杜家益,魏 松,張登攀,袁銀男,逄大慶
?
DOC與POC耦合柴油機燃用調合生物柴油顆粒物的排放特性
杜家益1,魏 松1,張登攀1,袁銀男2,逄大慶3
(1. 江蘇大學汽車與交通工程學院,鎮(zhèn)江 212013; 2. 蘇州大學能源學院,蘇州 215006; 3. 常柴股份有限公司,常州 213001)
在一臺高壓共軌柴油機上進行燃用調合生物柴油(B0、B10和B20)臺架試驗,利用MOUDI顆粒分級采樣系統(tǒng)和氣相色譜-質譜聯(lián)用儀(GC-MS)分別研究氧化催化器(diesel oxidation catalyst,DOC)結合顆粒氧化催化器(particle oxidation catalyst,POC)對顆粒物的粒徑質量濃度分布和可溶性有機組分(SOF)的影響。結果表明:隨著生物柴油的摻混比增加,各粒徑范圍的排氣顆粒物質量濃度均下降,質量濃度峰值均在0.18~0.32m;顆粒物SOF中脂類、酸類質量分數(shù)增加,烷烴類、芳香烴、酚類物質質量分數(shù)減少;B0和B20的碳原子數(shù)質量分數(shù)均呈現(xiàn)近似以C16為峰值的正態(tài)分布。加裝DOC+POC后,3種燃料顆粒物的質量濃度均降低,聚集態(tài)顆粒的質量濃度轉化率高于粗顆粒態(tài),其中B20聚集態(tài)轉化率最高,為58.36%;隨著生物柴油的摻混比增加,DOC+POC對SOF的轉化率增大,其中B20顆粒中SOF轉化率達65.15%;DOC+POC對脂類和酸類物質凈化作用明顯,加裝DOC+POC后,B20脂類和酸類物質的質量分數(shù)降幅分別為55.45%和43.27%;DOC+POC對B20顆粒物中SOF的C12~C18氧化作用明顯。
柴油機;生物柴油;顆粒物;排放特性;氧化催化器;顆粒物氧化催化器
生物柴油作為柴油機比較理想的替代燃料,具有十六烷值高、含氧量高、含硫量低和可再生等優(yōu)點[1-2]。隨著全球石化能源的日益短缺,采用一定比例的生物柴油與石化柴油摻混燃燒的方法,對解決石油能源短缺具有重要意義[3]。研究表明柴油機燃燒生物柴油能明顯降低顆粒物排放,同時還可減少CO、HC的排放[4-10]。
隨著排放法規(guī)日趨嚴格,采用后處理裝置控制柴油機顆粒排放已必不可少。目前常見的降低柴油機顆粒物的后處理裝置有顆粒氧化催化器(particle oxidation catalyst,POC)和顆粒物濾清器(diesel particulate filter,DPF)。POC的結構是一個多褶皺不堵塞的通道,通常與氧化催化器(diesel oxidation catalyst,DOC)組合應用(以下簡稱DOC+POC),對顆粒物的凈化效率較好,最高質量濃度轉化率達89.0%[11-14],與DOC+DPF組合系統(tǒng)相比,DOC+POC具有低排氣背壓、成本低、標定過程簡單等優(yōu)點。
目前,國內外研究DOC+POC對純柴油的排放特性影響較多[15-19],對生物柴油的排放特性的影響研究較少[20-21],且多集中在對常規(guī)排放以及顆粒物的凈化效率方面。本文研究重點是排放后處理技術對燃燒生物柴油顆粒物中可溶有機物組分(soluble organic fractions,SOF)的影響,分析DOC+POC對SOF中各組分的占比變化以及對碳原子數(shù)的變化規(guī)律。通過柴油機燃用調合生物柴油臺架試驗,利用微孔均勻沉積沖擊式采樣器(micro-orifice uniform deposition impactor,MOUDI)對DOC+POC作用前后的顆粒物進行采樣,利用微克天平進行稱質量,獲得顆粒物的質量濃度和粒徑分布,借助氣相色譜-質譜聯(lián)用儀(gas chromatography-mass spectrometer,GC-MS)對顆粒物中SOF進行分析。研究結果可為生物柴油排放顆粒物后處理技術提供基礎性數(shù)據(jù),同時有助于DOC+POC裝置的改進與優(yōu)化。
試驗所用發(fā)動機為某型號直列四缸高壓共軌柴油機,該機缸徑和行程分別為84和90 mm,額定功率(轉速)為60 kW/(3 200 r/min),最大轉矩(轉速)為201(N·m)/(2 200 r/min),排量為1.995 L。
試驗所用DOC和POC為安徽艾可藍節(jié)能環(huán)保科技公司提供,表1所列為DOC和POC后處理裝置的主要參數(shù)。
表1 DOC和POC后處理裝置的主要參數(shù)
注:DOC為氧化催化器,POC為顆粒氧化催化器。
Note: DOC is diesel oxidation catalyst; POC is particle oxidation catalyst.
