鄭欠,丁軍軍,李玉中,2,林偉,徐春英,李巧珍,毛麗麗
?
土壤含水量對(duì)硝化和反硝化過(guò)程N(yùn)2O排放及同位素特征值的影響
鄭欠1,丁軍軍1,李玉中1,2,林偉1,徐春英1,李巧珍1,毛麗麗1
(1中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所/農(nóng)業(yè)部旱地節(jié)水農(nóng)業(yè)重點(diǎn)實(shí)驗(yàn)室,北京 100081;2中國(guó)農(nóng)業(yè)科學(xué)院環(huán)境穩(wěn)定同位素實(shí)驗(yàn)室,北京 100081)
通過(guò)室內(nèi)培養(yǎng)試驗(yàn),研究不同含水量對(duì)北京順義潮褐土N2O排放及同位素特征值(δ15Nbulk,δ18O和nitrogen isotopomer site preference of N2O,簡(jiǎn)稱SP)的影響,以期獲得不同水分條件下土壤N2O產(chǎn)生途徑及變化規(guī)律,為農(nóng)田土壤N2O減排提供理論依據(jù)。結(jié)合穩(wěn)定同位素技術(shù)與乙炔抑制法,以北京順義潮褐土為試材,設(shè)置3個(gè)含水量梯度:67%、80%和95% WFPS(土壤體積含水量與總孔隙度的百分比或?qū)嶋H重量含水量與飽和含水量的百分比,簡(jiǎn)稱WFPS),在此基礎(chǔ)上設(shè)置無(wú)C2H2,0.1%(V/V)C2H2和10%(V/V)C2H2處理。將土壤裝入培養(yǎng)瓶中培養(yǎng)2 h,之后收集培養(yǎng)瓶中的氣體測(cè)定N2O濃度及同位素特征值,并采集土樣測(cè)定其NH+ 4-N和NO- 3-N的含量。利用同位素二源混合模型計(jì)算硝化和反硝化作用對(duì)土壤N2O排放的貢獻(xiàn)率,對(duì)N2O產(chǎn)生途徑進(jìn)行量化分析。根據(jù)室內(nèi)土壤培養(yǎng)測(cè)定結(jié)果,高(95% WFPS)、中(80% WFPS)和低(67% WFPS)含水量土壤N2O加權(quán)平均排放通量分別為1.17、0.27和0.08 mgN·kg-1·d-1,高含水量土壤N2O排放量均顯著高于中、低含水量處理,中含水量處理顯著高于低含水量;整個(gè)培養(yǎng)周期,高、中和低含水量土壤N2O+N2累積排放量分別為培養(yǎng)初期總的無(wú)機(jī)氮含量的18.05%、5.27%和1.24%(N2O+N2累積排放量分別為19.61、5.72和1.35 mgN·kg-1;各處理NH+ 4-N+NO- 3-N初始含量均為108.62 mgN·kg-1);與低含水量處理相比,高、中含水量土壤的N2O+N2累積排放量分別增加了13.53倍和3.24倍,高含水量土壤N2O+N2累積排放量比中含水量高2.43倍,表現(xiàn)為隨著含水量的增加,土壤無(wú)機(jī)氮(NH+ 4-N+NO- 3-N)以氣態(tài)氮(N2O+N2)形式的損失量逐漸增加。3個(gè)含水量處理N2O的δ15Nbulk加權(quán)平均值變化范圍為-42.93‰—-4.07‰,且較高含水量處理顯著低于較低含水量處理;10%(V/V)C2H2抑制土壤中N2O還原成N2的過(guò)程,各含水量土壤中,10%(V/V)C2H2處理組其N2O的δ18O值顯著低于0.1%(V/V)C2H2處理組,且N2O/(N2O+N2)比率隨土壤含水量增加而降低;各處理土壤中同時(shí)存在多個(gè)N2O產(chǎn)生過(guò)程,對(duì)于培養(yǎng)第一周,土壤產(chǎn)生的N2O的SP值于培養(yǎng)前4 d呈逐漸增加的趨勢(shì),之后又逐漸降低,低含水量土壤在第1—2 天產(chǎn)生的N2O的SP值為6.74‰—12.04‰,反硝化作用對(duì)土壤N2O排放的貢獻(xiàn)率為56.36%—66.15%,此培養(yǎng)階段表現(xiàn)為土壤主要通過(guò)反硝化作用產(chǎn)生N2O,之后,硝化作用貢獻(xiàn)率(55.78%—100%)增強(qiáng);中含水量土壤N2O的SP加權(quán)平均值為10.26‰,該土壤中反硝化作用(40.90%—74.04%)占據(jù)主導(dǎo)地位;加10%(V/V)C2H2的高含水量處理,在整個(gè)培養(yǎng)第一周均具有較高的SP值,變化范圍為7.61‰—21.11‰;與0.1% (V/V)C2H2處理組相比,10%(V/V)C2H2處理的高、中和低含水量土壤排放N2O的SP加權(quán)平均值分別降低了0.10倍、0.33倍和0.06倍。土壤含水量增加促進(jìn)N2O排放,高含水量處理中N2O排放量最高。67%WFPS處理中,N2O排放前期以反硝化作用為主,后期以硝化作用為主;80%WFPS處理中,N2O主要由反硝化過(guò)程產(chǎn)生;95% WFPS處理中,N2O排放以硝化作用為主。
土壤孔隙含水量;N2O;硝化作用;反硝化作用;穩(wěn)定同位素;同位素位嗜值
【研究意義】N2O是一種重要的溫室氣體,其全球增溫潛勢(shì)是CO2的300倍[1]。農(nóng)田生態(tài)系統(tǒng)是大氣N2O的主要來(lái)源,對(duì)全球N2O排放(17.7 Tg N2O-N·a-1)的貢獻(xiàn)為6.2 Tg N2O-N· a-1,約占全球N2O排放量的1/3[2]。微生物的硝化作用和反硝化作用是土壤主要的N2O產(chǎn)生途徑,這些過(guò)程受土壤含水量、溫度、通氣性、銨態(tài)氮和硝態(tài)氮濃度、可礦化碳的含量以及pH的影響[3-4,5],其中,土壤水分含量是N2O排放來(lái)源的主要控制因素[6],不同含水量下,這些過(guò)程可能會(huì)在同一土壤中的不同微區(qū)同時(shí)發(fā)生[7],但是對(duì)于土壤中N2O的主要產(chǎn)生途徑仍具有不確定性。因此,不同濕度土壤N2O溯源研究對(duì)于N2O減排具有重要指導(dǎo)意義?!厩叭搜芯窟M(jìn)展】土壤含水量為84%—86% WFPS時(shí),N2O排放量最強(qiáng);低于這個(gè)范圍時(shí),土壤含水量與N2O排放量呈正相關(guān),反之,則呈負(fù)相關(guān)關(guān)系[8]。施加氮肥后,土壤N2O排放量隨著土壤含水量的增加而增加,通常當(dāng)土壤含水量低于70%WFPS時(shí),硝化作用成為主要的N2O來(lái)源[7, 9-10]。用15N標(biāo)記NO- 3的研究發(fā)現(xiàn),當(dāng)土壤含水量大于70%WFPS時(shí),其產(chǎn)生的N2O主要由反硝化作用產(chǎn)生[10-11,12]。也有研究指出,只有當(dāng)含水量超過(guò)80%WFPS時(shí),反硝化作用才會(huì)成為主要的N2O產(chǎn)生途徑[13]。乙炔(Acetylene,C2H2)是一種常用的自養(yǎng)硝化抑制劑,較低的乙炔濃度(1—100 Pa)可以抑制土壤的自養(yǎng)硝化作用,較高的乙炔濃度(10 kPa)可以抑制N2O還原成N2,同時(shí)也能抑制硝化作用,而異養(yǎng)硝化作用在較大的乙炔濃度范圍(1—10 kPa)不受抑制[14-15]。