唐慧瑩,邸 元,吳玉樹
(1.西南石油大學(xué) 油氣藏地質(zhì)及開發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都 610500;2.北京大學(xué) 工學(xué)院, 北京 100871;3.科羅拉多礦業(yè)學(xué)院 石油工程系,科羅拉多 戈?duì)柕?80401)
壓裂液黏度及注入速率對(duì)裂縫網(wǎng)絡(luò)形態(tài)的影響
唐慧瑩1,邸 元2,吳玉樹3
(1.西南石油大學(xué) 油氣藏地質(zhì)及開發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都 610500;2.北京大學(xué) 工學(xué)院, 北京 100871;3.科羅拉多礦業(yè)學(xué)院 石油工程系,科羅拉多 戈?duì)柕?80401)
根據(jù)現(xiàn)場(chǎng)監(jiān)測(cè)與巖芯觀察結(jié)果,天然裂縫對(duì)水力壓裂效果影響顯著,壓裂后易形成復(fù)雜縫網(wǎng)。通過(guò)數(shù)值計(jì)算對(duì)裂縫性儲(chǔ)層壓裂效果進(jìn)行預(yù)測(cè),可以實(shí)現(xiàn)對(duì)壓裂參數(shù)(如壓裂液黏度、注入速率等)的優(yōu)化。本研究采用位移不連續(xù)方法計(jì)算壓裂裂縫與天然裂縫的法向與切向位移,裂縫內(nèi)流動(dòng)方程采用有限體積法計(jì)算。壓裂裂縫的擴(kuò)展基于F能量判據(jù),天然裂縫根據(jù)受力狀態(tài)的不同存在閉合、滑移及開啟3種形式。通過(guò)將裂縫變形方程與流動(dòng)方程耦合求解,可以獲得壓裂裂縫在天然裂縫網(wǎng)絡(luò)中的生長(zhǎng)情況。由于壓裂施工參數(shù)可以進(jìn)行人為調(diào)整,因此了解不同施工參數(shù)對(duì)壓裂效果的影響至關(guān)重要?,F(xiàn)場(chǎng)及室內(nèi)試驗(yàn)結(jié)果表明,高速注入高黏度流體更容易獲得較為集中的裂縫分布。對(duì)比不同壓裂液黏度及注入速率條件下天然裂縫壁面次級(jí)裂隙的生長(zhǎng)行為,結(jié)果表明,高黏度、高注入速率的壓裂方式更有助于次級(jí)裂隙的生長(zhǎng),從而抑制流體沿大尺度天然裂縫的流動(dòng),使壓裂后裂縫分布更為集中。同時(shí),計(jì)算結(jié)果還表明,高黏度、高速率的壓裂方式獲得的裂縫開度較大,總長(zhǎng)較短,接觸天然裂縫面積較?。坏宛ざ?、低速率注入的方式有助于激發(fā)天然裂縫網(wǎng)絡(luò),誘導(dǎo)天然裂縫發(fā)生明顯的剪切滑移。
天然裂縫;壓裂液黏度;注入速率;位移不連續(xù)方法
通過(guò)對(duì)非常規(guī)儲(chǔ)層露頭與試驗(yàn)結(jié)果的觀察,壓裂裂縫與天然裂縫相交后可能出現(xiàn)穿過(guò)天然裂縫、沿天然裂縫轉(zhuǎn)向及錯(cuò)位擴(kuò)展3種情形[1]。研究者們通過(guò)理論分析和數(shù)值模擬的方法分析了不同屬性參數(shù)對(duì)裂縫相交行為的影響。Blanton[1]采用三軸試驗(yàn)研究天然裂縫方位及就地應(yīng)力差對(duì)裂縫相交行為的影響。Renshaw等[2]對(duì)垂直相交干裂縫進(jìn)行試驗(yàn),基于Ⅰ型裂縫尖端應(yīng)力場(chǎng)分布,給出垂直相交裂縫相交判據(jù)。Wu和Jang等[3-4]考慮了裂縫尖端存在Ⅱ型應(yīng)力集中因子時(shí)的情況。數(shù)值模擬方面,Wu[5]采用位移不連續(xù)方法分析了天然裂縫方位、長(zhǎng)度、模式及就地應(yīng)力差對(duì)壓裂縫網(wǎng)的影響。Taleghani等[6]、Haddad等[7]采用擴(kuò)展有限元方法研究了天然裂縫摩擦性質(zhì)、方位、地應(yīng)力大小的效果。