張瑞瑞,文 瑤,伊銅川,陳立平,徐 剛
?
航空施藥?kù)F滴沉積特性光譜分析檢測(cè)系統(tǒng)研發(fā)與應(yīng)用
張瑞瑞,文 瑤,伊銅川,陳立平※,徐 剛
(1. 北京農(nóng)業(yè)智能裝備技術(shù)研究中心,北京 100097; 2. 國(guó)家農(nóng)業(yè)智能裝備工程技術(shù)研究中心,北京 100097; 3. 國(guó)家農(nóng)業(yè)航空應(yīng)用技術(shù)國(guó)際聯(lián)合研究中心,北京 100097; 4. 農(nóng)業(yè)智能裝備技術(shù)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100097)
為快速獲取航空施藥?kù)F滴沉積的連續(xù)分布特性,彌補(bǔ)傳統(tǒng)離散樣點(diǎn)取樣方式檢測(cè)不足,提升航空施藥?kù)F滴沉積特性檢測(cè)準(zhǔn)確性,該文結(jié)合光譜分析和熒光激發(fā)技術(shù)設(shè)計(jì)研發(fā)了基于光譜分析的航空施藥沉積特性檢測(cè)系統(tǒng)。系統(tǒng)包括信息采集模塊、采集裝置模塊和數(shù)據(jù)處理模塊3部分。配置質(zhì)量分?jǐn)?shù)1.0%的熒光示蹤劑溶液,采用農(nóng)用植保無人機(jī)現(xiàn)場(chǎng)噴灑作業(yè),同步放置霧滴獲取介質(zhì)和水敏試紙樣本采集霧滴分布,系統(tǒng)采集霧滴獲取介質(zhì)的光譜特征曲線。與水敏試紙圖像分析獲取的霧滴沉積特性參數(shù)結(jié)果對(duì)比分析,結(jié)果表明:霧滴獲取介質(zhì)上的熒光示蹤劑在450~460 nm和500~520 nm波段范圍內(nèi)產(chǎn)生顯著熒光效應(yīng),其光譜平均值與霧滴沉積特性參數(shù)呈顯著正相關(guān)。計(jì)算出450~460 nm和500~520 nm波段范圍光譜平均值,建立霧滴沉積特性參數(shù)的檢測(cè)多元線性回歸模型,建模決定系數(shù)達(dá)0.80以上,驗(yàn)證決定系數(shù)達(dá)0.83以上,達(dá)到了較為理想的擬合結(jié)果。
航空;噴霧;農(nóng)藥;噴霧模型;光譜分析;熒光激發(fā);霧滴沉積
航空施藥技術(shù)由于受施藥機(jī)械、變量施藥技術(shù)等因素限制,導(dǎo)致資源有效利用率低以及農(nóng)作物生產(chǎn)效率、產(chǎn)量和品質(zhì)的下降[1-7]。作物上藥液的霧滴分布特性重要評(píng)價(jià)指標(biāo)包括均勻性、沉降量等,霧滴的沉降量是檢驗(yàn)藥液防治效果的直接指標(biāo),沉降藥液的覆蓋率和均勻性是優(yōu)化航空施藥設(shè)備和施藥技術(shù)方案的重要指導(dǎo)[8-14]。
數(shù)字圖像分析技術(shù)廣泛用于航空噴霧效果的評(píng)估。祁力鈞等[15]利用水敏紙收集霧滴后通過圖像采集系統(tǒng)采集霧滴圖像并進(jìn)行圖像分析,獲取霧滴粒徑分布及覆蓋率等參數(shù),與激光粒度儀的測(cè)量結(jié)果比較,測(cè)量誤差在6%以內(nèi)。徐廣春等[16]通過DepositScan軟件分析霧滴覆蓋率和霧滴密度,通過示蹤劑估測(cè)農(nóng)藥沉積量,用以分析農(nóng)藥?kù)F滴在麥田的沉積分布及對(duì)灰飛虱防效影響。Zhang等[17]為評(píng)估噴霧系統(tǒng)的性能參數(shù),利用固定翼飛機(jī)M-18B畫眉510G在5 m和4 m的海拔下進(jìn)行噴霧,通過水敏紙和自主開發(fā)的圖像識(shí)別系統(tǒng)軟件測(cè)試了逆風(fēng)條件下噴霧系統(tǒng)的噴幅有效寬度和霧滴沉積均勻性。陳盛德等[18]采用霧滴采集卡以收集噴施霧滴,掃描儀掃描霧滴采集卡后通過DepositScan軟件分析霧滴沉積參數(shù),預(yù)測(cè)霧滴沉積的分布結(jié)果。
同時(shí),基于熒光光譜儀測(cè)量霧滴采集器洗脫液的測(cè)量方法證明可有效評(píng)估航空施藥?kù)F滴沉積效果。秦維彩等[19]以染料Rhodamine-B配置一定濃度溶液模擬農(nóng)藥進(jìn)行噴霧,用聚酯卡作物霧滴取樣器采集霧滴后,經(jīng)去離子水洗脫,用熒光分光光度計(jì)測(cè)定熒光值,計(jì)算出藥液?jiǎn)挝幻娣e沉積量,用以研究噴灑參數(shù)對(duì)玉米冠層霧滴沉積分布的影響。張宋超等[20]利用熒光分光光度計(jì)測(cè)定洗脫液的熒光值,計(jì)算藥液在單位面積上的沉積,以此分析藥液的偏移情況。王昌陵等[21]采用聚乙烯軟管作為霧滴收集器,研究了飛行參數(shù)對(duì)霧滴空間質(zhì)量平衡分布和旋氣流場(chǎng)分布的影響,配置熒光示蹤劑作為噴霧液,測(cè)試后噴霧洗脫液經(jīng)熒光光譜儀測(cè)量熒光值,計(jì)算出單位面積沉積量和沉積率。連德旗等[22]采用聚酯卡、熒光分光光度計(jì)、卡羅米特紙卡等對(duì)噴霧沉積量、沉積密度及分布均勻性等參數(shù)進(jìn)行采樣分析,研究了小型無人噴霧機(jī)工作參數(shù)對(duì)噴霧沉積的影響。