試驗所用柴油為市售0#柴油,生物柴油由常州悅達卡特新能源有限公司提供,生產原料為餐飲廢油。生物柴油是對餐飲廢油進行酯化處理后得到的,酯化后的生物柴油十六烷值提高,著火性能改善[22-24]。按照一定的體積比將生物柴油和柴油摻混制備調合生物柴油,其中B0、B10和B20分別表示生物柴油的體積比為0、10%和20%,表2所列為柴油和生物柴油的主要理化參數(shù)。
表2 柴油和生物柴油的主要理化參數(shù)
試驗所用的MOUDI采樣器為美國MSP公司生產,其采樣粒徑分級為8級,分別為0.18~0.32、0.32~0.56、0.56~1.0、1.0~1.8、1.8~3.2、3.2~5.6、5.6~10和10~18m,所采用的濾膜為聚四氟乙烯濾膜,該濾膜具有耐高溫、不溶于有機溶劑的特點,便于后期對顆粒物中SOF組分萃取。
試驗所用GC-MS為Thermo Scientific公司生產的ITQ1100型,分析條件設定為:采用全掃描方式;色譜柱為HP-5MS型;載體為高純度氦氣,流量為1 mL/min;進樣方式為不分流進樣,進樣量為1L。
試驗選擇發(fā)動機工況為3 200 r/min,100%負荷,保持噴油提前角不變,分別燃用B0、B10和B20調合生物柴油,利用MOUDI對DOC+POC作用前后的顆粒物進行采樣,采樣時間為1 h,氣體流量為30 L/min。采樣前后對所用的聚四氟乙烯濾膜需置于干燥箱內保持溫濕度平衡6 h,再利用微克天平對顆粒物進行精確稱質量。
利用GC-MS檢測顆粒物中SOF組分,需要預先對濾膜上顆粒物進行萃取,SOF溶液提取采用超聲波震蕩法結合索氏萃取法,將溶液旋轉蒸發(fā)至1 mL后冷凍保存。取樣1L濾液進行GC-MS分析,升溫程序設定為:初始溫度為80 ℃,恒溫2 min,以20 ℃/min的升溫速率升溫至160 ℃,再以8 ℃/min的升溫速率升溫至280 ℃,恒溫14 min。
柴油機排放的顆粒物主要以核態(tài)(5~50 nm)、聚集態(tài)(100~1 000 nm)和粗顆粒態(tài)(>1 000 nm)3種模態(tài)存在。圖1所示為燃用B0、B10和B20燃油在發(fā)動機轉速為3 200 r/min下的顆粒物質量濃度分布曲線。由圖可見,B0、B10和B20顆粒物質量濃度皆呈單峰分布,且峰值均在0.18~0.32m范圍內,B10和B20的顆粒物質量濃度明顯低于B0。這是因為生物柴油含氧特性、十六烷值高,改善缸內燃燒,減少顆粒物排放。隨著摻混比增加,B20較B10質量濃度下降不明顯,這是因為較大的摻混比導致燃油運動黏度變大,影響了燃油霧化混合及燃燒過程。加裝DOC+POC后,3種燃料的顆粒物質量濃度均明顯下降,B0、B10和B20排氣顆粒物的總質量濃度分別由18.707、5.071和4.17 mg/m3降低至10.743、2.591和1.991 mg/m3,轉化率分別為42.57%、48.91%、52.25%。隨著生物柴油摻混比增加,顆粒物質量濃度的轉化率逐漸增大。對比圖1曲線可以看出,DOC+POC對粒徑0.18~1m的顆粒物凈化效率更高,主要因為SOF組分多數(shù)以小顆粒物存在,而DOC主要通過氧化SOF來降低顆粒物排放[25-26],因此對于小粒徑顆粒物作用明顯。
注:B0,B10,B20分別為生物柴油的體積比為0,10%,20%。
由圖2可知,隨著生物柴油摻比增加,聚集態(tài)和粗顆粒態(tài)的轉化率均呈增大趨勢,且對聚集態(tài)的轉化率高于粗顆粒態(tài)。B20聚集態(tài)轉化率最高,達58.36%,主要因為隨著生物柴油摻混比增加,燃料黏度變大,霧化效果變差,造成燃料的不充分燃燒,產生較多以SOF為主體的聚集態(tài)顆粒,DOC+POC對這部分顆粒的凈化效果較好。由圖2b可知,DOC+POC對B20的粗顆粒態(tài)轉化率最高,為38.5%。這是因為生物柴油的含氧特性,在高溫富氧的環(huán)境產生較多的NOx,經過DOC將部分NO氧化成強氧化性氣體NO2,提高了POC對粗顆粒態(tài)中碳煙顆粒的轉化率[27-30]。
圖2 DOC+POC對聚集態(tài)與粗顆粒態(tài)的顆粒轉化率
2.2.1 SOF的質量濃度
