郭昭亮,范 誠,劉明濤,任國武,湯鐵鋼,劉倉理
爆炸與電磁加載下無氧銅環(huán)、柱殼的斷裂模式轉變*
郭昭亮,范 誠,劉明濤,任國武,湯鐵鋼,劉倉理
(中國工程物理研究院流體物理研究所,四川 綿陽621999)
考慮斷面收縮率、局域斷裂應變以及平均斷裂應變,并基于電磁膨脹環(huán)、爆炸膨脹環(huán)(柱殼)實驗平臺,研究了高純無氧銅(TU1)環(huán)及柱殼在高應變率載荷下的膨脹斷裂行為。采用高速攝影技術拍攝柱殼外壁的膨脹斷裂形貌演化過程,用于確定柱殼平均斷裂應變;利用激光干涉測速技術獲得樣品徑向膨脹速度歷史,用于確定加載應變率;利用樣品的全回收測量及微觀表征,確定了無氧銅環(huán)、柱殼的局域斷裂應變及斷裂模式。實驗表明,隨著應變率的增加,TU1材料的平均斷裂應變增加,斷面的收縮程度加劇,并在應變率約為1.0×104s-1附近會出現(xiàn)明顯的斷裂模式轉變,斷面收縮率出現(xiàn)量級上的跳躍,從100變化至約103,局域斷裂應變呈現(xiàn)明顯的分區(qū)現(xiàn)象。
頸縮;斷裂;膨脹環(huán);高應變率;斷裂應變
材料及結構在高應變率載荷加載下的動力學響應,涉及材料的快速變形及應變局域化、動態(tài)斷裂等相關過程。材料在高應變率下的力學行為與準靜態(tài)加載下不同,需要考慮慣性效應與應變率效應帶來的影響[1],特別是應變率敏感材料,材料的屈服應力,斷裂應變等都會隨著應變率的變化而發(fā)生變化[2]。此外,斷裂現(xiàn)象的發(fā)生是一個動態(tài)過程,涉及應力波的傳播與能量的快速釋放,研究表明,能量總是會選擇最快的釋放路徑[3]。因此,不同載荷作用下的動態(tài)斷裂將展現(xiàn)出不同的特征形貌。為了研究各種類型的斷裂現(xiàn)象,人們采用了不同的比較準則,其中斷裂應變作為可直接測量的物理量被廣泛使用。然而,針對不同的斷裂模式,與之相關的斷裂應變的選擇標準則會出現(xiàn)較大的差別。在厚壁圓筒膨脹斷裂研究中,湯鐵鋼等[4]采用裂紋張開后爆轟產(chǎn)物泄漏時刻的工程應變作為衡量柱殼承受動態(tài)載荷程度的標準。隨著診斷技術的進步,任國武等[5-6]在實驗中利用高速攝影、多點密排激光干涉測速等技術可精密診斷外壁裂紋萌生時刻的應變。然而需要注意的是,上述兩類應變都是采用殼體環(huán)向的平均變形來計算,雖然可以作為衡量結構承載程度的標準,但這種基于平均假定的計算方法,會抹平局域頸縮帶來的應變局域化特征,它只是一種近似,并不能準確描述局域變形特征。另一方面,從定性描述的角度出發(fā),人們將材料的斷裂分為脆性斷裂與韌性斷裂,但這種定性描述并不能準確描述脆性斷裂與韌性斷裂的程度。比如對于金屬這類韌性較好的材料,不同的應變率加載下,宏觀上可能都展現(xiàn)出韌性斷裂的特征,然而其變形局域化及斷口形貌可能會出現(xiàn)較大的差別,甚至會出現(xiàn)斷裂模式的轉變。H.Zhang等[7]在研究中發(fā)現(xiàn),金屬環(huán)在膨脹斷裂過程中存在3種斷裂模式:(1)diffuse necking;(2)sheet necking;(3)shear banding。雖然斷面收縮率較小的diffuse necking與斷面收縮率較大的sheet necking都屬于韌性斷裂,然而顯著的塑性局域化差異已經(jīng)不能單純的使用韌脆性這一偏宏觀唯象的描述來表征。
為了準確描述金屬環(huán)、柱殼膨脹斷裂過程中結構的局域化特征,本文中嘗試引入描述局域化變形與斷裂程度的斷面收縮率及局域斷裂應變;利用電磁膨脹環(huán)實驗平臺開展一維環(huán)的拉伸斷裂研究,并利用新型的線起爆加載平臺,開展金屬環(huán)、柱殼膨脹斷裂實驗研究;通過各類實驗研究,重點關注平均斷裂應變、斷面收縮率及局域斷裂應變隨應變率的變化關系,用以闡述平均斷裂應變、局域斷裂應變在描述結構綜合抗變形斷裂能力以及材料韌性方面的應用。