以往研究,主要利用乙炔抑制技術(shù)和同位素標(biāo)記技術(shù)區(qū)分N2O產(chǎn)生和消耗過(guò)程,但是這些技術(shù)存在局限性[16-18]。目前,國(guó)外將同位素位嗜值(site preference,SP),作為N2O溯源研究的重要工具。理論上,參與硝化和反硝化過(guò)程產(chǎn)生的N2O的NO還原酶類型不同,會(huì)導(dǎo)致兩個(gè)N原子位置15N的富集程度不同[19-20];N2O還原過(guò)程中N-O鍵斷裂會(huì)導(dǎo)致剩余N2O中間位置氮原子富集15N(15Nα)[19,21-23],這些均可以作為利用SP值區(qū)分N2O來(lái)源的理論基礎(chǔ)。除此之外,SP值可以彌補(bǔ)δ15N和δ18O受前體同位素值干擾的不足,且對(duì)樣品干擾小[24-26]。與細(xì)菌反硝化作用相比,由真菌反硝化作用和硝化作用產(chǎn)生N2O過(guò)程具有更高的SP值[27]。與硝化作用相比,一般土壤反硝化過(guò)程產(chǎn)生的N2O有較高的δ15N和δ18O值[28]。國(guó)外研究發(fā)現(xiàn),在55% WFPS處理中,有一多半的N2O來(lái)自于硝化作用,75%和85%WFPS土壤中反硝化作用是主要的N2O產(chǎn)生途徑[29]?!颈狙芯壳腥朦c(diǎn)】國(guó)內(nèi)很少利用自然豐度的穩(wěn)定同位素特征值對(duì)參與N2O排放的硝化和反硝化過(guò)程貢獻(xiàn)率進(jìn)行量化研究,本研究利用該技術(shù)結(jié)合乙炔抑制法探索不同土壤含水量下N2O的溯源問(wèn)題。【擬解決的關(guān)鍵問(wèn)題】本研究將同位素自然豐度法與乙炔抑制技術(shù)相結(jié)合,通過(guò)室內(nèi)培養(yǎng)試驗(yàn),研究不同含水量(WFPS)對(duì)北京順義潮土N2O排放及同位素特征值(δ15Nbulk,δ18O和SP)的影響,以期獲得不同土壤含水量條件下施用銨態(tài)氮肥后,其N2O產(chǎn)生途徑及變化規(guī)律。
試驗(yàn)于2016年10—11月在中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所環(huán)境穩(wěn)定同位素實(shí)驗(yàn)室進(jìn)行。
供試土壤來(lái)自中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所北京順義試驗(yàn)基地,為連續(xù)10年以上小麥與玉米一年兩熟種植制度的潮褐土,其玉米和小麥的產(chǎn)量分別約為8 250和6 000 kg·hm-2。玉米收獲后的0—20 cm表層土壤的主要理化性質(zhì)為:容重1.48 g·cm-3、pH 7.87、有機(jī)質(zhì)15.40 g·kg-1、NH+ 4-N 2.33 mg·kg-1、NO- 3-N 6.33 mg·kg-1。采用蛇形五點(diǎn)法收集土樣,土壤取回后,過(guò)4 mm篩,稍微風(fēng)干后,混勻,便開(kāi)始進(jìn)行培養(yǎng)。C2H2購(gòu)自北京氦普北分氣體工業(yè)有限公司(純度≥99.6%)。
試驗(yàn)設(shè)置3個(gè)含水量梯度,分別為67%、80%和95%WFPS(土壤體積含水量與總孔隙度的百分比或?qū)嶋H重量含水量與飽和含水量的百分比,簡(jiǎn)稱WFPS),每個(gè)含水量梯度設(shè)置不加C2H2(CK)、加0.1%(V/V)C2H2和加10%(V/V)C2H2,共9個(gè)處理,每個(gè)處理均設(shè)有3次重復(fù)。
向土壤中添加肥料用量為100 mgN·kg-1烘干土的(NH4)2SO4,拌勻。土壤初始含水量為67% WFPS,根據(jù)重量法通過(guò)加蒸餾水調(diào)成80%和95% WFPS,得到3個(gè)含水量梯度,將土樣裝于無(wú)蓋的塑料盒子里,表面覆膜,并扎若干個(gè)6 mm的小孔,以減緩水分蒸發(fā),培養(yǎng)過(guò)程中根據(jù)重量法每3天補(bǔ)加一次蒸餾水,使土壤含水量與培養(yǎng)初期保持一致,于25℃培養(yǎng)箱進(jìn)行黑暗培養(yǎng)。在培養(yǎng)第1、2、3、4、5、7、10、14和18天進(jìn)行氣體和土壤樣品收集。具體采樣過(guò)程為:稱取高(95% WFPS)、中(80% WFPS)和低(67% WFPS)含水量的土壤樣品分別為51.6、49.6和48.0 g(均相當(dāng)于40 g烘干土)于280 mL培養(yǎng)瓶中,培養(yǎng)瓶蓋上膠塞,并用鋁蓋壓緊密封。0.1%(V/V)C2H2處理用注射器注入0.3 mL C2H2,并混勻;10%(V/V)C2H2處理用注射器從培養(yǎng)瓶中抽出30 mL 空氣,再注入30 mL C2H2,并混勻。將處理好的培養(yǎng)瓶于25℃培養(yǎng)箱中黑暗培養(yǎng)2 h,從培養(yǎng)瓶中用注射器抽取20 mL氣體(加C2H2的處理采氣前要將培養(yǎng)瓶中的氣體混勻),注入20 mL提前抽成真空狀態(tài)的頂空瓶中用于測(cè)定N2O濃度及同位素值(δ15Nbulk和δ15Nα),同時(shí)收集培養(yǎng)瓶中的土樣,于-20℃冷凍,用于測(cè)定土壤氮素含量。
無(wú)C2H2處理的土壤N2O由硝化和反硝化作用共同產(chǎn)生;0.1%(V/V)C2H2處理的土壤N2O均由反硝化作用產(chǎn)生;10%(V/V)C2H2處理的土壤N2O是反硝化作用產(chǎn)生的N2O與N2之和。
1.3.1 N2O排放通量及同位素特征值的測(cè)定 利用穩(wěn)定同位素質(zhì)譜儀(IRMS, Isoprime100, Isoprime,Cheadle,UK)配合痕量氣體濃縮系統(tǒng)(Trace Gas, UK)測(cè)定N2O峰面積(m/z=44,具體參照文獻(xiàn)中提到的方法[30-31],根據(jù)樣品N2O和采樣時(shí)空氣中N2O峰面積比值算出樣品中N2O濃度。N2O排放通量計(jì)算公式[32]為
式中,表示N2O排放速率,μg·kg-1·d-1;表示標(biāo)準(zhǔn)狀況下N2O的密度,1.25 kg·m-3;為培養(yǎng)瓶?jī)?nèi)有效體積,0.24 L;?表示測(cè)定的N2O濃度,ppbv;?表示每次取樣培養(yǎng)時(shí)間,2 h;為干土重量,40×10-3kg;表示培養(yǎng)時(shí)的平均溫度,25℃;24表示一天24 h;N2O累積排放量為不同培養(yǎng)時(shí)間段氣體排放量的加權(quán)求和,μg·kg-1。
N2O同位素特征值(δ15Nbulk和δ15Nα)利用1.3.1中提到的IRMS進(jìn)行測(cè)定得到。