其他航空施藥?kù)F滴沉積測(cè)量方式也隨著傳感器技術(shù)、光譜技術(shù)和遙感技術(shù)的發(fā)展,進(jìn)行了相關(guān)研究。Salyani等[23]通過研究藥液沉積量對(duì)導(dǎo)體電阻率的影響,設(shè)計(jì)了一種基于可變電阻器原理的藥液沉積傳感器,并建立了利用自來水做藥液時(shí)的傳感器輸出電壓與藥液沉積量關(guān)系模型。張瑞瑞等[24]實(shí)現(xiàn)航空施藥?kù)F滴沉積量快速獲取,與水敏紙圖像測(cè)量分析方法對(duì)比的分布曲線擬合度達(dá)到0.914 6,相對(duì)測(cè)量誤差分布在10%~50%。馬偉等[25]基于高光譜成像技術(shù)獲取感興趣的葉片區(qū)域的圖元,讀取相應(yīng)的光譜值,進(jìn)而分析葉片施藥后的藥效信息。北京農(nóng)業(yè)信息技術(shù)研究中心[26]研究了一種對(duì)獲取的藥物云團(tuán)探測(cè)區(qū)域霧滴分布的紅外成像光譜進(jìn)行特征分析后反演藥物云團(tuán)濃度圖像的方法。Zhang等[27]獲取噴藥一周后噴藥區(qū)域的衛(wèi)星影像并計(jì)算植被指數(shù),同時(shí)采集地面藥液沉積量,證明從衛(wèi)星圖像計(jì)算的植被指數(shù)可用來評(píng)估大尺度農(nóng)田的農(nóng)用航空藥液噴施效果。張瑞瑞等[28]提出了航空施藥?kù)F滴沉積特性分析系統(tǒng)的實(shí)現(xiàn)方法。
上述研究均可獲得藥液覆蓋范圍、霧滴粒徑大小等霧滴沉積分布特性,但基于熒光光譜儀測(cè)量洗脫液方法的采樣和洗脫處理過程繁瑣。水敏試紙測(cè)量方法在試驗(yàn)過程中水敏試紙極易被油和水污染,對(duì)人員操作要求高。另外,近年隨著有人機(jī)低容量、超低容量施藥技術(shù)和無人機(jī)近地超低容量施藥技術(shù)的推廣應(yīng)用,施藥噴霧霧滴粒徑越來越小,霧滴運(yùn)動(dòng)受作業(yè)過程中的擾流及細(xì)微湍流影響越來越大,霧滴靶標(biāo)沉積的空間小區(qū)域差異性越來越顯著?;谒粼嚰?、錫箔片等離散取樣進(jìn)行霧滴靶標(biāo)沉積分布檢測(cè)的方式已無法客觀反映真實(shí)的靶標(biāo)霧滴沉積分布。綜上所述,傳統(tǒng)霧滴分布獲取方式已不能滿足當(dāng)前農(nóng)業(yè)航空施藥檢測(cè)應(yīng)用需求。因此本文研發(fā)了基于光譜分析和熒光激發(fā)技術(shù)[29]的航空施藥?kù)F滴沉積特性檢測(cè)系統(tǒng),通過連續(xù)采集霧滴獲取介質(zhì)的光譜特征曲線,建立霧滴沉積特性參數(shù)檢測(cè)模型,期望實(shí)現(xiàn)無人機(jī)施藥噴霧霧滴沉積特性參數(shù)的快速連續(xù)測(cè)量。
待測(cè)物質(zhì)被紫外特征頻率的入射光照射后,其分子由基態(tài)能級(jí)躍遷至電子激發(fā)態(tài)的各個(gè)不同振動(dòng)能級(jí),激發(fā)態(tài)分子的不穩(wěn)定性導(dǎo)致其與周圍分子撞擊而消耗部分能量,下降至第一電子激發(fā)態(tài)的最低振動(dòng)能級(jí),以光的形式釋放多余的能量,發(fā)出能反映其物質(zhì)特性的分子熒光。熒光檢測(cè)就是對(duì)此特性進(jìn)行分析的方法。由于物質(zhì)分子結(jié)構(gòu)不同,所吸收和發(fā)射的熒光波長(zhǎng)有所不同,該特性可定性鑒別物質(zhì);同一種分子結(jié)構(gòu)的物質(zhì),用同一波長(zhǎng)的激發(fā)光照射,可以發(fā)射相同波長(zhǎng)的熒光,若該物質(zhì)的濃度不同,則濃度大時(shí)所發(fā)射的熒光強(qiáng)度也強(qiáng),利用此特性可定量測(cè)定物質(zhì)濃度[30-31]。
1.2.1 系統(tǒng)總體設(shè)計(jì)
航空施藥?kù)F滴沉積特性分析系統(tǒng)的總體結(jié)構(gòu)如圖1所示?;旌蠠晒馐聚檮┑娜芤鹤鳛槟M農(nóng)藥進(jìn)行航空噴施,地面放置霧滴獲取介質(zhì)收集霧滴分布。霧滴沉積特性檢測(cè)系統(tǒng)采集霧滴獲取介質(zhì)的光譜特征曲線。經(jīng)過檢測(cè)系統(tǒng)和霧滴沉積特性參數(shù)模型的處理計(jì)算將霧滴沉積特性參數(shù)指標(biāo)實(shí)時(shí)顯示,以期快速評(píng)估航空施藥效果。
1.步進(jìn)電機(jī) 2.光電限位器 3.紫外光源 4.光譜儀 5.霧滴獲取介質(zhì)
1.2.2 硬件設(shè)計(jì)
系統(tǒng)硬件設(shè)計(jì)結(jié)構(gòu)如圖2所示。系統(tǒng)由數(shù)據(jù)處理模塊、信息采集模塊、采集裝置模塊構(gòu)成。
圖2 航空施藥?kù)F滴沉積特性分析系統(tǒng)硬件結(jié)構(gòu)圖