圖3所示為DOC+POC對顆粒物中SOF的轉化率。加裝DOC+POC后,3種燃料的排氣顆粒中的SOF質量濃度均降低,對B0,B10和B20排氣顆粒物中SOF的轉化率分別為53.27%,60.02%和65.15%。隨著生物柴油摻混比增加,DOC+POC對SOF的轉化率呈增大趨勢,B20的轉化率最高。雖然生物柴油的十六烷值高,在相同工況下滯燃期縮短,排氣溫度較柴油略有下降[31],但本文試驗工況為額定轉速3 200 r/min,100%負荷,燃用B0,B10和B20排氣溫度仍均較高,后處理裝置中催化劑活性均較強,同時生物柴油中含氧,氣缸內消耗的氧氣量減少,排氣中的氧濃度增加,DOC+POC對SOF的轉化率提高[30]。
圖3 DOC+POC對顆粒物中SOF的轉化率
2.2.2 SOF的組分分析
通過對不同燃料顆粒物中SOF溶液試樣進行GC-MS分析,得到SOF總離子流色譜,結合總離子流圖檢索NIST譜圖,對SOF組分進行定量分析。表3所示為顆粒物中SOF經GC-MS檢測,得到的各組分的質量分數(shù),由表3可知,無論是原機還是加裝DOC+POC后,3種燃料的排放顆粒物中SOF組分皆以烷烴類、芳香烴、酚類、脂類和酸類為主。表中的其他組分為少量的醇類、醛類和醚類等,因組分占比較少,本文不列入研究。未加裝DOC+POC時,隨著生物柴油摻混比增加,SOF組分中脂類、酸類物質質量分數(shù)增加,烷烴類、芳香烴和酚類物質質量分數(shù)減少,這是因為生物柴油的主要成分是脂肪酸甲脂,隨著摻混比增大,生物柴油的不完全燃燒造成脂類和酸類物質增加;生物柴油不含苯環(huán),因此隨著生物柴油摻混比增加,含有苯環(huán)結構的芳香烴和酚類物質質量分數(shù)略有降低。加裝DOC+POC后,燃用B0,B10和B20排氣顆粒中SOF組分中烷烴類、脂類和酸類物質質量分數(shù)呈減少趨勢,且在燃用B20時脂類和酸類物質質量分數(shù)降幅最大,分別為55.45%和43.27%,可以看出DOC+POC對燃用生物柴油排氣顆粒中SOF組分中脂類和酸類物質凈化作用明顯。而芳香烴類和酚類物質質量分數(shù)呈上升趨勢,主要因為芳香烴和酚類物質分子結構中含有難以氧化的苯環(huán),相對于其他物質,芳香烴和酚類物質氧化速率低,導致質量分數(shù)的增加。
表3 柴油機排氣顆粒中SOF各組分質量分數(shù)
2.2.3 SOF的碳原子數(shù)
圖4所示為B0和B20顆粒中SOF組分的碳原子數(shù)分布圖。未加裝DOC+POC時,B0和B20的SOF碳原子數(shù)質量分數(shù)均呈現(xiàn)近似以C16為峰值的正態(tài)分布,分布區(qū)間為C3~C33。其中B0顆粒物中C15和C16占比最高,質量分數(shù)分別為18.62%和20.78%;B20顆粒物 C16占比最高,質量分數(shù)為28.29%。對比2種燃料排放顆粒物中SOF碳原子數(shù)可以發(fā)現(xiàn),燃用B0和B20燃料的SOF碳原子數(shù)在C25~C33之間的質量分數(shù)分別為14.9%和7.72%,隨著生物柴油的添加,C25~C33的質量分數(shù)減少,這是因為生物柴油的氧含量高,促進高碳原子分子氧化成中低碳原子分子。加裝DOC+POC后,B0和B20顆粒中SOF的峰值碳原子數(shù)均下降,B20顆粒中SOF的峰值碳原子數(shù)C16下降明顯,由28.29%下降至14.03%,降幅為50.41%。與B0相比,B20顆粒中SOF碳原子數(shù)向C25~C33聚集,C12~C18質量分數(shù)降低。B20排氣顆粒物中SOF中C12~C18質量分數(shù)降幅由B0的9.89%增大為35.15%,C25~C33由B0降幅31.54%變?yōu)樵龇?12.69%。由此可知,DOC+POC對燃用B20顆粒物中SOF的C12~C18氧化作用明顯,對C25~C33轉化效率較差。一方面因為燃用B20排放出較多的脂類物質,且脂類物質較多以低碳原子數(shù)存在,如鄰苯二甲酸二丁酯等,DOC+POC對脂類物質氧化作用明顯;另一方面燃用B20排放出較多的NOx,經DOC后氧化成強氧化性氣體NO2,在后處理裝置中進一步對SOF組分氧化,由于高碳原子分子氧化需要更多的活化能,相對于中低碳原子分子氧化速率較慢。