上述研究的重心主要放在天然裂縫性質(zhì)與就地應(yīng)力差,只有少部分研究者分析了施工參數(shù)(如注入速率、流體黏度、支撐劑等)在壓裂過(guò)程中所起的作用。微地震和室內(nèi)試驗(yàn)數(shù)據(jù)[8-9]顯示,壓裂液黏度及流量與裂縫形態(tài)有十分緊密的聯(lián)系。Chuprakov等[10]提出了OpenT解析判據(jù),認(rèn)為黏度和注入速率越大,壓裂裂縫穿過(guò)天然裂縫的可能性越高。Chen等[11]通過(guò)有限元數(shù)值模擬說(shuō)明流體黏度和注入速率對(duì)裂縫相交行為有重要影響?,F(xiàn)有對(duì)壓裂液黏度與注入速率參數(shù)的分析,多是針對(duì)雙翼平直裂縫,對(duì)天然裂縫性儲(chǔ)層壓裂的研究正在逐漸增加但尚不完備。上述研究采用修改相交判據(jù)的方式來(lái)探討壓裂液黏度及流體注入速率的影響,而筆者則通過(guò)對(duì)比不用參數(shù)下次級(jí)裂隙的生長(zhǎng)情況來(lái)說(shuō)明上述施工參數(shù)對(duì)壓裂效果的影響。
大部分水力壓裂的數(shù)值計(jì)算模型[3,12]都假設(shè)當(dāng)壓裂裂縫與天然裂縫相遇后,裂縫將沿天然裂縫直至其端部生成新的壓裂裂縫。而野外露頭和室內(nèi)試驗(yàn)中普遍觀察到裂縫錯(cuò)位擴(kuò)展的現(xiàn)象。Cooke等[13]指出近壓裂裂縫尖端部分天然裂縫的剪切滑移可能引起裂縫錯(cuò)位擴(kuò)展。Jeffrey等[14]基于能量-應(yīng)力雙重判據(jù),認(rèn)為裂縫有可能成核在非交點(diǎn)位置。Taleghani等[6]采用擴(kuò)展有限元方法,基于能量釋放率判斷裂縫擴(kuò)展方位,在部分模擬結(jié)果中也發(fā)現(xiàn)了裂縫錯(cuò)位擴(kuò)展的現(xiàn)象。裂縫的錯(cuò)位擴(kuò)展也有可能是由天然裂縫壁面上的次級(jí)裂紋誘發(fā)[15-16]。McClure等[15]的模型雖然考慮了存在次級(jí)裂隙的情形,但壓裂裂縫的擴(kuò)展方向被固定在垂直于最小主應(yīng)力的方向。Zhang等[16]考慮了次級(jí)裂隙,但未分析流體屬性及注入條件對(duì)裂縫擴(kuò)展形態(tài)的影響。筆者假定裂縫的錯(cuò)位擴(kuò)展是由于天然裂縫壁面存在的次級(jí)裂隙的生長(zhǎng)引起,通過(guò)基于位移不連續(xù)方法的水力壓裂數(shù)值模型,研究壓裂液黏度與注入速率對(duì)次級(jí)裂縫起裂、擴(kuò)展的影響。
1.1 裂縫中流體的流動(dòng)
對(duì)于壓裂裂縫,假設(shè)裂縫內(nèi)流體流動(dòng)滿足狹長(zhǎng)長(zhǎng)方形截面管道流動(dòng)規(guī)律:
(1)
圖1 天然裂縫開度隨內(nèi)部壓強(qiáng)變化過(guò)程Fig.1 Variation of natural fracture’s aperture with the change of internal pressure
式(1)中:v為流體沿裂縫截面流動(dòng)的速度;k為等效滲透率;μ為流體黏度;p為裂縫內(nèi)流體壓強(qiáng);w為裂縫開度。
(2)
式(2)中:knf為天然裂縫滲透率;k0為天然裂縫初始滲透率;wr為有效應(yīng)力為0時(shí)裂縫開度;cf為天然裂縫壓縮系數(shù);Sn為作用于裂縫表面的法向應(yīng)力;Pf為天然裂縫內(nèi)流體壓強(qiáng)。
1.2 裂縫的變形計(jì)算
本研究選用位移不連續(xù)方法計(jì)算壓裂裂縫與天然裂縫的變形及位移。位移不連續(xù)方法需要求解每個(gè)裂縫單元法向位移不連續(xù)量Dn和切向位移不連續(xù)量Ds,位移不連續(xù)量在邊界處(對(duì)無(wú)窮平面壓裂,即裂縫面處)誘導(dǎo)的應(yīng)力需要滿足邊界條件:
(3)