H.Zhang等[8]發(fā)現(xiàn),回收破片中的應變并不均勻,因此認為平均斷裂應變并不是一個很好的描述試樣環(huán)變形的物理量。事實上,試樣斷裂之后的環(huán)向平均應變是結構宏觀抗變形能力的綜合表征,無法準確展現(xiàn)局域的斷裂特征,這由其定義所決定。為了能夠比較不同載荷強度下的材料與結構的斷裂程度,本文中引入斷面的收縮率來定量給出塑性局域化程度。針對本文實驗中發(fā)現(xiàn)的頸縮導致的兩種斷裂形式diffuse necking、sheet necking,定義斷面收縮率為初始尺寸與斷面截面之比,對于環(huán)結構:
式中:S0為初始截面面積,Sf為斷面面積。對于柱殼,由于軸向變化相對較小,故斷面收縮率近似為:
式中:h0為柱殼的初始厚度,hf為斷面厚度。由上述定義可以看出,斷面收縮率越大,頸縮程度越嚴重。
若材料在對應的載荷作用下體積變化不明顯,則可視為不可壓材料,由dV=d(Sl)=Sdl+ldS=0可得
式中:l為與斷裂面相垂直方向的尺度,在本文討論的兩類情況下,表示環(huán)向尺度。于是可以通過測量斷面的面積變化得到樣品局域的斷裂應變
因此,為了準確描述環(huán)、柱殼膨脹斷裂特征,本文中選取的斷裂應變分為兩類:第一,平均斷裂應變,為斷面/斷口完全張開時刻的環(huán)向應變;第二,局域斷裂應變,由斷面收縮率決定,如公式(4)所示。
采用爆炸膨脹環(huán)實驗平臺(圖1(a))以及電磁膨脹環(huán)實驗平臺(圖1(b))開展實驗研究。樣品材料均為高純無氧銅TU1,樣品從同一根棒材截取加工而成。爆炸膨脹環(huán)(外徑42mm、內徑40mm、高2mm)、柱殼(外徑42mm、內徑40mm、高80mm)實驗中,驅動器為20鋼,炸藥為黑索金(RDX)粉末或泰安(PETN)粉末填充而成,通過改變裝藥的直徑獲得不同應變率的加載狀態(tài);電磁膨脹環(huán)(外徑42mm、內徑40mm、高1mm)實驗中,通過改變加載電壓獲得不同應變率的加載狀態(tài)。TU1試樣環(huán)、柱殼實物圖如圖2所示。
圖1 爆炸膨脹環(huán)實驗平臺[9]和電磁膨脹環(huán)實驗平臺示意圖[10]Fig.1Sketch of experimental setup of explosive expanding ring and electromagnetic expanding ring
實驗采用中國工程物理研究院流體物理研究所自主研制的激光干涉測速系統(tǒng)(Doppler pins system,DPS),獲得TU1樣品膨脹斷裂過程的徑向速度歷史,以此計算加載的應變率。樣品的斷裂模式通過斷面的形貌進行判斷,平均斷裂應變采用樣品完全拉斷時刻的環(huán)向膨脹量進行估計。膨脹環(huán)實驗中,采用全回收裝置,可以利用回收樣品幾何測量獲得最終的平均斷裂應變;而在柱殼的膨脹斷裂中,很難做到全回收,于是我們同時使用了高速攝影技術,獲得柱殼膨脹斷裂的演化圖像,利用圖像判讀柱殼在不同應變率加載下的平均斷裂應變;斷面收縮率及局域斷裂應變利用SEM進行斷口的微觀表征幾何測量獲得。
圖2 高純無氧銅TU1環(huán)和柱殼樣品實物圖Fig.2Specimen of oxygen-free high-conductivity copper(TU1)
實驗采用DPS測速技術、高速攝影及破片回收分析,獲得電磁膨脹環(huán)、爆炸膨脹環(huán)(柱殼)實驗數(shù)據(jù)如表1所示,表中ε·為加載應變率,εf-average為平均斷裂應變,ψ為斷面收縮率,εf-local為局域斷裂應變其中應變率為加載峰值應變率。