數(shù)據(jù)處理模塊選用Panasonic的FZ-M1系列平板計(jì)算機(jī),采用Intel Celeron N2807處理器,安裝運(yùn)行霧滴沉積特性檢測(cè)系統(tǒng)軟件,通過串口通信方式與微型光譜儀和微控制器(microcontroller unit,MCU)進(jìn)行連接。海洋光學(xué)FLAME-S-VIS-NIR型微型光譜儀作為信息采集模塊,是整個(gè)分析系統(tǒng)的核心部件,光譜檢測(cè)范圍為340~1 014 nm,可測(cè)量2 048個(gè)像素點(diǎn),信噪比250∶1,積分時(shí)間1~65 s。采集裝置模塊包括MCU,紫外激勵(lì)光源,2個(gè)步進(jìn)電機(jī),光電限位器等。微控制器選用8051系內(nèi)核單片機(jī),型號(hào)STC12C5410AD。紫外激勵(lì)光源選用日亞生產(chǎn)的紫外LED,中心波長(zhǎng)為365 nm。步進(jìn)電機(jī)選用SUMTOR生產(chǎn)的42HS系列二相混合式步進(jìn)電機(jī),步距精度±5%,定位力矩2.2 N·cm。霧滴獲取介質(zhì)采用普通牛皮圓盤紙帶,寬度1.93 cm。光電限位器選用OMDHON對(duì)射式光電開關(guān),可檢測(cè)距離為5 m。當(dāng)采集完畢時(shí)光電限位器響應(yīng),MCU返回停止指令,軟件停止光譜采集并保存數(shù)據(jù)。
1.2.3 軟件設(shè)計(jì)
霧滴沉積特性檢測(cè)系統(tǒng)軟件應(yīng)用Visual Studio 2015,選用C#語言編程開發(fā)實(shí)現(xiàn)。軟件包括采集參數(shù)設(shè)置、采集控制和數(shù)據(jù)分析等功能,功能模塊如圖3所示,其中采集參數(shù)設(shè)置包括積分時(shí)間、采樣頻率、平均次數(shù)和平滑度的設(shè)定、暗電流的校正標(biāo)定,采集控制包括采集模式選擇、光譜曲線顯示和數(shù)據(jù)保存的功能。
圖3 航空施藥?kù)F滴沉積特性分析系統(tǒng)軟件功能模塊圖
軟件整體流程如圖4所示。光譜儀、MCU和數(shù)據(jù)處理模塊連接成功后,根據(jù)系統(tǒng)工作環(huán)境設(shè)置采集參數(shù),設(shè)置完成后啟動(dòng)全波段光譜數(shù)據(jù)掃描,檢測(cè)曲線特征峰值,設(shè)置特征光譜檢測(cè)波段范圍及采集間隔。當(dāng)接收微處理器返回的開始采集指令,繪制特征光譜的采集位置和熒光強(qiáng)度值的曲線圖。采集完畢后,軟件接收到微控制器返回的結(jié)束采集指令,保存光譜數(shù)據(jù)到指定文件路徑。
圖4 航空施藥?kù)F滴沉積特性分析系統(tǒng)流程圖
2017年5月17日,航空施藥的霧滴沉積特性檢測(cè)試驗(yàn)在北京市昌平區(qū)小湯山鎮(zhèn)國(guó)家精準(zhǔn)農(nóng)業(yè)示范基地進(jìn)行,測(cè)試當(dāng)天天氣晴好。試驗(yàn)飛機(jī)及噴霧器技術(shù)參數(shù)如表1所示。
表1 飛機(jī)及噴霧器參數(shù)
試驗(yàn)采用增白劑RQT-C-3作為熒光示蹤劑,配置質(zhì)量分?jǐn)?shù)為1.3%,1.0%,0.5%的熒光示蹤劑溶液作為模擬藥液分3次噴灑。霧滴獲取介質(zhì)安裝在距地面1 m高的支架上,水敏試紙樣本點(diǎn)與霧滴獲取介質(zhì)平行放置,試驗(yàn)現(xiàn)場(chǎng)如圖5所示。霧滴獲取介質(zhì)長(zhǎng)度5 m,在0.5~4.5 m處等間距布置9個(gè)水敏試紙樣本點(diǎn)采集霧滴分布,依次標(biāo)號(hào)樣點(diǎn)1到9。待噴灑完畢,迅速收集霧滴獲取介質(zhì)和水敏試紙,分別用密封袋保存。
利用航空施藥質(zhì)量評(píng)價(jià)系統(tǒng)iDAS[32]對(duì)水敏紙進(jìn)行圖像分析,計(jì)算出熒光示蹤劑溶液霧滴沉積特性參數(shù),包括霧滴浸染面積、面積覆蓋率和沉積量。其中霧滴浸染面積(mm2)是水敏紙被水洇濕后發(fā)生顯色反應(yīng)的總面積。面積覆蓋率(%)是浸染面積和水敏試紙采樣面積比值。沉積量(L)為全部霧滴的總體積,假定霧滴在空氣中為球體,可根據(jù)浸染區(qū)域和水敏紙潤(rùn)展系數(shù)換算得到的霧滴直徑計(jì)算得到。水敏紙的測(cè)量結(jié)果基于霧滴中水在水敏紙上的沉積浸染區(qū)域計(jì)算得到,是溶液中水的沉積特性參數(shù)。本系統(tǒng)的測(cè)量結(jié)果基于霧滴中熒光示蹤劑的熒光強(qiáng)度值計(jì)算得到,與霧滴中熒光在紙帶介質(zhì)上沉積質(zhì)量相關(guān),與霧滴在紙帶介質(zhì)上的浸染區(qū)域面積相關(guān)性極小。熒光示蹤劑溶液中熒光示蹤劑質(zhì)量與水的質(zhì)量按照溶解濃度線性相關(guān),因此研究對(duì)水敏紙測(cè)量結(jié)果與系統(tǒng)測(cè)量結(jié)果進(jìn)行比較分析。