式(3)中:as/nij為影響系數(shù)矩陣,取值與巖石性質(zhì)及裂縫形態(tài)有關(guān);方程右側(cè)為裂縫處應(yīng)力邊界條件,τ為剪切應(yīng)力,σn為裂縫單元所受法向應(yīng)力。對(duì)于壓裂裂縫,應(yīng)力邊界條件為:
τ=0,
σn=Sn-P。
(4)
式(4)中:P為裂縫內(nèi)流體壓強(qiáng)。對(duì)于天然裂縫,若完全閉合,則認(rèn)為天然裂縫無(wú)位移不連續(xù)量,即不參與式(4)的計(jì)算。若天然裂縫完全開啟,則邊界條件與壓裂裂縫相同。若天然裂縫閉合,但發(fā)生剪切破壞,則裂縫單元無(wú)法向位移,切向應(yīng)力邊界條件滿足摩擦定律(μfric為天然裂縫摩擦系數(shù)):
τ=μfric(Sn-P)。
(5)
1.3 裂縫的擴(kuò)展
本研究采用應(yīng)變能釋放率作為裂縫是否擴(kuò)展的判據(jù)。采用能量判據(jù)的優(yōu)勢(shì)在于無(wú)需具體區(qū)分裂縫為Ⅰ型張拉還是Ⅱ型剪切破壞,就可以處理包括純Ⅰ型、純Ⅱ型、混合Ⅰ型和Ⅱ型破壞等多種情形。采用式(6)的F判據(jù)[18]對(duì)裂縫起裂及擴(kuò)展方向進(jìn)行判斷:
(6)
式(6)中:θ為尖端徑向坐標(biāo)系夾角;F取最大值的方向即裂縫擴(kuò)展方向;若F大于1,則裂縫發(fā)生擴(kuò)展。
當(dāng)壓裂裂縫與天然裂縫相交時(shí),采用Wu和Jang等[3-4]提出的修正Renshaw和Pollard模型[2],判斷壓裂裂縫是否穿過(guò)天然裂縫。通過(guò)裂縫尖端的應(yīng)力集中因子計(jì)算應(yīng)力分布,如果天然裂縫壁面最大主應(yīng)力(以拉為正)大于巖石抗拉強(qiáng)度,天然裂縫不發(fā)生剪切破壞,則壓裂裂縫可以穿過(guò)天然裂縫;反之則認(rèn)為壓裂裂縫不能穿過(guò)天然裂縫。
根據(jù)上述模型,在平面三維壓裂模型[19]的基礎(chǔ)上編制了考慮天然裂縫的二維水力壓裂數(shù)值模擬程序,用以分析壓裂液黏度與注入速率對(duì)壓裂裂縫的影響。
圖2 有單一次級(jí)裂隙時(shí)算例參數(shù)示意圖Fig.2 Schematic of the case with one secondary crack
通過(guò)圖2所示的第一個(gè)算例,研究天然裂縫壁面存在次級(jí)裂隙時(shí),裂縫擴(kuò)展形態(tài)與壓裂液黏度及注入速率的關(guān)系。假設(shè)次級(jí)裂隙性質(zhì)與相鄰天然裂縫相同,模型使用參數(shù)如下:最大水平主應(yīng)力為27 MPa;最小水平主應(yīng)力為25 MPa;楊氏模量為30 GPa;泊松比為0.25;天然裂縫初始開度為0.002 mm,閉合開度為0.01 mm,壓縮系數(shù)為0.05 MPa-1,摩擦角為20°;基質(zhì)Ⅰ型與Ⅱ型斷裂韌性分別為2 MPa·m1/2和4 MPa·m1/2;注入流體黏度為5 mPa·s;注入速率為1.59×103L/min。其中,次級(jí)裂隙距裂縫交點(diǎn)79 cm,次級(jí)裂隙初始長(zhǎng)度20 cm,天然裂縫與X方向夾角30°。
圖3為模型計(jì)算結(jié)果,圖3所示各算例中流體流經(jīng)裂縫總長(zhǎng)相等,壓裂液黏度與注入速率不同。不同壓裂參數(shù)對(duì)應(yīng)的裂縫位移不連續(xù)量、壓強(qiáng)及形態(tài)如圖3所示。計(jì)算結(jié)果表明,流體黏度及注入速率增大時(shí),次級(jí)裂隙更容易獲得生長(zhǎng),流體沿天然裂縫傳播距離更短。如需使次級(jí)裂隙獲得生長(zhǎng),次級(jí)裂隙內(nèi)壓強(qiáng)需要大于法向壓力,且在裂縫尖端產(chǎn)生的應(yīng)力集中要達(dá)到基質(zhì)巖石的斷裂韌性。低黏度或流速較低時(shí),流體流動(dòng)所需壓差較小,因此裂縫內(nèi)壓強(qiáng)分布較為平均,次級(jí)裂隙內(nèi)壓強(qiáng)不足以使裂縫發(fā)生擴(kuò)展。增大流體黏度或速率,裂縫內(nèi)壓強(qiáng)梯度及壓強(qiáng)絕對(duì)值增大,次級(jí)裂隙內(nèi)流體壓強(qiáng)不斷累積,直到裂縫開始生長(zhǎng)。