N2O分子是不對(duì)稱的直線型結(jié)構(gòu),根據(jù)中間和末端氮原子的不同,分別稱為α原子和β原子[23],微生物對(duì)N2O分子內(nèi)不同位置N的嗜好性差異產(chǎn)生的值稱為位嗜值,簡(jiǎn)稱SP。N2O同位素特征值相關(guān)公式[30]如下
(i=bulk,α) (2)
式中,R=15N/14N,18O/16O,R的下角標(biāo)分別表示樣品和標(biāo)準(zhǔn)樣品。
N2O的同位素位置嗜值SP的計(jì)算公式[30]為
式中,δ15Nα和δ15Nβ分別表示N2O分子內(nèi)α和β位氮原子的同位素值。
1.3.2 基于SP的N2O來(lái)源評(píng)估 假設(shè)土壤排放的N2O全部來(lái)自于硝化作用和反硝化作用,利用同位素二源混合模型計(jì)算硝化和反硝化作用各自的貢獻(xiàn)率,公式[29]如下
式中,SPE和SPN、SPD分別表示環(huán)境樣品的SP值以及純細(xì)菌培養(yǎng)條件下硝化和反硝化作用各自的SP值(33‰和0),N和D分別表示來(lái)自硝化和反硝化作用的N2O占總量的比例。
1.3.3 土壤無(wú)機(jī)氮含量的測(cè)定 QuikChem 8000 流動(dòng)注射全自動(dòng)分析儀(LACHAT,USA)測(cè)NH+ 4-N和NO- 3-N體積含量(mg·L-1),并計(jì)算出質(zhì)量含量(mg·kg-1),測(cè)定方法和公式參照《土壤農(nóng)化分析》[33]。
采用Microsoft Excel 2013和SAS 9.2軟件進(jìn)行數(shù)據(jù)分析和處理,采用Sigmaplot 12.5進(jìn)行數(shù)據(jù)的統(tǒng)計(jì)和作圖,利用LSD(=0.05)法對(duì)處理間差異進(jìn)行顯著性分析。
本研究結(jié)果表明,土壤N2O排放速率隨著土壤含水量升高而增加(圖1-A)。在80%、95% WFPS條件下,各處理間土壤N2O排放速率在培養(yǎng)第2—4天出現(xiàn)排放高峰,并且其最大排放速率分別為1.46和3.30 mgN·kg-1·d-1,隨后N2O排放速率逐漸降低。67% WFPS土壤N2O整體排放水平比較低(低于0.20 mgN·kg-1·d-1),在培養(yǎng)第1—2天出現(xiàn)較高的N2O排放量。高、中和低含水量土壤N2O加權(quán)平均排放通量分別為1.17、0.27和0.08 mgN·kg-1·d-1。其中,高、中含水量土壤在培養(yǎng)前7—10 d具有較高的N2O排放速率,之后排放速率較低且變化不大。低含水量各處理間N2O排放速率差異顯著,且無(wú)C2H2處理>10%(V/V)C2H2處理>0.1%(V/V)C2H2處理(表1)。
整個(gè)培養(yǎng)周期,高、中和低含水量土壤N2O累積排放量分別為21.06、4.77和1.48 mgN·kg-1,分別為培養(yǎng)初期總的無(wú)機(jī)氮含量的19.39%、4.39%和1.36%(NH+ 4-N+NO- 3-N初始含量均為108.62 mgN·kg-1),這說(shuō)明,隨著土壤含水量增大,氣態(tài)氮損失量增加;高、中含水量土壤N2O累積排放量分別比低含水量高13.23和2.22倍,高含水量土壤N2O累積排放量比中含水量高3.42倍。各水分處理間N2O累積排放量均達(dá)到顯著水平(<0.01)。
各含水量土壤,無(wú)C2H2處理N2O累積排放量均顯著高于0.1%(V/V)C2H2處理(<0.01),這說(shuō)明0.1%(V/V)C2H2處理有效抑制了硝化過(guò)程中的自養(yǎng)氨氧化過(guò)程;同時(shí),10%(V/V)C2H2處理N2O累積排放量均顯著高于0.1%(V/V)C2H2處理(<0.01),這表明10%(V/V)C2H2處理有效抑制了N2O還原成N2的過(guò)程(表1)。
誤差線表示標(biāo)準(zhǔn)誤(n=3).下同
表1 兩種C2H2處理對(duì)土壤N2O排放速率及累積排放量的影響
CK:無(wú)C2H2處理;ER:N2O排放速率;CE:N2O累積排放量。為了方差分析準(zhǔn)確性,保留了小數(shù)點(diǎn)后4 位。同一列中不同小寫(xiě)字母表示處理間差異顯著(<0.05)。下同
CK: Without C2H2treatmen; ER: Emission rate of N2O; CE: Cumulative emissions of N2O. In order to improve the accuracy of the variance analysis, 4 decimal places were reserved. The values followed by different little letters in the same column indicate the significant differences between treatments at<0.05 level. The same as below
培養(yǎng)期間,土壤中NH+ 4-N和NO- 3-N濃度變化說(shuō)明了氮的轉(zhuǎn)化過(guò)程。各處理土壤NH+ 4-N濃度大體上均呈逐漸下降趨勢(shì)。中、低含水量處理,土壤NH+ 4-N濃度在培養(yǎng)開(kāi)始后急劇下降,至培養(yǎng)第3天分別降低了95.54%和97.22%,之后稍有波動(dòng),但變化不大。高含水量處理NH+ 4-N濃度與另外兩個(gè)處理相比下降緩慢,到培養(yǎng)第3和10天分別減少了49.85%和77.89%(圖2-A)。
土壤NO- 3-N含量在整個(gè)培養(yǎng)周期呈增加的趨勢(shì)。中、低含水量處理,土壤中NO- 3-N濃度從培養(yǎng)開(kāi)始至第3天迅速升高,之后未出現(xiàn)明顯變化。至培養(yǎng)第18天,高、中和低含水量處理NO- 3-N濃度分別為80.66、101.54和100.03 mgN·kg-1(3個(gè)含水量NO- 3-N初始含量均為6.29 mgN·kg-1),高含水量處理與中、低含水量處理間差異顯著(=0.0086),中低含水量處理間差異不顯著(圖2-B)。
N2O還原成N2的途徑對(duì)于了解農(nóng)業(yè)土壤中N2O消耗非常重要,并且這可能是一個(gè)考慮如何減緩N2O排放的方向。0.1%(V/V)C2H2抑制自養(yǎng)氨氧化作用,10%(V/V)C2H2抑制N2O還原成N2,同時(shí)抑制自養(yǎng)氨氧化作用。本研究通過(guò)分析0.1%(V/V)C2H2和10%(V/V)C2H2處理組N2O排放通量來(lái)估測(cè)可能的反硝化產(chǎn)物(N2O+N2)排放量以及N2O/(N2O+N2)比率。培養(yǎng)期間,土壤反硝化作用產(chǎn)生的N2O和(N2O+N2)加權(quán)平均排放通量,高含水量處理(分別為0.85和1.11 mgN·kg-1·d-1)顯著高于中(分別為0.22和0.33 mgN·kg-1·d-1)、低含水量處理(分別為0.06和0.08 mg·N·kg-1·d-1),兩個(gè)較低含水量處理間也均達(dá)顯著水平(均為<0.0001;表1)。高、中和低含水量土壤N2O/(N2O+N2)比率分別為0.61、0.72和0.86,并且各水分處理間差異顯著(<0.0001),這說(shuō)明,在67%WFPS處理下,只有14%的N2O還原成了N2,大部分以N2O形式排放到了外界環(huán)境中(表1)。