利用霧滴沉積特性檢測(cè)系統(tǒng)連續(xù)采集霧滴獲取介質(zhì)的光譜特征曲線,采集過程中積分時(shí)間100 ms,采集裝置模塊中步進(jìn)電機(jī)轉(zhuǎn)速為120 r/min,長(zhǎng)度5 m的霧滴獲取介質(zhì)共采集光譜數(shù)據(jù)305組,取水敏試紙樣本點(diǎn)對(duì)應(yīng)位置附近3點(diǎn)光譜數(shù)據(jù)計(jì)算平均值,作為該樣本點(diǎn)光譜特征曲線。
霧滴獲取介質(zhì)原始光譜特征曲線(以熒光示蹤劑溶液質(zhì)量分?jǐn)?shù)1.0%為例)如圖6a所示,曲線除包含樣本點(diǎn)自身信息外,還包含了其他無關(guān)信息和噪聲,如儀器噪聲,雜散光等。光譜平滑旨在消除光譜數(shù)據(jù)的隨機(jī)噪聲,本文采用卷積平滑算法(savitzky-golay,S-G)對(duì)光譜曲線進(jìn)行平滑,S-G平滑算法原理是通過多項(xiàng)式對(duì)光譜數(shù)據(jù)進(jìn)行最小二乘擬合,不會(huì)造成光譜信號(hào)失真,處理結(jié)果如圖6b所示,該方法能有效去除光譜噪聲毛刺,較好地保存了光譜信息中的有效信息。
樣品因表面散射、光程變化等因素引起光譜差異,本文采用變量標(biāo)準(zhǔn)化(standard normalized variate,SNV)對(duì)光譜數(shù)據(jù)進(jìn)行校正,其原理是基于設(shè)定光譜中各波長(zhǎng)點(diǎn)的吸光度值滿足一定的正態(tài)分布,處理結(jié)果如圖6c所示,可見該方法扣除了光譜數(shù)據(jù)中的線性平移,有效實(shí)現(xiàn)了光譜曲線的標(biāo)準(zhǔn)正態(tài)化。
圖6 光譜曲線預(yù)處理
噴灑過質(zhì)量分?jǐn)?shù)1.0%熒光示蹤劑溶液的霧滴獲取介質(zhì)光譜特征曲線經(jīng)S-G和SNV處理后結(jié)果如圖7所示。
圖7 S-G、SNV處理后光譜特征曲線
觀察到不同采集位置點(diǎn)的光譜曲線光強(qiáng)值不同,但光譜曲線走勢(shì)基本一致。由于采集過程中通過紫外光源激發(fā)熒光,紫外光源的信息被采集,因此在340~400 nm的波段范圍內(nèi)出現(xiàn)熒光強(qiáng)度飽和。為避免光源的影響,選擇440~1 014 nm波段范圍內(nèi)的光譜數(shù)據(jù)分析。分析光譜曲線可知,450~460 nm波段范圍光譜曲線呈波谷形態(tài),500~520 nm波段范圍的光譜曲線呈波峰形態(tài)。根據(jù)水敏試紙圖像分析結(jié)果圖7可知,450~460和500~520 nm波段范圍的光照強(qiáng)度值與霧滴分布特性參數(shù)呈正相關(guān)。由圖8可知,3 m處水敏紙測(cè)量方法測(cè)得的面積覆蓋率和沉積量最大,對(duì)應(yīng)霧滴獲取介質(zhì)樣點(diǎn)7的光譜特征曲線波谷和波峰的熒光強(qiáng)度值最大。
圖8 水敏試紙霧滴沉積分布
霧滴獲取介質(zhì)分別采集質(zhì)量分?jǐn)?shù)為1.3%,1.0%,0.5%熒光示蹤劑溶液的霧滴分布后,通過霧滴沉積特性檢測(cè)系統(tǒng)掃描得到各溶液質(zhì)量分?jǐn)?shù)下霧滴獲取介質(zhì)的光譜特征曲線。對(duì)光譜特征曲線進(jìn)行S-G平滑和SNV標(biāo)準(zhǔn)正態(tài)變換處理后,根據(jù)光譜特征曲線分析結(jié)果,計(jì)算出450~460 nm和500~520 nm波段范圍的光譜平均值450-460和500-520。分別對(duì)溶液質(zhì)量分?jǐn)?shù)1.3%,1.0%,0.5%條件下9個(gè)樣本點(diǎn)的光譜平均值與水敏試紙圖像分析計(jì)算的霧滴浸染面積,面積覆蓋率和沉積量進(jìn)行相關(guān)性分析,結(jié)果如表2所示。
由表2可知:熒光示蹤劑溶液質(zhì)量分?jǐn)?shù)為1.0%時(shí),450~460 nm波段和500~520 nm波段光譜平均值和水敏紙圖像分析后得到的霧滴沉積分布特性參數(shù)相關(guān)系數(shù)絕對(duì)值高于溶液質(zhì)量分?jǐn)?shù)0.5%和1.3%時(shí)的相關(guān)系數(shù)絕對(duì)值,達(dá)0.92以上,呈顯著相關(guān)。因此選定熒光示蹤劑溶液質(zhì)量分?jǐn)?shù)1.0%進(jìn)行霧滴沉積特性檢測(cè)系統(tǒng)的應(yīng)用性能測(cè)試試驗(yàn)。
表2 光譜參數(shù)與霧滴沉積特性的相關(guān)系數(shù)
注:450-460表示450~460 nm波段范圍的光譜平均值,下同。
Note: Spectral mean value in the band range of 450-460 nm was expressed as450-460, and the rest is the same.