從圖3中還可以看出,當(dāng)流體流過(guò)次級(jí)裂隙時(shí),裂縫剪切位移明顯減小,因?yàn)椴糠至黧w流入次級(jí)裂隙,能夠繼續(xù)流入天然裂縫的流體流速及總量均減少,流體壓強(qiáng)減小,裂縫所受摩擦力增大(見式(4)),剪切位移減小。當(dāng)次級(jí)裂縫生長(zhǎng)時(shí),次級(jí)裂隙開度對(duì)后側(cè)天然裂縫造成擠壓,增大其所受壓應(yīng)力,從而摩擦力進(jìn)一步增大。當(dāng)黏度與注入速率乘積一定時(shí),在等注入量條件下,裂縫形態(tài)十分類似。同時(shí),天然裂縫左側(cè)由于更靠近壓裂裂縫產(chǎn)生的應(yīng)力陰影區(qū),受到更強(qiáng)的壓應(yīng)力,開啟更為困難。
在上一個(gè)算例的基礎(chǔ)上,進(jìn)一步研究當(dāng)天然裂縫壁面存在多個(gè)次級(jí)裂隙時(shí),各裂隙生長(zhǎng)情況及流體注入條件對(duì)其影響。算例假設(shè)流體黏度分別為5、20 mPa·s,注入速率均為1.59×103L/min,不同黏度裂縫擴(kuò)展總長(zhǎng)相等。存在多次級(jí)裂隙時(shí),計(jì)算結(jié)果如圖4所示,靠近注入點(diǎn)的裂隙最先擴(kuò)展,相鄰裂隙難以生長(zhǎng),因?yàn)橐焉L(zhǎng)裂隙對(duì)周圍裂隙產(chǎn)生額外的擠壓,使得附近的裂隙無(wú)法同時(shí)生長(zhǎng);當(dāng)次級(jí)裂隙生長(zhǎng)之后,由于次級(jí)裂隙法向壓力較小,開度較大,流體更容易流入次級(jí)裂隙,天然裂縫內(nèi)流量不斷減小,流體壓強(qiáng)難以提升;不同黏度的情形下,雖然后期次級(jí)裂隙都開始生長(zhǎng),但低黏度流體次級(jí)裂隙開度明顯小于高黏度流體,流體黏度較高會(huì)造成開度較大,低黏度注入方式也會(huì)導(dǎo)致更多的流體漏入天然裂縫,從而進(jìn)一步減小了次級(jí)裂隙的開度。
圖3 不同黏度及注入速率對(duì)應(yīng)的法向位移、剪切位移、流體壓強(qiáng)與裂縫形態(tài)Fig.3 Normal displacements, shear displacement, fluid pressure and fracture configurations corresponding to different viscosities and injection rates
圖4 存在多裂隙時(shí)的裂縫法向位移及裂縫形態(tài)Fig.4 Normal displacements and configurations for the case with multiple secondary cracks
如前文所述,因壓裂液黏度與注入速率作用方式接近,在后文的算例分析中,只研究壓裂液黏度對(duì)裂縫網(wǎng)絡(luò)形態(tài)的影響。由于頁(yè)巖儲(chǔ)層中天然裂縫常見平行狀結(jié)構(gòu)[20],因而本算例中假設(shè)地層天然裂縫相互平行,天然裂縫壁面隨機(jī)分布次級(jí)裂隙,次級(jí)裂隙長(zhǎng)度假設(shè)為20 cm,如圖5所示。
圖5 算例中天然裂縫及次級(jí)裂隙的分布Fig.5 Distribution of natural fractures and secondary cracks in the case study