圖2 不同含水量土壤培養(yǎng)期間NH+ 4-N(A)和NO- 3-N(B)含量
N2O峰值一般出現(xiàn)在施肥后一周內(nèi)[34]。因此,以下探討了培養(yǎng)第一周期間N2O同位素特征。N2O同位素特征值受土壤含水量的影響顯著(圖3)。對(duì)于N2O的δ15Nbulk和δ18O,各含水量處理間差異均達(dá)顯著性水平(<0.0001)。高、低含水量處理的SP值顯著高于中含水量(<0.0001)。所有處理下δ15Nbulk平均值均為負(fù)值,變化范圍為從-43.95‰到-5.31‰,δ18O和SP平均值均為正值,變化范圍分別為12.28‰—40.66‰以及10.30‰—21.58‰。土壤含水量對(duì)N2O同位素特征值影響利用相關(guān)性進(jìn)行分析發(fā)現(xiàn),WFPS與δ15Nbulk具有顯著負(fù)相關(guān)關(guān)系(=-0.77,<0.0001),另外,其與δ18O和SP均無(wú)顯著相關(guān)性;SP與δ15Nbulk呈顯著正相關(guān)(=0.34,<0.01),與δ15Nbulk相比,SP與δ18O相關(guān)性更加顯著(=0.56,<0.0001);δ15Nbulk和δ18O具有顯著正相關(guān)關(guān)系(=0.61,<0.0001)。
土壤排放N2O的δ15Nbulk值隨著土壤含水量的增加而減?。▓D3)。根據(jù)同位素分餾效應(yīng),添加NH+ 4會(huì)誘導(dǎo)土壤發(fā)生硝化作用,隨著硝化作用進(jìn)行,剩余底物會(huì)富集重同位素,導(dǎo)致NH+ 4的δ15N增加,這可能會(huì)促使N2O的δ15Nbulk發(fā)生顯著變化,因此,可能會(huì)使利用δ15Nbulk區(qū)分N2O產(chǎn)生途徑復(fù)雜化。研究發(fā)現(xiàn),3個(gè)含水量在無(wú)C2H2處理下N2O的δ15Nbulk在培養(yǎng)第一周均呈增加趨勢(shì),變化范圍為-54.78‰—3.62‰,這與之前的研究一致,即施用尿素和銨態(tài)氮肥料后,N2O的δ15Nbulk通常會(huì)隨著培養(yǎng)時(shí)間升高[35-36]。δ15Nbulk加權(quán)平均值為高含水量(-42.93‰)<中含水量(-28.81‰)<低含水量(-4.07‰),且各水分處理間差異顯著(<0.0001)。
圖3 不同含水量土壤培養(yǎng)第一周N2O同位素特征值(δ15Nbulk,δ18O和SP)
表2 兩種C2H2處理對(duì)土壤N2O 同位素特征值(δ15Nbulk,δ18O, SP)的影響
不加C2H2各處理SP值在培養(yǎng)第一周均呈先升高再下降的趨勢(shì)(圖3)。高、中和低含水量土壤N2O的SP加權(quán)平均值,不加C2H2處理下分別為20.70‰、10.26‰和21.07‰,這與之前純培養(yǎng)研究相比,高于反硝化作用SP值(-10‰—0‰),低于硝化作用SP值(33‰—37‰)[39],這說(shuō)明在各含水量土壤中可能同時(shí)具有多個(gè)N2O產(chǎn)生途徑。0.1%(V/V)C2H2處理下高、中和低含水量的SP加權(quán)平均值分別為17.38‰、8.88‰和19.96‰,10%(V/V)C2H2處理下,高(15.71‰)、中(5.95‰)和低(18.67‰)含水量土壤N2O的SP加權(quán)平均值分別比0.1%(V/V)C2H2處理降低了10%、33%和6%。該結(jié)果表明,反硝化過(guò)程中可能發(fā)生N2O還原(表2)。低含水量處理的SP值在培養(yǎng)前兩天均較低(分別為6.74‰和12.04‰),以反硝化作用為主,分別占N2O生成量的66.15%和56.36%;之后主要以硝化作用為主;中含水量土壤的SP值在培養(yǎng)第1—7天均較低(3.92‰—15.21‰),N2O主要由反硝化作用產(chǎn)生,由反硝化作用排放的N2O貢獻(xiàn)率為40.90%—74.04%(表3);高含水量處理10%(V/V)C2H2的SP值在培養(yǎng)第一周比較高(7.61‰—21.11‰),而添加10%(V/V)C2H2處理會(huì)抑制自養(yǎng)氨氧化過(guò)程以及N2O還原成N2過(guò)程,故該處理不會(huì)因此出現(xiàn)較高的SP值,這說(shuō)明可能發(fā)生了部分真菌反硝化作用。MAEDA等通過(guò)研究67種真菌發(fā)現(xiàn)其SP平均值為30‰±4.8‰(測(cè)得的SP值范圍為15.8‰—36.7‰)[40]。
土壤含水量是控制N2O排放的主要因素[41],它對(duì)N2O產(chǎn)生途徑及同位素組成均具有顯著影響。該研究表明土壤N2O排放量隨土壤含水量的增加而增加,這與前人的研究結(jié)果一致[42-44]。含水量從67%升高到95% WFPS,土壤N2O排放量出現(xiàn)顯著增加。這與溫帶大田土壤的研究結(jié)果相似,Clayton通過(guò)研究草地土壤發(fā)現(xiàn),65% WFPS是一個(gè)重要臨界點(diǎn),當(dāng)超過(guò)該含水量,土壤N2O排放量出現(xiàn)顯著增加[45]。溫帶草地和農(nóng)田土壤含水量從60%升到80% WFPS時(shí),N2O排放量分別增加了12倍和30倍[41],這與本研究結(jié)果相似,高、中含水量土壤N2O累積排放量分別比低含水量處理高13.23倍和2.22倍,這可能是由于隨著土壤含水量(WFPS)的增加,水不斷充滿土壤孔隙,O2向土壤中擴(kuò)散受到限制,土壤的厭氧條件逐漸增強(qiáng)并促進(jìn)反硝化作用,N2O也隨之大量產(chǎn)生并排放出土壤[46-47]。隨著土壤含水量(WFPS)增加,N2O排放量增加,在含水量為80%—95% WFPS條件下出現(xiàn)最大的N2O排放量[48]。當(dāng)土壤水勢(shì)達(dá)到-5 kPa(約為97% WFPS),出現(xiàn)最大的N2O排放量,土壤含水量(-2.5 kPa)進(jìn)一步增加,N2O產(chǎn)生量減少,可能是由于N2O還原速率增加[49-50]。但是,也有研究提出在70% WFPS下出現(xiàn)較高的N2O排放量[11]。Davidson研究發(fā)現(xiàn),最大N2O排放量產(chǎn)生于60% WFPS,硝化作用和反硝化作用對(duì)N2O產(chǎn)生均具有重要作用[6]。出現(xiàn)該矛盾原因可能是由試驗(yàn)和土壤類型的不同導(dǎo)致。
表3 不同含水量土壤硝化和反硝化作用對(duì)N2O排放的貢獻(xiàn)率