表1 電磁膨脹環(huán)、爆炸膨脹環(huán)(柱殼)實驗數(shù)據(jù)Table 1Strain rate and fracture strain of experiments
從表1可以看出,隨著應變率的增加,電磁膨脹環(huán)的平均斷裂應變也隨之而增加,然而,僅僅通過試樣完全拉斷時刻的環(huán)向平均應變,無法描述與斷裂模式相關的信息。為了給出斷裂模式對應變率的依賴關系,我們在SEM上對膨脹環(huán)樣品的斷面進行了微觀表征。圖3中分別給出了電磁膨脹環(huán)與爆炸膨脹環(huán)的斷面形貌,從圖中可以看出,在爆炸驅動加載與電磁驅動加載下,樣品的斷裂模式均為局域的頸縮拉伸導致的韌性斷裂。不同之處在于,爆炸膨脹環(huán)斷面收縮率較小,在本文的實驗狀態(tài)下約為4,且斷面存在明顯的韌窩(圖3(d));而電磁膨脹環(huán)由于試樣環(huán)中存在大電流,溫升較高,在環(huán)向失穩(wěn)之后,由于局域的熱軟化存在,頸縮程度相比而言更為嚴重。加載電壓為3.0kV時(圖3(a)),樣品局域的表觀斷面收縮率為6,然而我們注意到樣品在斷口局域出現(xiàn)了較為明顯的燒蝕熔化現(xiàn)象,表觀的斷面收縮率并非純粹由熱軟化導致,而是耦合了其它物理(局部放電)效應,不適合用來判斷局域斷裂應變。而加載電壓為3.5kV(圖3(b))、4.0kV(圖3(c))時,斷口局域并未出現(xiàn)明顯燒蝕,且斷面存在一定程度的韌窩,所以可以較為準確反映材料自身的特征,其斷面收縮率分別為約為78、13。
實驗中,利用高速分幅相機拍攝了TU1柱殼膨脹斷裂過程,典型的破壞圖像如圖4所示,其中圖4(a)為實驗5結果,其應變率約為8.6×103s-1,圖4(b)為實驗6結果,應變率約為1.2×104s-1。通過高速攝影圖像可以看出,應變率較低時,斷裂模式為diffuse necking,斷面收縮率較??;而當應變率較大時,斷裂模式為sheet necking,斷面收縮率較大。
為了更清晰地展現(xiàn)不同斷裂模式下的斷口特征,并對斷面收縮率進行定量測量,利用SEM對回收樣品斷口形貌進行了表征,圖5中分別給出了 TU1柱殼在應變率為8.6×103s-1(圖5(a))與12.0×103s-1(圖5(b))加載下的斷面形貌。其中圖5(a))的斷面出現(xiàn)大小不同的韌窩,是典型的韌性斷裂;但圖5(b))卻呈現(xiàn)出類似刀刃狀的斷口。通過斷口幾何測量,發(fā)現(xiàn)應變率較低時,柱殼徑向的收縮率約為2.5;而當應變率較高時,由于斷面過于鋒利,斷面收縮率很難精確測量,約為500~1 000的量級。雖然加載應變率變化不大,卻出現(xiàn)了完全不同的斷裂模式,斷面收縮率出現(xiàn)了顯著的量級增加。
圖3 電磁膨脹環(huán)、爆炸膨脹環(huán)典型斷面形貌Fig.3Fracture feature of expanding rings under electromagnetic and explosive loading
圖4 爆炸膨脹柱殼高速攝影圖像Fig.4High speed camera images of expanding cylindrical shell
圖5 膨脹柱殼拉伸破片及斷面微觀表征圖片F(xiàn)ig.5Fragments and microscopic fracture surface of expanding cylindrical shell