采用1.59×103L/min的注液速率分別注入黏度為5、50 mPa·s的壓裂液30 s。圖6顯示了不同壓裂液黏度下,裂縫形態(tài)及法向/切向位移分布。從圖6可以看出,低黏度壓裂液在同等注入量條件下,可以溝通更多的天然裂縫,但裂縫開度和剪切位移總體小于高黏度的注入方式。方位遠(yuǎn)離最大水平主應(yīng)力方向的天然裂縫以剪切破壞為主,這是因?yàn)檫@部分天然裂縫所受壓力較大,流體壓強(qiáng)無(wú)法抵消裂縫所受壓力。天然裂縫剪切位移雖然也能夠提高裂縫滲透率,增大導(dǎo)流裂縫長(zhǎng)度,但是剪切裂縫的開度不及張拉裂縫的大,支撐劑很難移動(dòng)到只發(fā)生剪切破壞的天然裂縫中。大量流體漏入天然裂縫,從另一方面減弱了主方向裂縫的擴(kuò)展長(zhǎng)度和開度。為了使這部分天然裂縫能夠成為有效的生產(chǎn)導(dǎo)流通道,需要用一定的手段維持剪切破壞天然裂縫的開度。
圖6 壓裂液黏度分別為5、50 mPa·s時(shí)對(duì)應(yīng)的裂縫形態(tài)、裂縫法向位移與剪切位移Fig.6 Fracture configuration, normal displacements and shear displacements with fluid viscosity of 5 mPa·s and 50 mPa·s respectively
圖7進(jìn)一步對(duì)比了不同壓裂液黏度下裂縫開度的分布(開度單位為m),表1統(tǒng)計(jì)了壓裂液黏度分別為5、30、100 mPa·s時(shí)壓裂液溝通的天然裂縫與壓裂裂縫長(zhǎng)度。從表1可以更清楚地看到,減小壓裂液黏度,裂縫總長(zhǎng)增加,其中天然裂縫長(zhǎng)度的增長(zhǎng)幅度最為明顯。
圖7 壓裂液黏度分別為5、30、100 mPa·s時(shí)對(duì)應(yīng)裂縫開度分布Fig.7 Distribution of fracutre opening with fluid viscosity of 5 mPa·s, 30 mPa·s and 100 mPa·s
流體黏度/mPa·s壓裂裂縫總長(zhǎng)/m天然裂縫總長(zhǎng)/m527.680541.7663027.584329.214710026.117725.3137
筆者基于位移不連續(xù)方法的水力壓裂數(shù)值計(jì)算模型,通過(guò)對(duì)次級(jí)裂縫起裂及生長(zhǎng)的研究,分析了壓裂液黏度及注入速率對(duì)水力壓裂效果的影響,主要結(jié)論如下:
1)注入低黏度流體,在同等壓裂時(shí)間內(nèi)能夠獲得較大的裂縫面積,但同高速高黏度注入方式相比,裂縫開度較小,容易造成支撐劑的堵塞,前端部分裂縫可能無(wú)法獲得有效支撐。
2)當(dāng)流體黏度與注入速率乘積一定時(shí),同等注入量得到的裂縫形態(tài)基本一致,這一結(jié)論同時(shí)適用于單條裂縫生長(zhǎng)與裂縫網(wǎng)絡(luò)的生長(zhǎng)。
3)存在次級(jí)裂隙時(shí),高黏度高速率流體更易沿距裂縫交點(diǎn)最近的裂隙繼續(xù)生長(zhǎng),遠(yuǎn)端裂隙由于流體無(wú)法到達(dá)而不能發(fā)育。在低黏度低流速的注入方式下,壓裂液能夠在天然裂縫內(nèi)傳播更遠(yuǎn)的距離,次級(jí)裂隙的生長(zhǎng)受到抑制,壓裂液到達(dá)天然裂縫端部時(shí),有可能誘發(fā)新的壓裂裂縫。
4)從縫網(wǎng)形態(tài)上看,高黏度高速壓裂方式獲得的裂縫網(wǎng)絡(luò)較為集中,裂縫分布總趨勢(shì)垂直于最小水平主應(yīng)力,低黏度低速率壓裂得到的裂縫分布則更為廣泛。天然裂縫易發(fā)生剪切型破壞,壓裂裂縫以張拉型破壞為主。
[1] BLANTON T. An experimental study of interaction between hydraulically induced and pre-existing fractures[C]//Proceedings of SPE Unconventional Gas Recovery Symposium. Pittsburgh: Society of Petroleum Engineers, 1982:559-571.