同一土體中可以同時(shí)發(fā)生多個(gè)N2O產(chǎn)生過(guò)程,利用穩(wěn)定同位素與C2H2(0.1%和10%V/V)抑制相結(jié)合的方法可以確定自養(yǎng)硝化作用和反硝化作用對(duì)土壤N2O排放的貢獻(xiàn)率。本研究發(fā)現(xiàn)自養(yǎng)硝化作用和反硝化作用對(duì)土壤排放N2O的貢獻(xiàn)率隨著土壤含水量的變化而有所不同,但絕對(duì)貢獻(xiàn)率因所選擇的方法不同有很大的差異。僅利用乙炔抑制技術(shù)估測(cè)的反硝化作用(含水量為67%—80% WFPS時(shí)貢獻(xiàn)率為82%—83%)對(duì)N2O排放貢獻(xiàn)率大于同位素技術(shù)(含水量為67%—80% WFPS時(shí)貢獻(xiàn)率為32%—58%)測(cè)得的結(jié)果,利用兩種方法估測(cè)反硝化作用對(duì)N2O排放的貢獻(xiàn)率,大于25%的差異僅出現(xiàn)在67% WFPS條件下,這有可能是乙炔抑制技術(shù)忽略了異養(yǎng)硝化作用對(duì)土壤排放N2O的貢獻(xiàn)。但是,不同途徑對(duì)土壤N2O排放的貢獻(xiàn)隨著土壤含水量的變化趨勢(shì)是相同的。
在大部分生態(tài)系統(tǒng)中,反硝化作用是主要的N2O產(chǎn)生途徑。其最后一步是N2O還原酶將中間產(chǎn)物N2O還原成N2的過(guò)程,這步反應(yīng)對(duì)估測(cè)N2O消耗、了解土壤中氮積累和排放到大氣中的氣態(tài)氮量至關(guān)重要,并且這可能是如何減緩N2O排放的重要方向。反硝化產(chǎn)物N2O/(N2O+N2)比率用于評(píng)估N2O轉(zhuǎn)化為N2的程度,變化范圍從0(所有的N2O全部轉(zhuǎn)化為N2)到1(N2O是反硝化過(guò)程的唯一最終產(chǎn)物)[51]。本研究發(fā)現(xiàn),土壤含水量越高,土壤排放的N2O轉(zhuǎn)化成N2的比例越高,土壤排放到外界環(huán)境的N2O絕對(duì)量也越高。這將會(huì)導(dǎo)致更多的N2O排放到大氣中,加劇溫室效應(yīng)。之前的一些研究也提出較高含水量的土壤出現(xiàn)最大的N2O排放量[8,48],這與本研究結(jié)果一致。這說(shuō)明可以通過(guò)控制土壤水分條件來(lái)減緩N2O排放。
一些文獻(xiàn)報(bào)道δ15Nbulk是區(qū)分硝化作用和反硝化作用的重要指標(biāo),這是因?yàn)榕c反硝化作用相比,硝化作用會(huì)加速δ15N-NO- 3貧化[35,52],其他學(xué)者主張δ15Nbulk取決于底物來(lái)源NH+ 4和NO- 3以及土壤異質(zhì)性,并沒(méi)有考慮N2O還原過(guò)程對(duì)剩余N2O的影響[28,53]。本研究發(fā)現(xiàn)施用NH+ 4后,由于硝化過(guò)程中同位素分餾導(dǎo)致δ15Nbulk值隨著培養(yǎng)時(shí)間逐漸升高。底物(NH+ 4)充足,硝化作用產(chǎn)物NO- 3受底物影響,根據(jù)同位素分餾原理,微生物優(yōu)先利用輕同位素,導(dǎo)致δ15N-NO- 3逐漸貧化,而發(fā)生反硝化作用的底物幾乎全部來(lái)自于硝化作用產(chǎn)物(NO- 3),故反硝化作用占據(jù)主導(dǎo)地位的較高土壤含水量,其δ15Nbulk值越低,本研究顯示δ15Nbulk值隨著含水量的增加而降低(δ15Nbulk加權(quán)平均值,95% WFPS處理<80% WFPS處理<67% WFPS處理)。
δ18O值受N2O向N2還原過(guò)程的影響,同時(shí)O2,H2O與NO- 3之間的O原子交換也會(huì)影響其大小[54-55]。與δ15Nbulk和SP相比,對(duì)N2O分子中δ18O的解釋更為復(fù)雜[56]。N2O-O可能來(lái)源于不同途徑,理論上,硝化細(xì)菌-反硝化過(guò)程中(NH+ 4→NH2OH→NO- 2→NO→N2O)一半的氧原子來(lái)自于空氣中O2,另一半氧原子來(lái)自于H2O,羥胺氧化過(guò)程中,100%的N2O-O來(lái)源于O2[54]。如果反硝化細(xì)菌利用NO- 3產(chǎn)生N2O,那么N2O中所有的O都來(lái)自于NO- 3。但是在實(shí)際環(huán)境中,H2O-O與NO- 2-O和NO- 3-O發(fā)生氧交換,且H2O-O和NO- 3-O對(duì)N2O-O的貢獻(xiàn)與微生物種類有關(guān)[55]?;谝陨侠碚摵脱芯拷Y(jié)果,采用δ18O-N2O值對(duì)N2O來(lái)源進(jìn)行分析比較復(fù)雜,需要考慮多種因素。本試驗(yàn)中,δ18O與乙炔抑制技術(shù)相結(jié)合,提高了其準(zhǔn)確性。各含水量土壤中,0.1%(V/V)C2H2處理組的δ18O值顯著高于10%(V/V)C2H2處理組(<0.01),這可能是由于兩種處理土壤中均主要發(fā)生反硝化作用,只是10%(V/V)C2H2會(huì)抑制土壤中N2O還原成N2的過(guò)程,而反硝化作用會(huì)消耗土壤中的NO- 3,并使土壤中剩余NO- 3富18O,增加其δ18O值。有研究提出,反硝化過(guò)程中發(fā)生N2O還原會(huì)使N-O鍵斷裂,導(dǎo)致剩余N2O相對(duì)富集δ15Nα和δ18O[34,37-38]。盡管一些研究中利用δ18O來(lái)區(qū)分N2O產(chǎn)生途徑[53,57],但是只依靠δ18O-N2O 值對(duì)N2O來(lái)源進(jìn)行分析仍備受爭(zhēng)議,如果δ18O與其他同位素值(如δ15N,SP)結(jié)合來(lái)分析,可能會(huì)提高其準(zhǔn)確性。
與δ15Nbulk和δ18O相比,SP值是區(qū)分土壤N2O排放途徑的一種重要工具,其優(yōu)勢(shì)在于受樣品干擾小,與N2O前體的δ15N同位素組成沒(méi)有相關(guān)關(guān)系[24-2526]。一般隨著土壤含水量(WFPS)的增加,土體的厭氧體積逐漸增大并使反硝化作用加強(qiáng),N2O也隨之大量產(chǎn)生并排放出土壤[46-47]。本研究高含水量處理厭氧體積高于中含水量處理,其SP值之所以高于中含水量處理,可能是發(fā)生了部分真菌反硝化作用[27]。Maeda等[40]通過(guò)對(duì)67種真菌測(cè)試發(fā)現(xiàn),其SP平均值為30.0‰±4.8‰(變化范圍為15.8‰—36.7‰)[40]。另有文獻(xiàn)報(bào)道真菌產(chǎn)生N2O的SP值為36.9‰—37.1‰,這與細(xì)菌硝化作用的相似(34.1‰—39.6‰)[27]。