通過SEM的分析已經(jīng)發(fā)現(xiàn),隨著應變率的增加,斷裂模式發(fā)生了轉變,為了對這一過程進行量化,本節(jié)將嘗試尋找斷裂模式轉變與斷裂應變之間的半定量關系。研究發(fā)現(xiàn)應變率對材料與結構的變形與斷裂起著非常重要的影響,D.Grady[2]指出,斷裂應變εf與應變率ε·之間滿足關系εf∝ε·2/3。為了更好地理解TU1斷裂應變與應變率之間的關系,我們利用文獻[11]中M態(tài)TU1膨脹環(huán)碎裂數(shù)據(jù)計算其平均斷裂應變,如表2所示。在膨脹環(huán)實驗研究中,加載應變率尚未達到104s-1,為了與膨脹柱殼的應變率進行對比,選擇文獻[12]中關于TU1環(huán)數(shù)值模擬的數(shù)據(jù),并將這些數(shù)據(jù)與本實驗結果繪制于同一張圖中,如圖6所示。
表2 不同應變率下M態(tài)TU1環(huán)碎裂數(shù)據(jù)[11]Table 2Fragmentations data of M state TU1rings at varying strain rates
圖6 電磁膨脹環(huán)、爆炸膨脹環(huán)/柱殼中平均斷裂應變與應變率的關系Fig.6Relationship between strain rate and average fracture strain in electromagnetic ring and explosive expanding ring/cylinder
結果表明,文獻[11]中的TU1膨脹環(huán)應變率與斷裂應變之間的關系,與本文電磁膨脹環(huán)的數(shù)據(jù)落在同一個區(qū)域,電磁膨脹環(huán)的斷裂主要以sheet necking模式為主,斷面的收縮率約在101~102的量級。不同載荷形式下的TU1環(huán)、柱殼中平均斷裂應變隨著應變率的增加,呈現(xiàn)出先增加,然后在達到一定值之后趨于穩(wěn)定,這一趨勢的過渡恰好位于應變率104s-1附近,斷裂模式發(fā)生轉變之處。這一改變對于爆炸加載下的TU1樣品而言,意味著應變率誘導的斷裂模式轉變,與之對應的斷面收縮率則發(fā)生了量級的跳躍。爆炸膨脹環(huán)、柱殼結構,在低于此應變率時,斷面的收縮率(~100)較小,以diffuse necking為主,而高于此應變率時,斷面的收縮率(102~103)急劇變大,以sheet necking為主。需要特別指出的是,在應變率-平均斷裂應變圖上,需要特殊的標記才能給出不同斷裂模式之間的分區(qū),在圖6中利用虛線進行區(qū)分。除非事先知道實驗結果,否則單從應變率-平均斷裂應變圖上,很難進行區(qū)分。這一現(xiàn)象從另個一側面說明,采用平均思想獲得的斷裂應變,本質上而言,很難準確抓住不同斷裂模式的特征。
圖7 斷面收縮率隨應變率的變化Fig.7Variation of area reduction with strain rate
為了更清晰地定量描述斷裂模式的轉變,圖7中給出了電磁膨脹環(huán)、爆炸膨脹環(huán)/柱殼斷面收縮率隨著應變率的變化關系。
電磁膨脹環(huán)在3.0kV加載下,由于無氧銅韌性較好,應變率較低時局域斷裂較慢,于是頸縮區(qū)域會有充裕的時間進行局部放電,由此導致的燒蝕熔化影響了對斷面收縮率的解讀。為此,在圖7中只給出了加載3.5、4.0kV的數(shù)據(jù)。在材料體積變化不顯著的情況下,利用公式(4)可以在斷裂收縮率與局域斷裂應變之間建立起定量關系,圖8中給出了電磁與爆炸加載下平均斷裂應變與局域斷裂應變隨應變率的變化。
圖8 爆炸與電磁加載下膨脹環(huán)、柱殼局域斷裂應變與平均斷裂應變Fig.8Local fracture strain and average fracture strain of explosive expanding ring/cylinder(EE-ring/EE-Cylinder)and electromagnetic ring(EM-ring)