圖4 顆粒物中SOF碳原子數(shù)分布圖
1)隨著生物柴油的摻混比增加,DOC+POC對顆粒物的轉化率提高,B0,B10和B20總質量濃度轉化率分別為42.57%、48.91%和52.25%。
2)DOC+POC對聚集態(tài)顆粒物轉化率優(yōu)于粗顆粒態(tài),對B20聚集態(tài)的轉化率達58.36%。
3)隨著生物柴油摻混比增加,SOF組分中脂類、酸類物質質量分數(shù)增加,烷烴類、芳香烴、酚類物質質量分數(shù)減少。加裝DOC+POC后,DOC+POC對B0、B10和B20顆粒物中SOF的轉化率呈增大趨勢,其中對B20顆粒物中SOF轉化率達到65.15%;DOC+POC對脂類和酸類物質凈化作用明顯,在燃用B20時脂類和酸類物質質量分數(shù)降幅分別為55.45%和43.27%。
4)燃用B20可以明顯減少SOF中C25~C33的質量分數(shù),DOC+POC對B20排氣顆粒中SOF的C12~C18氧化作用明顯,對C25~C33氧化速率較慢。
[1] 王常文,崔方方,宋宇. 生物柴油的研究現(xiàn)狀及發(fā)展前景[J]. 中國油脂,2014(5):44-48.
Wang Changwen, Cui Fangfang, Song Yu. Research situation and development prospect of biodiesel[J]. China Oils and Fats, 2014(5): 44-48. (in Chinese with English abstract)
[2] Basha S A, Gopal K R, Jebaraj S. A review on biodiesel production, combustion, emissions and performance[J]. Renewable & Sustainable Energy Reviews, 2009, 13(6/7):1628-1634.
[3] Milazzo M F, Spina F, Primerano P, et al. Soy biodiesel pathways: Global prospects[J]. Renewable & Sustainable Energy Reviews, 2013, 26(10): 579-624.
[4] Fattah I M R, Masjuki H H, Liaquat A M, et al. Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions[J]. Renewable & Sustainable Energy Reviews, 2013, 18(2): 552-567.
[5] Mofijur M, Atabani A E, Masjuki H H, et al. A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation[J]. Renewable & Sustainable Energy Reviews, 2013, 23(11): 391-404.
[6] 李小昱,韓鶴友,王為,等. 柴油機應用不同配比生物柴油的經濟性和排放特性[J]. 農業(yè)工程學報,2009,25(5):177-182.
Li Xiaoyu, Han Heyou, Wang Wei, et al. Economy and emission characteristic of different proportions of biodiesel from diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(5): 177-182. (in Chinese with English abstract)
[7] 梅德清,王忠,袁銀南,等. 生物柴油發(fā)動機尾氣中的顆粒物特性分析[J]. 農業(yè)工程學報,2006,22(12):113-116.
