,GAO S Y,LIU S F,et al.Excretion of manure-borne estrogens and androgens and their potential risk estimation in the Yangtze River Basin.Journal of Environmental Sciences,2015,37(11):110-117.
[45]李艷霞,劉姝芳,張雪蓮,等.我國直轄市畜禽養(yǎng)殖排放類固醇激素特征及其潛在污染風險.環(huán)境科學學報,2013,33(8):2314-2323.LI Y X,LIU S F,ZHANG X L,et al.The excretion features of manure-borne steroid hormones and their potential risk in the municipalities of China.Acta Scientiae Circumstantiae,2013,33(8):2314-2323.(in Chinese with English abstract)
[46]劉姝芳,李艷霞,張雪蓮,等.東北三省畜禽養(yǎng)殖類固醇激素排放及其潛在污染風險.環(huán)境科學,2013,34(8):3180-3187.LIU S F,LI Y X,ZHANG X L,et al.Excretion of manure-borne steroid hormones and their potential risk in the three northeast provinces of China.Environmental Science,2013,34(8):3180-3187.(in Chinese with English abstract)
[47]ZHENG W,YATES S R,BRADFORD S A.Analysis of steroid hormones in a typical dairy waste disposal system.Environmental Science&Technology,2008,42(2):530-535.
[48]TANGXJ,NAVEEDULLAH,HASHMIMZ,etal.A preliminary study on the occurrence and dissipation of estrogen in livestock wastewater.Bulletin of Environmental Contamination and Toxicology,2013,90(4):391-396.
[49]FURUICHI T,KANNAN K,SUZUKI K,et al.Occurrence of estrogenic compounds and removal by a swine farm waste treatment plant.Environmental Science&Technology,2006,40(24):7896-7902.
[50]ZHANG H,SHI J H,LIU X W,et al.Occurrence and removal of free estrogens,conjugated estrogens,and bisphenol A in manure treatment facilities in East China.Water Research,2014,58(7):248-257.
[51]CHEN T S,CHEN T C,YEH K J,et al.High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot.The Science of the Total Environment,2010,408(16):3223-3230.
[52]HUANG B,WANG B,REN D,et al.Occurrence,removal and bioaccumulation of steroid estrogens in Dianchi Lake catchment,China.Environment International,2013,59(3):262-273.
[53]胡碧波,陽春,張智,等.嘉陵江典型城市江段的類固醇雌激素分布特性.中國給水排水,2011,27(21):54-58.HU B B,YANG C,ZHANG Z,et al.Distribution characteristics of steroid estrogens in a typical urban section of Jialing River.China Water&Wastewater,2011,27(21):54-58.(in Chinese with English abstract)
[54]HAN W,LI Y X,YANG M,et al.Presence and determination of manure-borne estrogens from dairy and beef cattle feeding operations in northeast China.Bulletin of Environmental Contamination and Toxicology,2011,86(5):465-469.
[55]SARMAH A K,NORTHCOTT G L,LEUSCH F D,et al.A survey of endocrine disrupting chemicals(EDCs)in municipal sewage and animal waste effluents in the Waikato region of New Zealand.Science of the Total Environment,2006,355(1/2/3):135-144.
[56]KJAER J,OLSEN P,BACH K,et al.Leaching of estrogenic hormones from manure-treated structured soils.Environmental Science&Technology,2007,41(11):3911-3917.
[57]JIN X L,JIANG G B,HUANG G L,et al.Determination of 4-tertoctylphenol,4-nonylphenol and bisphenol A in surface waters from theHaiheRiverin Tianjin bygaschromatography-mass spectrometry with selected ion monitoring.Chemosphere,2004,56(11):1113-1119.
[58]HUTCHINS S R,WHITE M V,HUDSON F M,et al.Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates.Environmental Science&Technology,2007,41(3):738-744.
[59]MATTHIESSENP,ARNOLDD,JOHNSONAC,etal.Contamination of headwater streams in the United Kingdom by oestrogenic hormones from livestock farms.Science of the Total Environment,2006,367(2/3):616-630.