本研究利用同位素技術(shù)結(jié)合乙炔抑制技術(shù),高含水量處理中,加10%(V/V)C2H2只發(fā)生反硝化作用,其會(huì)抑制自養(yǎng)氨氧化過(guò)程和N2O還原成N2的過(guò)程,故該處理不會(huì)因?yàn)檫@兩個(gè)過(guò)程而產(chǎn)生較高的SP值[26],而95% WFPS在10%(V/V)C2H2條件下土壤排放N2O的SP加權(quán)平均值為15.71‰,這正說(shuō)明高含水量處理中發(fā)生部分真菌反硝化作用。與細(xì)菌反硝化作用相比,真菌反硝化作用和硝化作用排放N2O的過(guò)程均會(huì)產(chǎn)生較高的SP值[27]。因此,利用同位素技術(shù)區(qū)分細(xì)菌硝化作用和真菌反硝化作用產(chǎn)生的N2O遇到挑戰(zhàn)[27]。另外,較高土壤含水量更有利于反硝化反應(yīng)的發(fā)生,而施加硫酸銨后,雖然同樣產(chǎn)生厭氧環(huán)境,由于硫酸銨提供大量可利用氮,在土壤表層硝化反應(yīng)得到促進(jìn)。除此之外,SP值會(huì)隨著N2O還原過(guò)程發(fā)生變化,使對(duì)N2O產(chǎn)生途徑評(píng)估產(chǎn)生偏差。由完全的硝化作用和細(xì)菌反硝化作用產(chǎn)生N2O的SP值,分別約為33‰和0‰,還原過(guò)程會(huì)使SP值升高[26],這與本研究結(jié)果一致。高、中和低含水量土壤,10%(V/V)C2H2處理組N2O累積排放量分別比0.1%(V/V)C2H2處理增加了26%、40%和16%,說(shuō)明未加10%(V/V)C2H2處理的土壤發(fā)生N2O還原過(guò)程;同時(shí),與10%(V/V)C2H2處理相比,0.1%(V/V)C2H2處理下高、中和低含水量的SP加權(quán)平均值分別升高了11%、49%和7%,這正驗(yàn)證了該理論。根據(jù)同位素二源混合模型,以上過(guò)程會(huì)使由SP值估測(cè)的N2O產(chǎn)生途徑低估反硝化作用對(duì)N2O排放的貢獻(xiàn)[26,58]。
與示蹤技術(shù)相比,利用自然豐度同位素技術(shù)(例如SP值的運(yùn)用)不需要人為標(biāo)記培養(yǎng)、操作方便,具有明顯優(yōu)勢(shì)。但是微生物氮循環(huán)過(guò)程相當(dāng)復(fù)雜,對(duì)SP值用于區(qū)分N2O產(chǎn)生途徑的方法應(yīng)慎重利用,如硝酸鹽異化還原成銨和異養(yǎng)硝化作用也會(huì)產(chǎn)生N2O[11,59-60],并影響氮循環(huán)過(guò)程中一些含氮化合物的同位素特征值。目前為止,這些過(guò)程對(duì)土壤產(chǎn)生N2O的15N的SP值的影響還不明確[61]。因此,本研究并未對(duì)這些過(guò)程對(duì)SP值的影響進(jìn)行分析。雖然SP值在應(yīng)用中存在一些不足,但其確實(shí)是一種有效的N2O溯源方法,并已在國(guó)際上得到廣泛認(rèn)可。當(dāng)下中國(guó)對(duì)SP值研究剛剛起步,本文對(duì)其進(jìn)行初步探討,接下來(lái)將進(jìn)一步探究微生物群落結(jié)構(gòu)及其酶組成對(duì)土壤產(chǎn)生N2O的同位素特征值隨時(shí)間變化的影響,從而能提高利用SP值區(qū)分N2O產(chǎn)生途徑的準(zhǔn)確性;另外,土壤反硝化的NO- 3還原成N2O過(guò)程中,真菌和細(xì)菌反硝化作用對(duì)土壤產(chǎn)生N2O的貢獻(xiàn)及其對(duì)SP值變化的影響,也需要做進(jìn)一步研究。
本試驗(yàn)將自然豐度的同位素技術(shù)與乙炔抑制技術(shù)相結(jié)合測(cè)定不同含水量(WFPS)下硝化作用和反硝化作用對(duì)土壤N2O排放的貢獻(xiàn)率。隨著土壤含水量增大,N2O排放量增加。各處理均在前4天具有較高的N2O排放量,之后排放量相對(duì)較小,并且變化不大。隨著土壤含水量增加,N2O/(N2O+N2)比率降低,土壤以N2O形式排放到大氣中的比例降低,以N2形式排放到大氣中的比例升高,N2O還原過(guò)程增強(qiáng)。本研究通過(guò)SP值估算硝化和反硝化作用的貢獻(xiàn)率得出,培養(yǎng)前7 d內(nèi),67% WFPS土壤N2O排放以硝化作用為主,且在前2 d以反硝化作用為主,之后主要通過(guò)硝化作用排放N2O。在一定范圍內(nèi),含水量升高會(huì)使反硝化作用增強(qiáng)。
[1] IPCC. Climate Change 2013: The Physical Science Basis.Working Group I Contribution to the IPCC 5th Assessment Report. IPCC, Cambridge, UK and New York, NY, USA,2013.
[2] KROEZE C, MOSIER A, BOUWMAN L. Closing the global N2O budget: A retrospective analysis 1500–1994.1999, 13(1): 1-8.
[3] SAHRAWAT K L, KEENEY D R. Nitrous oxide emission from soils.1986, 4:103-148.
[4] BOUWMAN A F. Soils and the greenhouse effect: the present status and future trends concerning the effect of soils and their cover on the fluxes of greenhouse gasses, the surface energy balance, and the water balance.1990.
[5] GRANLI T, B?CKMAN O C. Nitrous oxide from agriculture.1994(12):1-128.
[6] DAVIDSON E A. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. A global inventory of nitric oxide emissions from soils.//ROGERS J E, WHITMAN W B. Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Ooxides, and Halomethanes. Washington, DC: American Society for Microbiology, 1991: 219- 235.
[7] STEVENS R J, LAUGHLIN R J, BURNS L C, ARAH J R M, HOOD R C. Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil.1997, 29(2): 139-151.
[8] 鄭循華, 王明星, 王躍思, 沈壬興, 龔宴邦, 駱冬梅, 張文, 金繼生, 李老土. 稻麥輪作生態(tài)系統(tǒng)中土壤濕度對(duì)N2O產(chǎn)生與排放的影響. 應(yīng)用生態(tài)學(xué)報(bào), 1996, 7(3): 273-279.