結果發(fā)現(xiàn),高應變率加載下無氧銅環(huán)的平均斷裂應變(0.333)高于低應變率加載下的平均斷裂應變(0.224);但高應變率加載下的斷面收縮率(13)反而要低于低應變率加載下的斷面收縮率(78)。這種反轉現(xiàn)象產(chǎn)生的原因在于,平均斷裂應變是通過回收樣品的環(huán)向伸長量去計算的,既包含了均勻變形區(qū)域在環(huán)向的變形貢獻,又包含了頸縮點、斷裂點對變形區(qū)域的貢獻,高應變率加載下頸縮點、斷裂點的數(shù)目多于低應變加載,因此高應變率加載下的平均斷裂應變要高于低應變率加載下的平均斷裂應變,因此平均斷裂應變是樣品環(huán)向整體的變形表征,材料與結構抗變形能力的體現(xiàn);而局域斷裂應變是通過斷口的收縮率確定的,是斷裂點處的變形表征,是材料的抗變形能力的體現(xiàn),隨著應變率的增加,局域斷裂應變的變小可能與高應變率脆斷特征相關。這一發(fā)現(xiàn)告訴我們,利用平均斷裂應變評估材料的韌性,可能會極大地低估材料的抗變形能力,而斷裂點的局域斷裂應變則能更好地評估材料的抗變形能力。此外,在所有的加載狀態(tài)下,平均斷裂應變均顯著低于局域斷裂應變。這一特征與平均斷裂應變、局域斷裂應變的計算相關。
同時,我們通過塑性功的計算發(fā)現(xiàn),爆炸加載下膨脹環(huán)在初期受到?jīng)_擊載荷之后自由膨脹,在結構失穩(wěn)之前溫升較小,約為20~30℃,應變率大約在104s-1以下時,斷面的收縮率在100的量級,這一區(qū)域對應較低應變率加載下的爆炸膨脹環(huán)/柱殼;而當應變率在104s-1之上時,斷裂模式轉變導致斷面收縮率急劇增加,因此在斷面收縮率圖(見圖7)上展現(xiàn)出較為明顯的分區(qū)現(xiàn)象。另一方面,由于電磁膨脹環(huán)在加載階段環(huán)內存在感應電流,將導致約200~300℃的溫升,溫度的升高相當于附加給試樣環(huán)較高的環(huán)境溫度,帶來比爆炸加載更大的軟化效應。溫度的軟化效應使得金屬環(huán)更容易發(fā)生塑性流動,從而導致斷裂應變的增加,斷面收縮率約101~102。所以與爆炸膨脹環(huán)相比,相同應變率加載下的電磁膨脹環(huán)斷裂應變更大。因此在圖7中,電磁加載下的斷面收縮率要明顯高于爆炸加載下的斷面收縮率。
通過上述的分析我們發(fā)現(xiàn),爆炸膨脹環(huán)、柱殼斷裂模式的轉變,主要以應變率效應為主導,隨著應變率的增加,超過一定的臨界值(TU1材料約為104s-1)之后,斷面的收縮率會出現(xiàn)量級的跳躍,從100變化至約103;而爆炸膨脹環(huán)與電磁膨脹環(huán)之間的斷裂模式轉變則是溫度效應與應變率效應共同主導,相同應變率加載下,電磁膨脹環(huán)的局域變形程度要明顯高于爆炸膨脹環(huán)。同時,我們通過圖6~8之間的對比可以發(fā)現(xiàn),在較低應變率的狀態(tài)時,爆炸膨脹環(huán)與電磁膨脹環(huán)的環(huán)向平均斷裂應變相對比較接近,但斷面的收縮率卻落在完全不同的區(qū)域,這直接導致了平均斷裂應變與局域斷裂應變的顯著差異。這一特征告訴我們,描述斷裂現(xiàn)象尤其是涉及斷裂模式轉變時,除了平均斷裂應變之外,還需要斷面收縮率/局域斷裂應變來確定不同應力狀態(tài)下的斷裂特征差異。
本研究利用電磁膨脹環(huán),爆炸膨脹環(huán)、柱殼實驗,研究了高純無氧銅TU1的動態(tài)拉伸斷裂行為,為了更好地刻畫斷裂模式的轉變,在平均斷裂應變的基礎上引入了斷面收縮率以及局域斷裂應變,初步得到如下結論:
(1)高純無氧銅TU1環(huán)、柱殼的平均斷裂應變隨著應變率的增加而增加,且在應變率約為104s-1附近會出現(xiàn)斷裂模式轉變,平均斷裂應變增長率驟然變緩,但斷面收縮率從約100變化至102~103,發(fā)生數(shù)量級的跳躍;低于此應變率,高純無氧銅TU1環(huán)、柱殼的斷裂模式以diffuse necking為主,高于此應變率,斷裂模式以sheet necking為主。
(2)在較低應變率加載下,雖然爆炸膨脹環(huán)與電磁膨脹環(huán)的平均斷裂應變相對接近,但其斷面收縮率出現(xiàn)約1~2個量級的差異,斷面收縮率-應變率圖上,呈現(xiàn)出相對孤立的區(qū)域,與之相應的局域斷裂應變同樣差異顯著;其原因在于電磁膨脹環(huán)實驗中,樣品環(huán)在加載初期即存在大電流,導致了環(huán)的整體軟化,使之更易于進行塑性流動,隨后在頸縮局域產(chǎn)生更大的塑性變形,增加了斷面收縮率。
(3)所有的加載狀態(tài)下,平均斷裂應變均顯著低于局域斷裂應變,原因在于平均斷裂應變的計算既包含了均勻變形區(qū)域在環(huán)向的變形貢獻,又包含了頸縮點、斷裂點對變形區(qū)域的貢獻,而局域斷裂應變只體現(xiàn)斷裂點處的變形特征;所以可以認為平均斷裂應變是材料與結構抗變形能力的綜合體現(xiàn),局域斷裂應變是材料抗變形能力的體現(xiàn)。
從更為廣泛的角度而言,在材料與結構的動態(tài)斷裂現(xiàn)象描述中,斷裂應變使用時需要重點區(qū)分平均斷裂應變與局域斷裂應變,平均斷裂應變是材料與結構抗變形能力的表征,與結構的失穩(wěn)相關,是材料動態(tài)性能、樣品的宏觀幾何結構以及加載歷史耦合所致;而局域斷裂應變則主要是材料動態(tài)性能與加載歷史相互作用所致。由于結構中尚存在較大比例的均勻變形區(qū)域,利用平均斷裂應變評估材料的韌性,會極大低估材料的抗變形能力。因此,除了環(huán)向平均斷裂應變之外,還需要引入描述頸縮程度的斷面收縮率、局域斷裂應變及頸縮點斷裂點的數(shù)目,這樣才能更完整地展現(xiàn)材料與結構的斷裂特征。
感謝張世文在文章撰寫過程中對本文的指導幫助。
[1] 王禮立.應力波基礎[M].2版.北京:國防工業(yè)出版社,2005.
[2] Grady D.Fragmentation of rings and shells-The legacy of N.F.Mott[M].Berlin:Springer,2006.
[3] 周風華,郭麗娜,王禮立.脆性固體碎裂過程中的最快卸載特性[J].固體力學學報,2010,31(3):286-295.Zhou Fenghua,Guo Lina,Wang Lili.The rapidest unloading characteristics in the fragmentation process of brittle solids[J].Chinese Journal of Solid Mechanics,2010,31(3):286-295.
[4] 湯鐵鋼,李慶忠,孫學林,等.45鋼柱殼膨脹斷裂的應變率效應[J].爆炸與沖擊,2006,26(2):129-133.Tang Tiegang,Li Qingzhong,Sun Xuelin,et al.Strain-rate effects of expanding fracture of 45steel cylinder shells driven by detonation[J].Explosion and Shock Waves,2006,26(2):129-133.