Mei Deqing, Wang Zhong, Yuan Yinnan, et al. Analysis of the features of the particulate matters generated from diesel engine fueled with biodiesel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(12): 113-116. (in Chinese with English abstract)
[8] 樓狄明,石健,趙杰,等. 共軌柴油機燃用不同配比生物柴油的性能與排放特性[J]. 內燃機工程,2009,30(6):21-25.
Lou Diming, Shi Jian, Zhao Jie, et al. Performance and emission characteristics of a common rail diesel engine fuelled with different proportion bio-diesel blends[J]. Chinese Internal Combustion Engine Engineering, 2009, 30(6): 21-25. (in Chinese with English abstract)
[9] Kousoulidou M, Fontaras G, Ntziachristos L, et al. Biodiesel blend effects on common-rail diesel combustion and emissions[J]. Fuel, 2010, 89(11): 3442-3449.
[10] 樓狄明,孔德立,強薔,等. 國V柴油機燃用柴油/生物柴油排放性能試驗[J]. 農業(yè)機械學報,2014,45(9):25-30.
Lou Diming, Kong Deli, Qiang Qiang, et al. Emission experiment on a chinese V diesel engine fueled with diesel /biodiesel[J]. Transactions of The Chinese Society for Agricultural Machine, 2014, 45(9): 25-30. (in Chinese with English abstract)
[11] Murtonen T, Aakko-Saksa P, Kuronen M, et al. Emissions with heavy-duty diesel engines and vehicles using FAME, HVO and GTL fuels with and without DOC+POC after treatment[J]. Environmental Science & Technology, 2009, 2(2). DOI: 10.4271/2009-01-2693
[12] Kinnunen T, Matilainen P, Scheder D, et al. Particle oxidation catalyst (POC?)-From diesel to GDI-studies on particulate number and mass efficiency[J]. Sae Technical Papers, 2012: 2012-01-4271.
[13] 馬志豪,任源,李磊,等. POC、DOC對柴油機氣體排放的影響[J]. 小型內燃機與摩托車,2013,42(2):59-63.
Ma Zhihao, Ren Yuan, Li Lei, et al. The effects of POC and DOC on the gas emissions of diesel engine[J]. Small Internal Combustion Engine and Motorcycle, 2013, 42(2): 59-63. (in Chinese with English abstract)
[14] 馮向字,葛蘊珊,馬朝臣,等. 顆粒物氧化催化轉化器對柴油機排放的影響研究[J]. 內燃機工程,2015,36(5):63-68. Feng Xiangyu, Ge Yunshan, Ma Chaochen, et al. Effects of particulate oxidation catalyst on emissions characteristic of diesel engines[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(5): 63-68. (in Chinese with English abstract)
[15] Lehtoranta K, Matilainen P, ?senbrygg J M, et al. Particle oxidation catalyst in light duty and heavy duty diesel applications[C]// International Conference on Engines for Automobiles, 2007: 67-74.
[16] 李樹會. POC-輕型柴油車國Ⅲ/國Ⅳ后處理方案[J]. 內燃機,2008(6):40-42.
Li Shuhui. POC—an aftertreatment plan for light-duty diesel vehicle GBⅢ/GBⅣ[J]. Internal Combustion Engines, 2008(6): 40-42. (in Chinese with English abstract)
[17] Lehtoranta K, Matilainen P, Kinnunen T J J, et al. Diesel particle emission reduction by a particle oxidation catalyst[C]// SAE 2009 Powertrains Fuels and Lubricants Meeting. 2009.
[18] 樓狄明,林浩強,譚丕強,等. 氧化催化轉化器對柴油機顆粒物排放特性的影響[J]. 同濟大學學報:自然科學版,2015,43(6):888-893.
Lou Diming, Lin Haoqiang, Tan Piqiang, et al. Effects of diesel oxidation catalyst technoloy on characteristics of particle from a diesel engine[J]. Journal of Tongji University: Natural Science, 2015, 43(6): 888-893. (in Chinese with English abstract)
[19] 霍少峰. 柴油機氧化催化器及顆粒物氧化催化器對排放特性的影響[D].天津:天津大學,2010.