ZHENG X H, WANG M X, WANG Y S, SHEN R X, GONG Y B, LUO D M, ZHANG W, JIN J S, LI L T. The effect of soil moisture on n2o production and emission in rice-wheat rotation system.1996, 7(3): 273-279. (in Chinese)
[9] ABBASI M K, ADAMS W A. Estimation of simultaneous nitrification and denitrification in grassland soil associated with urea-N using15N and nitrification inhibitors.2000, 31(1): 38-44.
[10] WOLF I, RUSSOW R. Different pathways of formation of N2O, N2and NO in black earth soil.2000, 32(2): 229-239.
[11] BATEMAN E J, BAGGS E M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space.2005, 41(6): 379-388.
[12] RUSER R, FLESSA H, RUSSOW R, SCHMIDT G, BUEGGER F, MUNCH J C. Emission of N2O, N2and CO2from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting.2006, 38(2): 263-274.
[13] N?MMIK H. Investigations on denitrification in soil.1956, 6(2): 195-228.
[14] WALTER H M, KEENEY D R, FILLERY I R. Inhibition of Nitrification by Acetylene1.1979, 43(1): 195-196.
[15] DE BOER W, KOWALCHUK G A. Nitrification in acid soils: Microorganisms and mechanisms.2001, 33(7/8): 853-866.
[16] FLATHER D H, BEAUCHAMP E G. Inhibition of the fermentation process in soil by acetylene.1992, 24(9): 905-911.
[17] BERNOT M J, DODDS W K, GARDNER W S, MCCARTHY M J, SOBOLEV D, TANK J. Comparing denitrification estimates for a texas estuary by using acetylene inhibition and membrane inlet mass spectrometry.2003, 69(10): 5950-5956.
[18] YAO Z S, LIU C Y, DONG H B, WANG R, ZHENG X H. Annual nitric and nitrous oxide fluxes from Chinese subtropical plastic greenhouse and conventional vegetable cultivations.2015, 196: 89-97.
[19] SCHMIDT H L, WERNER R A, YOSHIDA N, WELL R. Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects.2004, 18(18): 2036-2040.
[20] STEIN L Y, YUNG Y L. Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide.2003, 31(31): 329-356.
[21] TOYODA S. Production mechanism and global budget of N.2002, 29(3):1037.
[22] POPP B N, WESTLEY M B, TOYODA S, MIWA T, DORE J E, YOSHIDA N, RUST T M, SANSONE F J, RUSS M E, DSTROM N E, OSTROM P H. Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre.2002, 16(4): 12-1–12-10.
[23] YOSHIDA N, TOYODA S. Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers.2000, 405(6784): 330-334.
[24] SUTKA R L, OSTROM N E, OSTROM P H, GANDHI H, BREZNAK J A. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath.2003, 17(7): 738-745.
[25] TOYODA S, MUTOBE H, YAMAGISHI H, YOSHIDA N, TANJI Y. Fractionation of N2O isotopomers during production by denitrifier.2005, 37(8):1535-1545.
[26] SUTKA R L, OSTROM N E, OSTROM P H, LI F. Distinguishing Nitrous Oxide Production from Nitrification and Denitrification on the Basis of Isotopomer Abundances.2006, 72(1): 638-644.
[27] SUTKA R L, ADAMS G C, OSTROM N E, OSTROM P H. Isotopologue fractionation during N2O production by fungal denitrification.2008, 22(24): 3989-3996.
[28] BAGGS E M. A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations.2008, 22(11): 1664-1672.
[29] STEIN L Y, YUNG Y L. Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide.2003, 31(31): 329-356.
[30] TOYODA S. Production mechanism and global budget of N.2002, 29(3): 1037.
[31] POPP B N, WESTLEY M B, TOYODA S, MIWA T, DORE J E, YOSHIDA N, RUST T M, SANSONE F J, RUSS M E, DSTROM N E, OSTROM P H. Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre.2002, 16(4): 12-1–12-10.
[32] YOSHIDA N, TOYODA S. Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers.2000, 405(6784):330-334.
[33] 鮑士旦. 土壤農(nóng)化分析. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000.
BAO S D.Beijing: China Agriculture Press, 2000. (in Chinese)
[34] PARK S, PéREZ T, BOERING K A, TRUMBORE S E, GIL J, MARQUINA S, TYLER S C. Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils?2011, 25(1): 575-582.
[35] PéREZ T, TRUMBORE S E, TYLER S C, MATSON P A, ORTIZ-MONASTERIO I, RAHN T, GRIFFITH D W T. Identifying the agricultural imprint on the global N2O budget using stable isotopes.2001, 106(D9): 9869-9878.
[36] UEDA S, GO C S, SUWA Y. Stable isotope ?ngerprint of N2O produced by ammonium oxidation under laboratory and ?eld conditions//Internationa Workshop on the Atmospheric N2O Budget: An Analysis of the State of Our Understanding of Sources and Sink s of Atmospheric N2O. Tsukuba, Japan: National Institute of Agro-Environmental Sciences, 1999: 3-20.
[37] WESTLEY M B, YAMAGISHI H, POPP B N, YOSHIDA N. Nitrous oxide cycling in the Black Sea inferred from stable isotope and isotopomer distributions.2006, 53(17/19):1802-1816.
[38] DECOCK C, SIX J. How reliable is the intramolecular distribution of15N in N2O to source partition N2O emitted from soil?.2013, 65: 114-127.
[39] OSTROM N E, OSTROM P H. The Isotopomers of Nitrous Oxide: Analytical Considerations and Application to Resolution of Microbial Production Pathways. Handbook of Environmental Isotope Geochemistry. Berlin Heidelberg: Springer2011: 453-476.
[40] MAEDA K, SPOR A, EDEL-HERMANN V, HERAUD C, BREUIL M, BIZOUARD F, TOYODA S, YOSHIDA N, STEINBERG C, PHILIPPOT L. N2O production, a widespread trait in fungi.2015, 5.
[41] DOBBIE K E, SMITH K A. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol.2001, 52(4): 667-673.
[42] DOBBIE K E, MCTAGGART I P, SMITH K A. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors.1999, 104(D21): 26891-26899.
[43] ABBASI M K, ADAMS W A. Gaseous N emission during simultaneous nitrification-denitrification associated with mineral N fertilization to a grassland soil under field conditions.2000, 32(8):1251-1259.
[44] SKIBA U, BALL B. The effect of soil texture and soil drainage on emissions of nitric oxide and nitrous oxide.2002, 18(1): 56-60.
[45] CLAYTON H, MCTAGGART I P, PARKER J, SWAN L, SMITH K A. Nitrous oxide emissions from fertilised grassland: a 2-year study of the effects of N fertiliser form and environmental conditions.1997, 25(3): 252-260.
[46] SMITH K A. A model of the extent of anaerobic zones in aggregated soils, and its potential application to estimates of denitrification.1980, 31(2): 263-277.
[47] 黃國(guó)宏, 陳冠雄, 韓冰, Oswald Van Cleemput. 土壤含水量與N2O產(chǎn)生途徑研究. 應(yīng)用生態(tài)學(xué)報(bào), 1999, 10(1): 53-56.