[60]吳世閩,賈瑗,彭輝,等.遼東灣海水中甾體雌激素的檢測及生態(tài)風險評價.中國環(huán)境科學,2011,31(11):1904-1909.WU S M,JIA A,PENG H,et al.Determination and risk assessment of sterodal estrogens in Liaodong Bay,China.China Environmental Science,2011,31(11):1904-1909.(in Chinese with English abstract)
[61]LEI B L,HUANG S B,ZHOU Y Q,et al.Levels of six estrogens in water and sediment from three rivers in Tianjin area,China.Chemosphere,2009,76(1):36-42.
[62]DUONG C N,RA J S,CHO J,et al.Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries.Chemosphere,2010,78(3):286-293.
[63]KAWAGUCHI M,ISHⅡY,SAKUI N,et al.Stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry in the multi-shot mode for determination of estrogens in river water samples.Journal of Chromatography A,2004,1049(1/2):1-8.
[64]SINGH S P,AZUA A,CHAUDHARY A,et al.Occurrence and distribution of steroids,hormones and selected pharmaceuticals in South Florida coastal environments.Ecotoxicology,2010,19(2):338-350.
[65]GROVER D P,ZHOU J L,FRICKERS P E,et al.Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon:Impact on receiving river water.Journal of Hazardous Materials,2011,185(2/3):1005-1011.
[66]PRIETO A,VALLEJO A,ZULOAGA O,et al.Selective determination of estrogenic compounds in water by microextraction by packed sorbents and a molecularly imprinted polymer coupled with large volume injection-in-portderivatization gas chromatography-mass spectrometry.Analytica Chimica Acta,2011,703(1):41-51.
[67]WANG L,YING G G,CHEN F,et al.Monitoring of selected estrogenic compounds and estrogenic activity in surface water and sediment of the Yellow River in China using combined chemical and biological tools.Environmental Pollution,2012,165(6):241-249.
[68]ZHANG F S,XIE Y F,LI X W,et al.Accumulation of steroid hormones in soil and its adjacent aquatic environment from a typical intensive vegetable cultivation of North China.Science of the Total Environment,2015,538:423-430.
[69]MANSELL D S,BRYSON R J,HARTER T,et al.Fate of endogenous steroid hormones in steer feedlots under simulated rainfall-induced runoff.Environmental Science&Technology,2011,45(20):8811-8818.
[70]NICHOLS D J,DANIEL T C,EDWARDS D R,et al.Use of grass filter strips to reduce 17 beta-estradiol in runoff from fescue-applied poultry litter.Journal of Soil&Water Conservation,1998,53(1):74-77.
[71]SARMAH A K,NORTHCOTT G L,SCHERR F F.Retention of estrogenic steroid hormones by selected New Zealand soils.Environment International,2008,34(6):749-755.
[72]COLUCCI M S,TOPP E.Persistence of estrogenic hormones in agricultural soils:Ⅱ.17(Alpha)-ethynylestradiol.Journal of Environmental Quality,2001,30(6):2077-2080.
[73]FINLAY-MOORE O,HARTEL P G,CABRERA M L.17 βestradiol and testosterone in soil and runoff from grasslands amended with broiler litter.Journal of Environmental Quality,2000,29(5):1604-1611.
[74]SCHUH M C,CASEY F X,HAKK H,et al.Effects of fieldmanure applications on stratified 17β-estradiol concentrations.Journal of Hazardous Materials,2011,192(2):748-752.
[75]韓偉.奶牛及肉牛雌激素的排放及其環(huán)境遷移特征.北京:北京師范大學,2010:37-40.HAN W.Excretion of natural estrogens in the cattle production and their environmental transportation.Beijing:Beijing Normal University,2010:37-40.(in Chinese with English abstract)
[76]王代懿.天然類固醇激素在土壤中的環(huán)境行為及風險控制研究.北京:中國礦業(yè)大學,2015:20-21.WANG D Y.Study on environmental behavior of natural steroid hormones in soils and its risk control.Beijing:China University of Mining&Technology,2015:20-21.(in Chinese with English abstract)
[77]DERBY N E,HAKK H,CASEY F X M,et al.Effects of composting swine manure on nutrients and estrogens.Soil Science,2011,176(2):91-98.
[78]DELAUNE P B,MOORE P A Jr.17β-estradiol in runoff as affected by various poultry litter application strategies.Science of the Total Environment,2013,444(7):26-31.
[79]ZHANG F S,LI Y X,ZHANG G X,et al.The importance of nanoporosity in the stalk-derived biochar to the sorption of 17βestradiol and retention of it in the greenhouse soil.Environmental Science and Pollution Research,2017,24(10):9575-9584.