Huo Shaofeng. Effects of DOC and/or POC on the Exhaust Emissions from Diesel Engine[D]. Tianjin: Tianjin University, 2010. (in Chinese with English abstract)
[20] 姚笛,樓狄明,譚丕強,等. 基于生物柴油發(fā)動機的不同后處理裝置顆粒物數(shù)量排放特性[J]. 內燃機工程,2014,35(1):8-12.
Yao Di, Lou Diming, Tan Piqian, et al. Particle number emission characteristics of biodiesel engine equipped with different after-treatments[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(1): 8-12. (in Chinese with English abstract)
[21] 樓狄明,高帆,姚笛,等. 不同后處理裝置生物柴油發(fā)動機顆粒多環(huán)芳烴排放[J]. 內燃機工程,2014,35(4):31-35.
Lou Diming, Gao Fan, Yao Di, et al. Particle PAHs emissions of biodiesel engine equipped with different after-treatments[J]. Chinese Internal Combustion Engine Engineering, 2014, 35(4): 31-35. (in Chinese with English abstract)
[22] 吳培振. 調合生物柴油對柴油機燃燒及顆粒物組分的影響研究[D]. 鎮(zhèn)江:江蘇大學,2016.
Wu Peizhen. Study on Combustion and Particulate Matter Components for a Diesel Engine Fueled with Blending Bbiodiesel[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)
[23] 李瑞娜,王忠,李銘迪,等. 酯類燃料十六烷值估算方法的改進[J]. 石油學報:石油加工,2013,29(5):899-904.
Li Ruina,Wang Zhong, Li Mingdi, et al. The improved estimation method of esters fuel cetane number[J]. Acta Petrolei Sinica, 2013, 29(5): 899-904. (in Chinese with English abstract)
[24] 孔德芳,沈穎剛,彭益源,等. 生物柴油的理化特性對柴油機性能的影響研究[J].內燃機,2009(1):25-28.
KongDefang,Shen Yinggang,Peng Yiyuan, et al. Research on the influences of characteristics of biodiesel exserted on diesel engine performance[J]. Internal Combustion Engines, 2009(1): 25-28. (in Chinese with English abstract)
[25] Lehtoranta K, Matilainen P, Kinnunen T J J, et al. Diesel particle emission reduction by a particle oxidation catalyst[C]// SAE Paper, 2009(1): 2705-2711.
[26] 鄒建國,鐘秦. 柴油機排放顆粒物凈化技術研究進展[J]. 環(huán)境工程學報,2005,6(9):7-11.
Zou Jianguo, Zhong Qin. Review of purification method of diesel engine part iculatematter[J]. Chinese Journal of Environmental Engineering, 2005, 6(9): 7-11. (in Chinese with English abstract)
[27] 李博,樓狄明,譚丕強,等. 發(fā)動機燃用生物柴油的常規(guī)和非常規(guī)排放特性[J].內燃機工程,2009,30(5):22-26.
Li Bo, Lou Diming, Tan Piqian, et al. Regulated and non-regulated emission characteristics of an engine fuelled with bio-diesel[J]. Chinese Internal Combustion Engine Engineering, 2009, 30(5): 22-26. (in Chinese with English abstract)
[28] Mulla S S, Chen N, Delgass W N, et al. NO inhibits the catalytic reaction of NO and O over Pt[J]. Catalysis Letters, 2005, 100(3/4): 267-270.
[29] Min J S, Lee C Q, Kim S H, et al. Development and performance of catalytic diesel particulate filter systems for heavy-duty diesel vehicles[J]. International Migration, 2005, 25(4): 325-334.
[30] 管偉,孫付勝,王肇胤. 商用車柴油機DOC+POC后處理技術介紹[J]. 內燃機與配件,2012(11):32-35.
Guan Wei, Sun Fusheng, Wang Zhaoyin, Introduction of DOC+POC after treatment technology for commercial diesel engine[J]. Internal Combustion Engine & Parts, 2012(11): 32-35. (in Chinese with English abstract)
[31] 譚滿志,李小平,徐振波,等. 電控高壓共軌柴油機燃用生物柴油的燃燒特性[J]. 車用發(fā)動機,2009(3):36-39.