2017年6月7日在北京市昌平區(qū)小湯山國(guó)家精準(zhǔn)農(nóng)業(yè)研究示范基地進(jìn)行系統(tǒng)應(yīng)用性能測(cè)試試驗(yàn),飛行設(shè)備采用TTA-T8-PRO-5型農(nóng)業(yè)植保無人機(jī)。配置質(zhì)量分?jǐn)?shù)1.0%的熒光示蹤劑溶液重復(fù)3次藥液噴灑,飛行高度和速度每次均為2.0 m和1.5 m/s。霧滴獲取介質(zhì)長(zhǎng)度6 m,第1、2次試驗(yàn)在0.5~5.5 m處等間距0.25 m布置21個(gè)樣本點(diǎn)并依次標(biāo)號(hào)1~21和22~42,第3次試驗(yàn)在0.5~5.3 m處等間距0.3 m布置了17個(gè)樣本點(diǎn)并依次標(biāo)號(hào)43~59,霧滴獲取介質(zhì)和水敏試紙安裝在距地面高度1 m的支架上。噴灑完畢后,密封保存霧滴獲取介質(zhì)和水敏試紙。
通過霧滴沉積特性檢測(cè)系統(tǒng)采集對(duì)應(yīng)59個(gè)水敏試紙樣本點(diǎn)位置的全波段光譜特征曲線,計(jì)算450~460和500~520 nm波段范圍的光譜平均值450-460和500-520,分別與水敏紙圖像分析測(cè)量的霧滴沉積特性參數(shù)(浸染面積、面積覆蓋率、沉積量)進(jìn)行相關(guān)性分析,結(jié)果如表3所示。
結(jié)果顯示,450~460和500~520 nm波段范圍的光譜平均值與霧滴沉積特性參數(shù)(浸染面積、面積覆蓋率、沉積量)的相關(guān)系數(shù)絕對(duì)值均在0.80以上,其中500~520 nm波段范圍的光譜平均值與浸染面積的相關(guān)系數(shù)絕對(duì)值可以達(dá)0.91以上。因此選擇光譜平均值450-460和500-520建立霧滴沉積特性參數(shù)(浸染面積、面積覆蓋率、沉積量)檢測(cè)模型。其中1、2、3分別為預(yù)測(cè)浸染面積值、預(yù)測(cè)面積覆蓋率值和預(yù)測(cè)沉積量值,1、2分別表示光譜平均值450-460,500-520,R2、R2分別表示建模決定系數(shù)和驗(yàn)證決定系數(shù)。對(duì)有效采集的59個(gè)樣本點(diǎn),隨機(jī)選擇40組樣本數(shù)據(jù)建立霧滴分布特性參數(shù)檢測(cè)的多元線性回歸(multiple linear regression, MLR)模型,剩下19組進(jìn)行模型驗(yàn)證。
表3 光譜參數(shù)與霧滴沉積特性相關(guān)系數(shù)
注:配置質(zhì)量分?jǐn)?shù)1.0%的熒光示蹤劑溶液重復(fù)3次藥液噴灑。
Note: the fluorescent tracer solution with the mass fraction of 1% was sprayed in 3 times.
建立的浸染面積檢測(cè)模型如圖9a所示,建立的面積覆蓋率檢測(cè)模型如圖9b所示,建立的沉積量檢測(cè)模型如圖9c所示。MLR模型的建模決定系數(shù)達(dá)0.80以上,驗(yàn)證決定系數(shù)達(dá)0.83以上。系統(tǒng)預(yù)測(cè)的霧滴沉積特性參數(shù)和水敏試紙測(cè)量值的結(jié)果對(duì)比如圖10所示。
由圖可知,基于光譜分析和熒光激發(fā)技術(shù)檢測(cè)霧滴沉積特性的方式和水敏試紙測(cè)量方法的一致性較好,但也存在一定的測(cè)量偏差,其中浸染面積測(cè)量相對(duì)誤差小于29.62%,其中41個(gè)點(diǎn)的測(cè)量相對(duì)誤差小于10%;面積覆蓋率相對(duì)誤差小于33.04%,其中40個(gè)點(diǎn)的測(cè)量相對(duì)誤差小于10%;沉積量相對(duì)誤差小于32.83%,其中38個(gè)點(diǎn)的測(cè)量相對(duì)誤差小于10%。產(chǎn)生測(cè)量偏差是由于受飛機(jī)飛行和環(huán)境因素的影響,使得小范圍內(nèi)霧滴沉積分布可能有較大的變化。另外,噴灑后霧滴出現(xiàn)互相粘連也是產(chǎn)生測(cè)量偏差的主要原因之一。
注:Rc2、Rv2分別表示建模系數(shù)和驗(yàn)證系數(shù)。
圖10 霧滴沉積測(cè)量值對(duì)比
基于光譜分析和熒光激發(fā)技術(shù)研發(fā)的霧滴沉積特性檢測(cè)系統(tǒng)硬件包括數(shù)據(jù)處理模塊、信息采集模塊、采集裝置模塊3部分,控制軟件包括采集參數(shù)設(shè)置、采集控制和數(shù)據(jù)分析功能模塊。結(jié)合硬件、軟件,系統(tǒng)可快速連續(xù)檢測(cè)霧滴沉積分布特性。
1)霧滴獲取介質(zhì)在紫外光源的激勵(lì)下有顯著的熒光效應(yīng)。其光譜特征曲線在450~460 nm波段范圍呈波谷形態(tài),500~520 nm波段范圍呈波峰形態(tài)。
2)配置不同質(zhì)量分?jǐn)?shù)(0.5%,1.0%,1.3%)的熒光示蹤劑溶液噴灑后,霧滴獲取介質(zhì)光譜特征曲線在450~460和500~520 nm波段范圍內(nèi)的光譜平均值和的霧滴特性檢測(cè)參數(shù)相關(guān)系數(shù)絕對(duì)值達(dá)0.80以上,表明利用光譜分析和熒光激發(fā)技術(shù)進(jìn)行霧滴沉積特性檢測(cè)的可行性。同時(shí)相比于質(zhì)量分?jǐn)?shù)0.5%和1.3%,熒光示蹤劑質(zhì)量分?jǐn)?shù)1.0%時(shí)的霧滴獲取介質(zhì)在450~460和500~520 nm波段范圍的光譜平均值和霧滴特性檢測(cè)參數(shù)相關(guān)系數(shù)絕對(duì)值達(dá)0.92以上。因此選擇配置質(zhì)量分?jǐn)?shù)1.0%的熒光示蹤劑溶液進(jìn)行系統(tǒng)應(yīng)用性能測(cè)試試驗(yàn)。
3)系統(tǒng)應(yīng)用性能測(cè)試試驗(yàn)建立霧滴沉積特性參數(shù)檢測(cè)的多元線性回歸模型,其中模型建模決定系數(shù)達(dá)0.80以上,驗(yàn)證決定系數(shù)達(dá)0.83以上,建模精度能滿足霧滴沉積特性參數(shù)檢測(cè)的要求。該方法彌補(bǔ)了傳統(tǒng)水敏試紙離散取樣測(cè)量方法的不足,提高了霧滴沉積特性檢測(cè)數(shù)據(jù)的客觀性。