[80]LABADIE P,CUNDY A B,STONE K,et al.Evidence for the migration of steroidal estrogens through river bed sediments.Environmental Science&Technology,2007,41(12):4299-4304.
[81]KJAER J,BACH K,BARLEBO H C,et al.Leaching of estrogenic hormones from manure-treated structured soils.Environmental Science&Technology,2007,41(11):3911-3917.
[82]THOMPSON M L,CASEY F X,KHAN E,et al.Occurrence and pathways of manure-borne 17β-estradiol in vadose zone water.Chemosphere,2009,76(4):472-479.
[83]ARNON S,DAHAN O,ELHANANY S,et al.Transport of testosterone and estrogen from dairy-farm waste lagoons to groundwater.Environmental Science&Technology,2008,42(15):5521-5526.
[84]FAN Z S,CASEY F X M,HAKK H,et al.Persistence and fate of 17β-estradiol and testosterone in agricultural soils.Chemosphere,2007,67(5):886-895.
[85]姜魯,王繼華,李建忠,等.炔雌醇和壬基酚在土壤中的吸附-解吸特征.環(huán)境科學,2012,33(11):3885-3892.JIANG L,WANG J H,LI J Z,et al.Sorption and desorption of 17αethinyl estradiol and 4-n-nonylphenol in soil.Environmental Science,2012,33(11):3885-3892.(in Chinese with English abstract)
[86]CLARA M,STRENN B,SARACEVIC E,et al.Adsorption of bisphenol-A,17β-estradiole and 17α-ethinylestradiole to sewage sludge.Chemosphere,2004,56(9):843-851.
[87]張豐松,李艷霞,黃澤春,等.雌二醇在土壤/沉積物中的吸附特征及豬糞DOM對吸附的影響.環(huán)境科學,2012,33(10):3542-3546.ZHANG F S,LI Y X,HUANG Z C,et al.Sorption of 17β-estradiol to soils and sediment and influence of pig manure DOM.Environmental Science,2012,33(10):3542-3546.(in Chinese with English abstract)
[88]王子瑩,金潔,張哲赟,等.土壤和沉積物中有機質對雙酚A和17α-乙炔基雌二醇的吸附行為.環(huán)境化學,2012,31(5):625-630.WANG Z Y,JIN J,ZHANG Z Y,et al.Sorption of 17α-ethinyl estradiol and bisphenol A by different soil/sediment organic matter fractions.Environmental Chemistry,2012,31(5):625-630.(in Chinese with English abstract)
[89]VAN EMMERIK T,ANGOVE M J,JOHNSON B B,et al.Sorption of 17 beta-estradiol onto selected soil minerals.Journal of Colloid and Interface Science,2003,266(1):33-39.
[90] 王聯(lián)芝,章飛芳,薛興亞,等.土壤中陰離子表面活性劑對17β-雌二醇吸附脫附的影響.精細化工,2008,25(7):691-695.WANG L Z,ZHANG F F,XUE X Y,et al.Effects of surfactant sodium dodecylbenzenesulfonate on the adsorption and desorption of 17β-estradiol on soil.Fine Chemicals,2008,25(7):691-695.(in Chinese with English abstract)
[91]馬曉雁,倪夢婷,倪永炯,等.UV體系中3種微量類固醇雌激素的競爭降解及同趨轉化.中國環(huán)境科學,2014,34(4):904-911.MA X Y,NI M T,NI Y J,et al.Competitive degradation and transformation trend of three steroid estrogens in UV system.China Environmental Science,2014,34(4):904-911.(in Chinese with English abstract)
[92]XUAN R,BLASSENGALE A A,WANG Q.Degradation of estrogenic hormones in a silt loam soil.Journal of Agricultural and Food Chemistry,2008,56(19):9152-9158.
[93]周坤,郁晴,孫衛(wèi)玲.復合污染體系中溶解性有機質對雌二醇降解的影響.安全與環(huán)境學報,2015,15(3):227-233.ZHOU K,YU Q,SUN W L.Effect of the dissolved organic matters on the biodegradation of 17β-estradiol in co-contaminant system.Journal of Safety and Environment,2015,15(3):227-233.(in Chinese with English abstract)