[2] RENSHAW C E, POLLARD D D. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1995, 32 (3): 237.
[3] WU K, OLSON J E. Mechanics analysis of interaction between hydraulic and natural fractures in shale reservoirs[C]//Unconventional Resources Technology Conference. Denver: Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 2014: 1824-1841.
[4] JANG Y, KIM J, ERTEKIN T, et al. Fracture propagation model using multiple planar fracture with mixed mode in naturally fractured reservoir[J]. Journal of Petroleum Science and Engineering, 2016, 144: 19.
[5] WU K. Numerical modeling of complex hydraulic fracture development in unconventional reservoirs[D]. Austin: University of Texas at Austin, 2014.
[6] TALEGHANI A D, OLSON J E. How natural fractures could affect hydraulic-fracture geometry[J]. SPE Journal, 2013, 19(1): 161.
[7] HADDAD M, DU J, VIDAL-GILBERT S. Integration of dynamic microseismic data with a true 3D modeling of hydraulic fracture propagation in Vaca Muerta Shale[C]//SPE Hydraulic Fracturing Technology Conference. Woodlands: Society of Petroleum Engineers, 2016.
[8] WARPINSKI N, KRAMM R C, HEINZE J R, et al. Comparison of single-and dual-array microseismic mapping techniques in the Barnett Shale[C]//SPE Annual Technical Conference and Exhibition. Houston: Society of Petroleum Engineers, 2005: 95568.
[9] BEUGELSDIJK L J L, DE PATER C J, SATO K. Experimental hydraulic fracture propagation in a multi-fractured medium[C]//SPE Asia Pacific Conference on Integrated Modelling for Asset Management. Yokohama: Society of Petroleum Engineers, 2000: 1-8.
[10] CHUPRAKOV D, MELCHAEVA O, PRIOUL R. Injection-sensitive mechanics of hydraulic fracture interaction with discontinuities[J]. Rock Mechanics and Rock engineering, 2014, 47(5): 1625.