[1] 屠豫欽. 農(nóng)藥劑型和制劑與農(nóng)藥的劑量轉(zhuǎn)移[J]. 農(nóng)藥學(xué)學(xué)報(bào),1999,1(1):1-6.
Tu Yuqin. Pesticide formulation and dose transfer[J]. Chinese Journal of Pesticide Science, 1999, 1(1): 1-6. (in Chinese with English abstract)
[2] 傅澤田,祁力鈞,王俊紅. 精準(zhǔn)施藥技術(shù)研究進(jìn)展與對(duì)策[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(1):189-192. Fu Zetian, Qi Lijun, Wang Junhong. Developmental tendency and strategies of precision pesticide application techniques[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(1): 189-192. (in Chinese with English abstract)
[3] 薛新宇,梁建,傅錫敏. 我國(guó)航空植保技術(shù)的發(fā)展前景[J]. 中國(guó)農(nóng)機(jī)化,2008(5):72-74.
Xue Xinyu, Liang Jian, Fu Ximin. Prospect of aviation plant protection in China[J]. Chinese Agricultural Mechanization, 2008(5): 72-74. (in Chinese with English abstract)
[4] 周志艷,臧英,羅錫文,等. 中國(guó)農(nóng)業(yè)航空植保產(chǎn)業(yè)技術(shù)創(chuàng)新發(fā)展戰(zhàn)略[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(24):1-10.
Zhou Zhiyan, Zang Ying, Luo Xiwen, et al. Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 1-10. (in Chinese with English abstract)
[5] 張東彥,蘭玉彬,陳立平,等. 中國(guó)農(nóng)業(yè)航空施藥技術(shù)研究進(jìn)展與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):53-59.
Zhang Dongyan, Lan Yubin, Chen Liping, et al. Current status and future trends of agricultural aerial spraying technology in China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 53-59. (in Chinese with English abstract)
[6] 朱傳銀,王秉璽. 航空噴霧植保技術(shù)的發(fā)展與探討[J]. 植物保護(hù),2014(5):1-7.
Zhu Chuanyin, Wang Bingxi. Development and discussion of aerial spray technology in plant protection[J]. Plant Protection, 2014(5): 1-7. (in Chinese with English abstract)
[7] 羅錫文,廖娟,胡煉,等. 提高農(nóng)業(yè)機(jī)械化水平促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):1-11.
Luo Xiwen, Liao Juan, Hu lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 1-11. (in Chinese with English abstract)
[8] Franz E, Bouse L F, Carlton J B, et al. Aerial spray deposit relations with plant canopy andweather parameters[J]. Transactions of the Asae, 1998, 41(4): 959-966.
[9] Ebert T A, Taylor R A, Downer R A, et al. Deposit structure and efficacy 2: Trichoplusia ni and fipronil[J]. Pesticide Science, 1999, 55(8): 793-798.
[10] Tsai M Y, Kai E, Yost R M G, et al. The Washington aerial spray drift study: Modeling pesticide spray drift deposition from an aerial application[J]. Atmospheric Environment, 2005, 39(33): 6194-6203.
[11] Huang Y, Hoffmann W C, Lan Y, et al. Development of a spray system for an unmanned aerial vehicle platform[J]. Applied Engineering in Agriculture, 2008, 25(6): 803-809.
[12] 薛新宇,蘭玉彬. 美國(guó)農(nóng)業(yè)航空技術(shù)現(xiàn)狀和發(fā)展趨勢(shì)分析[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(5):194-201.