Tan Manzhi, Li Xiaoping, Xu Zhenbo, et al. Combustion characteristic of electronically controlled high pressure common rail diesel engine fueled with biodiesel[J]. Vehicle Engine, 2009(3): 36-39. (in Chinese with English abstract)
杜家益,魏 松,張登攀,袁銀男,逄大慶. DOC與POC耦合柴油機燃用調合生物柴油的顆粒物排放特性[J]. 農業(yè)工程學報,2017,33(22):69-74. doi:10.11975/j.issn.1002-6819.2017.22.009 http://www.tcsae.org
Du Jiayi, Wei Song, Zhang Dengpan, Yuan Yinnan, Pang Daqing. Effects of DOC+POC on characteristics of particulate matter from diesel engine fueled with biodiesel blends[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 69-74. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.009 http://www.tcsae.org
Effects of DOC+POC on characteristics of particulate matter from diesel engine fueled with biodiesel blends
Du Jiayi1, Wei Song1, Zhang Dengpan1, Yuan Yinnan2, Pang Daqing3
(1.,,212013,; 2.,,215006,; 3.,213001,)
Particulate matter (PM) emissions from diesel engines are being recognized as the pollutants having adverse effects on the environment as well as on human health. Therefore, the combination of using clean alternative fuels and particulate matter after-treatment devices is one of the effective ways to reduce particulate emissions. Biodiesel as an alternative fuel can significantly reduce particulate emissions. The diesel oxidation catalysts (DOC) are commonly used to oxidize carbon monoxide (CO) and hydrocarbon (HC) emissions as well as partial particles. The particulate oxidation catalyst (POC) is considered as an alternative PM reduction aftertreatment technology to the wall-flow diesel particulate filter (DPF). The combination of DOC and POC is a commonly and widely used to reduce PM. In order to analyze the influence of biodiesel blending ratio, DOC+POC on PM emissions and components of soluble organic fractions (SOF), bench test was carried out on a high pressure common rail diesel engine fueled with diesel-biodiesel dual fuels (B0, B10 and B20). Particles were collected at rated condition. Particle samples with different size grades were achieved from micro-orifice uniform deposition impactor (MOUDI) and mass concentration was obtained by weighting the particle samples. Using the Soxhlet extraction method to extract SOF component from particulates. The effects of biodiesel blending ratio and DOC+POC on SOF content were studied by gas chromatography-mass spectrometer (GC-MS) analysis. The distribution of carbon atoms of B0 and B20 were obtained by analyzing the GC-MS data. The results showed that when the content of biodiesel percentage was increased, DOC + POC conversion rate of particulate matter was increased,the conversion of total mass concentration of B0, B10 and B20 were 42.57%, 48.91% and 52.25% respectively. The mass concentration within each size grade was decreased. The mass concentration peak value of particulate matter emitted from three fuels all ranged from 0.18 to 0.32m. The mass fraction of lipids and acids components in SOF were increased and alkanes, aromatic hydrocarbons and phenols compounds were decreased. Moreover, the increase of biodiesel percentage promotes the oxidation of high-carbon atoms into low-carbon atoms. the mass fraction of carbon atoms in SOF of B0 and B20 showed a normal distribution with a peak at C16. After the installation of DOC+POC, the mass concentration of particulate matter was decreased and the convert efficiency of accumulation state particles was higher than that of coarse particles. Meanwhile, the convert efficiency of accumulation state particles with B20 reached 58.36%. With the increase of biodiesel percentage, the convert efficiency of SOF was increased, and the convert efficiency of SOF reached 65.15% when B20 fuel was used. DOC+POC had a significant effect on the conversion of lipid and acid substances. The mass fraction of lipid and acid substances changed from 15.4% to 6.86% and 9.43% to 5.35% respectively. Moreover, DOC+POC had obvious effect on the oxidation of C12-C18 in SOF of B20.These results could provide a theoretical basis for the aftertreatment of biodiesel combustion particulates, and it is helpful to improve and optimize of diesel oxidation catalysts and particulate oxidation catalyst,according to the biodiesel emission characteristics.
diesel engines; biodiesel; particulate matter; emission characteristic; diesel oxidation catalyst; particle oxidation catalyst
10.11975/j.issn.1002-6819.2017.22.009
TK6
A
1002-6819(2017)-22-0069-06
2017-07-06
2017-10-28
國家自然科學基金資助項目(51376095);江蘇省高校自然科學研究重大項目(13KJA470001);江蘇省高校自然科學研究項目(15KJB470002);江蘇高校優(yōu)勢學科建設工程資助項目(PAPD)
杜家益,男,博士,副教授,主要從事動力機械工作過程仿真、代用燃料排放控制等研究。Email:jydu@ujs.edu.cn