[11] CHEN Z, JEFFREY R G, ZHANG X, et al. Finite-element simulation of a hydraulic fracture interacting with a natural fracture[J]. SPE Journal, 2017, 22(1): 219.
[12] KRESSE O, WENG X, GU H, et al. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J]. Rock Mechanics and Rock Engineering, 2013, 46(3): 555.
[13] COOKE M L, UNDERWOOD C A. Fracture termination and step-over at bedding interfaces due to frictional slip and interface opening[J]. Journal of Structural Geology, 2001, 23(2): 223.
[14] JEFFREY R G, KEAR J, KASPERCZYK D, et al. A 2D experimental method with results for hydraulic fractures crossing discontinuities[C]//49th US Rock Mechanics/Geomechanics Symposium. San Francisco: American Rock Mechanics Association, 2015.
[15] MCCLURE M W, HORNE R N. Discrete fracture network modeling of hydraulic stimulation: coupling flow and geomechanics[M]. Dordrecht: Springer Science amp; Business Media, 2013.
[16] ZHANG X, JEFFREY R G. The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fractures[J]. Geophysical Journal International, 2006, 166(3): 1454.
[17] ZHANG X, JEFFREY R G, THIERCELIN M. Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B12):2158.
[18] SHEN B, SIREN T, RINNE M. Modelling fracture propagation in anisotropic rock mass[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1070.
[19] TANG H, WINTERFELD P H, WU Y S, et al. Integrated simulation of multi-stage hydraulic fracturing in unconventional reservoirs [J]. Journal of Natural Gas Science and Engineering, 2016, 36: 875.
[20] TALEGHANI A D, AHMADI M, OLSON J E. Secondary fractures and their potential impacts on hydraulic fractures efficiency[C]//ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. Brisbane:International Society for Rock Mechanics, 2013.
Theimpactoffluidviscosityandinjectionrateongeometryofthefracturenetwork
TANG Huiying1, DI Yuan2, WU Yushu3
(1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan, China; 2. College of Engineering, Peking University, Beijing 100871, China; 3. Department of Petroleum Engineering, Colorado School of Mines, Golden 80401, Colorado, USA)
According to the field observations and core observations, there is a high chance that a complex fracture network has been induced by hydraulic fracturing, which is greatly affected by natural fractures. Predicting the fracturing effects in the fractured reservoirs with numerical methods could help optimize the operation parameters such as fluid viscosity and injection rate. In this study, the displacement discontinuity method is employed to model deformations of both natural and hydraulic fractures, while the finite volume method is applied to calculate the fluid flow within fractures. The propagation of hydraulic fractures complies with theFenergy criteria while different stress states determine three forms of natural fractures: closing, sliding and opening. By coupling the fracture deformation and fluid equations, the propagation of hydraulic fractures in naturally fractured reservoirs can be simulated. Since the operation parameters can be subject to artificial adjustment, it is critical to understand the role of each parameter in the fracturing process. Field data and experimental results indicate that speedy injection of highly viscous fluid is more likely to induce a fairly concentrated fracture network. This study compares the initiation and growth of secondary crack on primary natural fractures to illustrate that the growth of secondary cracks is facilitated by high fluid viscosity or high injection rate, as a result of which, more hydraulic fractures grow along the direction perpendicular to minimum horizontal stress. Thus, a more concentrated fracture distribution is observed. In addition, high fluid viscosity or injection rate tends to generate the fracture larger in opening, shorter in length and smaller in area of contact with natural fractures. With less viscous fluid injected at a low rate, a wide distributed fracture network can be expected and the natural fractures have more chances to have shearing failure.
natural fractures; fluid viscosity; injection rate; displacement discontinuity method
TE357.12
A
1671-8798(2017)06-0401-08
10.3969/j.issn.1671-8798.2017.06.001
2017-03-25
國(guó)家自然科學(xué)基金項(xiàng)目(51674010);國(guó)家科技重大專項(xiàng)(2016ZX05014)
邸 元(1968— ),男,陜西省西安人,副教授,博士,主要從事油藏?cái)?shù)值模擬和巖土力學(xué)研究。E-mail:diyuan@mech.pku.edu.cn。