Xue Xinyu, Lan Yubin. Agricultural aviation applications in USA[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 194-201. (in Chinese with English abstract)
[13] 廖娟,臧英,周志艷,等. 作物航空噴施作業(yè)質(zhì)量評(píng)價(jià)及參數(shù)優(yōu)選方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊2):38-46. Liao Juan, Zang Ying, Zhou Zhiyan, et al. Quality evaluation method and optimization of operating parameters in crop aerial spraying technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 38-46. (in Chinese with English abstract)
[14] 呂曉蘭,傅錫敏,宋堅(jiān)利,等. 噴霧技術(shù)參數(shù)對(duì)霧滴飄移特性的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(1):59-63.
Lü Xiaolan, Fu Ximin, Song Jianli, et al. Influence of spray operating parameters on spray drift[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(1): 59-63. (in Chinese with English abstract)
[15] 祁力鈞,胡開群,莽璐,等. 基于圖像處理的霧滴檢測(cè)技術(shù)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(增刊1):48-51.
Qi Lijun, Hu Kaiqun, Mang Lu, et al. Droplet detection based on image processing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(Supp.1): 48-51.
[16] 徐廣春,徐德進(jìn),許小龍,等. 農(nóng)藥?kù)F滴在麥田的沉積分布及其對(duì)灰飛虱防效的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào),2015,28(1):140-145.
Xu Guangchun, Xu Dejin, Xu Xiaolong, et al. Pesticide droplets deposition and distribution in wheat field andits impact on control efficacy of small brown planthopper[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(1): 140-145. (in Chinese with English abstract)
[17] Zhang Dongyan, Chen Liping, Zhang Ruirui, et al. Evaluating effective swath width and droplet distribution of aerial spraying systems on M-18B and Thrush 510 G airplanes[J]. International Journal of Agricultural & Biological Engineering, 2015, 8(2):21-30.
[18] 陳盛德,蘭玉彬,李繼宇,等. 小型無人直升機(jī)噴霧參數(shù)對(duì)雜交水稻冠層霧滴沉積分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(17):40-46.
Chen Shengde, Lan Yubin, Li Jiyu, et al. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 40-46. (in Chinese with English abstract)
[19] 秦維彩,薛新宇,周立新,等. 無人直升機(jī)噴霧參數(shù)對(duì)玉米冠層霧滴沉積分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):50-56.
Qin Weicai, Xue Xinyu, Zhou Lixin, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 50-56. (in Chinese with English abstract)
[20] 張宋超,薛新宇,秦維彩,等. N-3型農(nóng)用無人直升機(jī)航空施藥飄移模擬與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):87-93.
Zhang Songchao, Xue Xinyu, Qin Weicai, et al. Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 87-93. (in Chinese with English abstract)
[21] 王昌陵,何雄奎,王瀟楠,等. 基于空間質(zhì)量平衡法的植保無人機(jī)施藥?kù)F滴沉積分布特性測(cè)試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):89-97.
Wang Changling, He Xiongkui, Wang Xiaonan, et al. Distribution characteristics of pesticide application droplets deposition of unmanned aerial vehicle based on testing method of deposition quality balance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 89-97. (in Chinese with English abstract)
[22] 連德旗,王世恒,徐銘辰,等. 小型無人飛行噴霧機(jī)噴霧性能試驗(yàn)研究與分析[J]. 農(nóng)機(jī)化研究,2017,39(5):197-201.
Lian Deqi, Wang Shiheng, Xu Mingchen, et al. Experimental study and analysis on spray characteristics of small scale unmanned aerial spraying in soybean field[J]. Journal of Agricultural Mechanization Research, 2017, 39(5): 197-201. (in Chinese with English abstract)
[23] Salyani M, Serdynski J. Development of a sensor for spray deposition assessment[J]. Transactions of the Asae, 1990, 33(5):1464-1469.
[24] 張瑞瑞,陳立平,蘭玉彬,等. 航空施藥中霧滴沉積傳感器系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(8):123-127.
Zhang Ruirui, Chen Liping, Lan Yubin, et al. Development of a deposit sensing system for aerial spraying application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 123-127. (in Chinese with English abstract)
[25] 馬偉,王秀,夏浪,等. 基于高光譜成像的不同藥滴粒徑的藥效試驗(yàn)裝置開發(fā)[J]. 農(nóng)業(yè)工程技術(shù),2016,10:44-45.
[26] 北京農(nóng)業(yè)信息技術(shù)研究中心. 航空施藥中藥?kù)F分布與飄移趨勢(shì)遙測(cè)系統(tǒng)及方法:201110209409.0[P]. 2012-01-11.
[27] Zhang Dongyan, Lan Yubin, Wang Xiu, et al. Assessment of aerial agrichemical spraying effect using moderate-resolution satellite imagery[J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1971-1977.
張東彥,蘭玉彬,王秀,等. 基于中分辨衛(wèi)星影像的農(nóng)用航空噴藥效果評(píng)估[J]. 光譜學(xué)與光譜分析,2016,36(6):1971-1977. (in English with Chinese abstract)
[28] 張瑞瑞,徐剛,陳立平,等. 航空施藥?kù)F滴沉積特性分析系統(tǒng):CN103558130A[P].2014-02-05.
[29] 李曉婷,王紀(jì)華,朱大洲,等. 果蔬農(nóng)藥殘留快速檢測(cè)方法研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊2):363-370.
Li Xiaoting, Wang Jihua, Zhu Dazhou, et al. Research progress of fast detection methods of fruits and vegetables pesticide residues[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp.2): 363-370. (in Chinese with English abstract)
[30] 王忠東,關(guān)曉晶,王玉田,等. 基于CCD器件的農(nóng)藥熒光檢測(cè)系統(tǒng)的研究[J]. 光學(xué)技術(shù),2005,31(5):653-654.