[5] 任國武,郭昭亮,湯鐵鋼,等.高應變率加載下金屬柱殼斷裂的實驗研究[J].兵工學報,2016,37(1):77-82.Ren Guowu,Guo Zhaoliang,Tang Tiegang,et al.Experimental research on fracture of metal case under loading at high strain rate[J].Acta Armamentarii,2016,37(1):77-82.
[6] Ren Guowu,Guo Zhaoliang,F(xiàn)an Cheng,et al.Dynamic shear fracture of an explosively-driven metal cylindrical shell[J].International Journal of Impact Engineering,2016,95:35-39.
[7] Zhang H,Ravi-Chandar K.Dynamic fragmentation of ductile materials[J].Journal of Physics D:Applied Physics,2009,42(21):214010.
[8] Zhang H,Ravi-Chandar K.On the dynamics of necking and fragmentation-I.Real-time and post-mortem observations in Al 6061-O[J].International Journal of Fracture,2006,142:183-217.
[9] 湯鐵鋼,李慶忠,陳永濤,等.實現(xiàn)材料高應變率拉伸加載的爆炸膨脹環(huán)技術[J].爆炸與沖擊,2009,29(5):546-549.Tang Tiegang,Li Qingzhong,Chen Yongtao,et al.An improved technique for dynamic tension of metal ring by explosive loading[J].Explosion and Shock Waves,2009,29(5):546-549.
[10] 桂毓林,孫承緯,李強,等.實現(xiàn)金屬環(huán)動態(tài)拉伸的電磁加載技術研究[J].爆炸與沖擊,2006,26(6):481-485.Gui Yulin,Sun Chengwei,Li Qiang,et al.Experimental studies on dynamic tension of metal ring by electromagnetic loading[J].Explosion and Shock Waves,2006,26(6):481-485.
[11] 桂毓林.電磁加載下金屬膨脹環(huán)的動態(tài)斷裂與碎裂研究[D].四川綿陽:中國工程物理研究院,2007.
[12] 陳磊,周風華,湯鐵鋼.韌性金屬環(huán)高速膨脹碎裂過程的有限元模擬[J].力學學報,2011,43(5):861-870.Chen Lei,Zhou Fenghua,Tang Tiegang.Finite element simulation of the high velocity expansion and fragmentation of ductile metallic rings[J].Chinese Journal of Theoretical and Applied Mechanics,2011,43(5):861-870.
Fracture mode transition in expanding ring and cylindrical shell under electromagnetic and explosive loadings
Guo Zhaoliang,F(xiàn)an Cheng,Liu Mingtao,Ren Guowu,Tang Tiegang,Liu Cangli
(Institute of Fluid Physics,China Academy of Engineering Physics,Mianyang621999,Sichuan,China)
In the present study,we designed the electromagnetic and explosive driving expanding ring/cylinder experiments and investigated the expanding fracture characteristics of oxygen-free high-conductivity copper(OFHC)in consideration of the conception of the reduction of area,the local fracture strain and the average fracture strain.We used a high speed camera to record the fracture process and obtain the fracture strain of the copper cylinder and the Doppler pins system (DPS)to obtain the radial velocity of the specimen in order to achieve the strain rate of the loading.We verified the local fracture strain and the fracture mode by analyzing the soft-recovered fragments of the expanding ring and the cylinder.Based on the experimental results,we found that the average fracture strain and the reduction of the area increases as does the strain rate.Moreover,the fracture mode transition may occur at the strain rate of about 1.0×104s-1,and the reduction of the area may increase by an order of magnitude,i.e.from the order of 100to that of 103,and the local fracture strain exhibits an obvious subarea.
necking;fracture;expanding ring;high strain rate;fracture strain
O347.3 國標學科代碼:13015
A
10.11883/1001-1455(2017)06-1072-08
2016-04-21;
2016-09-21
國家自然科學基金項目(11172279)
郭昭亮(1984— ),男,博士研究生,助理研究員;通信作者:范 誠,fancheng@caep.cn。
(責任編輯 曾月蓉)