HUANG G H, CHEN G X, HAN B, OSWALD V C.Study on soil water content and N2O pathway.1999, 10(1): 53-56. (in Chinese)
[48] SCHINDLBACHER A, ZECHMEISTER‐BOLTENSTERN S, BUTTERBACH‐BAHL K. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils.2004, 109(109): 1739-1739.
[49] SMITH K A, THOMSON P E, CLAYTON H, MCTAGGART I P, CONEN F. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils.1998, 32(19): 3301-3309.
[50] FOCHT D D, VERSTRAETE W. Biochemical ecology of nitrification and denitrification in soils.1977 (16): 135-214.
[51] JONES C M, SPOR A, BRENNAN F P, BREUIL M, BRU D, LEMANCEAU P, GRIFFITHS B, HALLIN S, PHILIPPOT L. Recently identified microbial guild mediates soil N2O sink capacity.2014, 4(9): 801-805.
[52] PéREZ T. Factors that control the isotopic composition of N2O from soil emissions.2005: 69-84.
[53] WELL R, FLESSA H, XING L, TANG X J, R?MHELD V. Isotopologue ratios of N2O emitted from microcosms with NH+ 4 fertilized arable soils under conditions favoring nitrification.2008, 40(9): 2416-2426.
[54] KOOL D M, WRAGE N, OENEMA O, DOLFING J, VAN GROENIGEN J W. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO- 3 and N2O: a review.2007, 21(22): 3569-3578.
[55] CASCIOTTI K L, SIGMAN D M, HASTINGS M G. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method.2002, 74(19): 4905-4912.
[56] WELL R, FLESSA H. Isotopologue signatures of N2O produced by denitrification in soils.2009, 114, G02020.
[57] SZUKICS U, ABELL G C J, H?DL V, MITTER B, SESSITSCH A, HACKL E, ZECHMEISTER-BOLTENSTERN S. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil.2010, 72(3): 395-406.
[58] OSTROM, N. E., PITT A, SUTKA R, OSTROM P H, STUART GRANDY A, HUIZINGA K M, PHILIP ROBERTSON G. Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers.2007, 112: G02005. doi:10.1029/2006JG000287, 2007.
[59] SMITH M S. Dissimilatory reduction of NO- 2 to NH+ 4 and N2O by a soilsp.1982, 43(4): 854-860.
[60] ROBERTSON G P, TIEDJE J M. Nitrous oxide sources in aerobic soils: nitrification, denitrification and other biological processes.1987, 19(2): 187-193.
[61] SPOTT O, STANGE C F. A new mathematical approach for calculating the contribution of anammox, denitrification and atmosphere to an N2mixture based on a15N tracer technique.2007, 21(14): 2398-2406.
(責(zé)任編輯 李云霞)
The Effects of Soil Water Content on N2O Emissions and Isotopic Signature of Nitrification and Denitrification
ZHENG Qian1, DING JunJun1, LI YuZhong1,2, LIN Wei1, XU ChunYing1, LI QiaoZhen1, MAO LiLi1
(1Institue of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Dryland Farming Agriculture, Ministry of Agriculture, Beijing 100081;2Environmental Stable Isotope Laboratory, Chinese Academy of Agricultural Sciences, Beijing 100081)
The objective of this paper is to understand the contribution of microbial processes to N2O production and its changing rules under different water contents to provide a theoretical basis for reducing agricultural N2O emissions.A microcosm experiment was performed to investigate the effects of different water-filled pore space on N2O emissions and isotopic signatures (δ15Nbulk, δ18O and nitrogen isotopomer site preference of N2O) of soil at Shunyi district, Beijing. The study combined stable isotope technique and gas inhibitor method to analyze N2O flux and its isotope signatures that emitted from soil. The experiment was set up three different water content levels, including 67%, 80% and 95% WFPS, and with three inhibitor levels, (without C2H2, with 0.1% (V/V) C2H2and with 10% (V/V) C2H2). After two hours incubation, the soil samples were collected to determine the concentrations of NH+ 4-N and NO- 3-N. The gas samples were collected to determine the isotope signatures, and the two end-members mixing model was applied to quantify the respective contributions of microbial processes to N2O production.According to the incubation of the soil, the weighted average N2O flux of 95%, 80% and 67% WFPS were 1.17, 0.27 and 0.08 mgN·kg-1·d-1, respectively, and the N2O emissions of 95% WFPS were significantly higher than that of both 80% and 67% WFPS, as well as the N2O emissions of 80% WFPS were significantly higher than that of 67% WFPS. The cumulative emissions of (N2O+N2) in 95%, 80% and 67% WFPS were 18.05%, 5.27%, and 1.24% of initial mineral nitrogen, respectively, over the entire incubation period. The cumulative emissions of (N2O+N2) were 19.61, 5.72 and 1.35 mgN·kg-1, respectively; the initial content of NH+ 4-N+NO- 3-Nwas 108.62 mgN·kg-1. Compared with 67% WFPS, the cumulative (N2O+N2) emissions of 95% and 80% WFPS increased 13.53 and 3.24 times, respectively. The cumulative emissions of (N2O+N2) in 95% WFPS was 2.43 times greater than that of 80% WFPS. The values of reduced NH+ 4-N+NO- 3-N as gaseous nitrogen increased with the increase of the water content. The weighted average δ15Nbulkvalues varied from -42.93‰ to -4.07‰, and the higher level of soil water content showed significantly higher N2O emissions. 10% (V/V) C2H2would inhibit the reduction of N2O to N2. The δ18O values with 10% (V/V) C2H2were significantly smaller than that of with 0.1% (V/V) C2H2in three water content levels. And the ratio of N2O/(N2O+N2) reduced with the increase of soil moisture. Multiple N2O processes occurred simultaneously in all treatments. The values of SP increased during the initial four days and then decreased gradually with incubation time. The SP values of 67%WFPS treatment at the first two days ranged from 6.74‰ to 12.04‰, and the contribution of denitrification to N2O production was from 56.36% to 66.15%, suggesting that denitrification was the dominant microbial process, then the contribution of nitrification (55.78%-100%) to N2O production became greater. The weighted average SP value was 10.26‰ in 80% WFPS treatment, indicating denitrification (40.90%-74.04%) was the major N2O production process. There were larger SP values in 95% WFPS treatment with 10% (V/V) C2H2in the first seven incubation days, ranged from 7.61‰ to 21.11‰. Compared with 0.1% (V/V) C2H2, the weighted average SP values of N2O under 95%, 80% and 67% WFPS treatments with 10% (V/V) C2H2produced from soil reduced by 0.10, 0.33 and 0.06 times respectively.The increase of soil water content promotes N2O emission, and the 95% WFPS treatment showed the highest N2O emissions. In the 67% WFPS treatment, the initial stage of N2O emission was dominated by denitrification, followed by nitrification. Denitrification was the dominate process in 80% WFPS treatment and nitrification was the dominate process in 95% WFPS treatment.
water-filled pore space (WFPS); N2O; nitrification; denitrification; stable isotope; site preference value (SP value)
2017-06-06;
2017-08-15
國(guó)家自然科學(xué)基金(41473004)、國(guó)家自然科學(xué)青年基金(41301553)
鄭欠,Tel:13273230892;E-mail:13273230892@163.com。
李玉中,Tel:18810871629;E-mail:liyuzhong@caas.cn
中國(guó)農(nóng)業(yè)科學(xué)2017年24期