Wang Zhongdong, Guan Xiaojing, Wang Yutian, et al. Study on fluorescence detection system for pesticides based on charge-coupled devices[J]. Optical Technique, 2005, 31(5): 653-654. (in Chinese with English abstract)
[31] 王忠東,閆鐵,王寶輝. 土壤中有機(jī)農(nóng)藥熒光檢測(cè)研究[J]. 光譜學(xué)與光譜分析,2009,29(2):479-482.
Wang Zhongdong, Yan Tie, Wang Baohui. Study on experiment of fluorescence spectra detection of organic pesticides in soil[J]. Spectroscopy and Spectral Analysis, 2009, 29(2): 479-482. (in Chinese with English abstract)
[32] Xu Gang, Chen Liping, Zhang Ruirui. An image processing system for evaluation of aerial application quality[C]// International Conference on Intelligent Information Processing. ACM, 2016, No. 53.
Development and application of aerial spray droplets deposition performance measurement system based on spectral analysis technology
Zhang Ruirui, Wen Yao, Yi Tongchuan , Chen Liping※, Xu Gang
(1.100097, C; 2.100097,; 3.100097,; 4.100097,)
To evaluate the droplet deposition in aerial spraying real-timely and accurately, aerial spray pattern measurement system was designed combining with spectral analysis and fluorescence excitation technology. The hardware of the system consisted of modules of information acquisition module, data acquisition module, and data processing module. FLAME-S-VIS-NIR micro spectrometer was selected as information acquisition module which is produced by Ocean Optics. Micro spectrometer was the core component of the aerial spray pattern measurement system. The acquisition module included microcontroller unit, droplet collection medium, Ultraviolet excitation light, stepper motors, and photoelectric limiter and so on. The software of the system includes the function of spectrometer connection, parameter setting, spectral data collection, display and storage. At first, the solution of fluorescent tracer with mass fraction of 0.5%, 1.0% and 1.3% was sprayed individually by the sprayer installed on the agricultural plant protection unmanned aerial vehicle. Droplet deposition was collected by droplet collection medium and water sensitive paper synchronously. The spectral characteristic curve of droplet collection medium was scanned and saved by the software of aerial spray pattern measurement system. The spectral characteristic curve of sample point was processed by savitzky-golay smoothing and standard normalized variate, the trend of spectral curve was analyzed. Without the effect of ultraviolet light on the band removal of 340-400 nm, the result which was observed and analyzed from the band range of 440-1 014 nm showed that the spectral band range of 450-460 nm presented a trough shape, and the spectral band range of 500-520 nm showed peak shape. Droplet deposition characteristic parameter which was obtained from the image analysis of water sensitive paper included impregnation area, area coverage and deposition. Compared with the result obtained by water sensitive paper, the analysis result indicated that the solution of fluorescent tracer on the droplet capture medium had produced significant fluorescence effect in the wavelength range of 450-460 nm and 500-520 nm. The spectral average value of the wavelength range of 450-460 nm and 500-520 nmwas calculated. And the correlation coefficient of spectral average value and droplet deposition was up to 0.80. The results showed that it was feasible for the detection of droplet deposition characteristics based on spectral analysis and fluorescence excitation technique. The detection effect of droplet deposition with the different mass fraction of fluorescent tracer solution was analyzed. Compared with the mass fraction 0.5% and 1.3% of fluorescent tracer solution, the correlation coefficient between spectral average valueand droplet deposition was more than 0.92 when the mass fraction of fluorescent tracer solution was 1.0%. Therefore, a fluorescent tracer solution with mass fraction 1.0% was adopted for the detection of performance test of the system. The performance test of the system was carried out in the field. Fifty nine sample points were collected effectively, and the multivariate linear regression model of the droplet deposition was built based on the spectral average value which was calculated by randomly selection of 40 sample points. The rest of 19 sample points was used to validate the multivariate linear regression model. The model decision coefficientwas about 0.80, and the verification coefficient was about 0.83. The modeling accuracy can satisfy the requirements of droplet deposition characteristic parameter detection. This method could provide support for the detection of droplet deposition characteristics rapidly and continuously in aerial spraying.
aviation; spraying; pesticides; spray pattern; spectrum analysis; fluorescence excitation; droplet deposition
10.11975/j.issn.1002-6819.2017.24.011
TP212.9
A
1002-6819(2017)-24-0080-08
2017-06-28
2017-11-01
國(guó)家自然科學(xué)基金項(xiàng)目(31601228);國(guó)家重點(diǎn)研發(fā)計(jì)劃—地面與航空高工效施藥技術(shù)及智能化裝備(2016YFD0200701-2);北京市自然科學(xué)基金項(xiàng)目(6164032)
張瑞瑞,博士,副研究員,主要從事農(nóng)業(yè)航空裝備、傳感器等技術(shù)研究。Email:zhangrr@nercita.org.cn
陳立平,研究員,主要從事農(nóng)業(yè)智能裝備技術(shù)及應(yīng)用研究。Email:chenlp@nercita.org.cn
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:陳立平(E040100186M)
張瑞瑞,文 瑤,伊銅川,陳立平,徐 剛. 航空施藥?kù)F滴沉積特性光譜分析檢測(cè)系統(tǒng)研發(fā)與應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(24):80-87. doi:10.11975/j.issn.1002-6819.2017.24.011 http://www.tcsae.org
Zhang Ruirui, Wen Yao, Yi Tongchuan, Chen Liping, Xu Gang. Development and application of aerial spray droplets deposition performance measurement system based on spectral analysis technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 80-87. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.24.011 http://www.tcsae.org