亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        生物質(zhì)炭對有機(jī)污染物的吸附及機(jī)理研究進(jìn)展*

        2017-12-11 05:32:39李曉娜賈明云卞永榮
        土壤學(xué)報(bào) 2017年6期
        關(guān)鍵詞:官能團(tuán)極性機(jī)理

        李曉娜 宋 洋 賈明云 王 芳 卞永榮 蔣 新?

        (1 土壤環(huán)境與污染修復(fù)重點(diǎn)實(shí)驗(yàn)室(中國科學(xué)院南京土壤研究所),南京 210008)

        (2 中國科學(xué)院大學(xué),北京 100049)

        生物質(zhì)炭對有機(jī)污染物的吸附及機(jī)理研究進(jìn)展*

        李曉娜1,2宋 洋1賈明云1王 芳1卞永榮1蔣 新1?

        (1 土壤環(huán)境與污染修復(fù)重點(diǎn)實(shí)驗(yàn)室(中國科學(xué)院南京土壤研究所),南京 210008)

        (2 中國科學(xué)院大學(xué),北京 100049)

        生物質(zhì)炭是一種利用廢棄生物質(zhì)材料在缺氧或厭氧環(huán)境中熱化學(xué)轉(zhuǎn)換制備的多孔級(jí)富碳固體材料。因其吸附能力強(qiáng),制備原料來源廣泛,生產(chǎn)成本低且環(huán)境友好等優(yōu)點(diǎn)受到學(xué)術(shù)界越來越多的關(guān)注。探究生物質(zhì)炭對有機(jī)污染物的吸附機(jī)理和規(guī)律,對于評(píng)估其環(huán)境行為和應(yīng)用價(jià)值至關(guān)重要。著重綜述了目前研究報(bào)道的生物質(zhì)炭吸附有機(jī)污染物的吸附機(jī)理,包括分配作用、表面吸附作用和孔隙截留等。一般低溫生物質(zhì)炭對非極性有機(jī)物的吸附機(jī)制以分配作用為主,這種非競爭性吸附機(jī)理可以解釋高濃度有機(jī)污染物在生物質(zhì)炭上的吸附過程。表面吸附是一種非線性競爭性吸附作用,是有機(jī)污染物在生物質(zhì)炭表面有效吸附位點(diǎn)上形成靜電作用或通過氫鍵、離子建、π-π相互作用等結(jié)合的過程??紫督亓羰橇硪环N生物質(zhì)炭固定有機(jī)污染物的微觀機(jī)制,有機(jī)污染物在孔隙內(nèi)部的分配和吸附也是生物質(zhì)炭吸附能力的重要體現(xiàn)。而在實(shí)際復(fù)雜的污染環(huán)境中,各類生物質(zhì)炭對有機(jī)污染物的吸附過程需要多種機(jī)制共同解釋。此外,本文對吸附機(jī)制的影響因素進(jìn)行了分析和總結(jié),生物質(zhì)炭自身理化特性決定了其應(yīng)用價(jià)值,生物質(zhì)炭的性質(zhì)與有機(jī)污染物的極性、芳香性和分子大小等相匹配才能更好地實(shí)現(xiàn)吸附固定,不同的吸附環(huán)境如吸附介質(zhì)、pH和共存離子等也會(huì)對吸附機(jī)制和吸附效果產(chǎn)生影響。最后,文章進(jìn)一步探討了生物質(zhì)炭吸附有機(jī)污染相關(guān)研究未來應(yīng)著重解決的問題,以及生物質(zhì)炭在有機(jī)污染土壤修復(fù)中的應(yīng)用前景。

        生物質(zhì)炭;有機(jī)污染物;吸附特性;吸附機(jī)理

        隨著工農(nóng)業(yè)的快速發(fā)展,工業(yè)廢物、農(nóng)藥、化肥及激素類物質(zhì)的環(huán)境輸入不斷增加,具有高毒性、高累積、難降解、可遠(yuǎn)距離遷移的有機(jī)污染物,一旦進(jìn)入食物鏈會(huì)對人類健康造成明顯的“三致”效應(yīng)。對此類有機(jī)物污染土壤的治理與修復(fù),已成為社會(huì)關(guān)注的熱點(diǎn)問題。土壤中污染物的生物有效性及遷移轉(zhuǎn)化是影響其環(huán)境風(fēng)險(xiǎn)的重要因素,同時(shí)由于我國人多地少的特點(diǎn),開展污染土壤的原位修復(fù)與治理至關(guān)重要。因此,原位吸附阻控污染物,降低其生物有效性,控制其向食物鏈中遷移是一種環(huán)境友好、安全高效的污染土壤修復(fù)措施。

        生物質(zhì)炭作為熱解、炭化合成的主要不完全燃燒產(chǎn)物,是一種穩(wěn)定的富碳物質(zhì),被稱為超級(jí)吸附劑[1]。不完全燃燒決定了生物質(zhì)炭碳質(zhì)組成的異質(zhì)性,與土壤中本土有機(jī)質(zhì)共同吸附有機(jī)污染物,對包括多環(huán)芳烴、多氯聯(lián)苯、芳香硝基化合物等各種有機(jī)污染物具有強(qiáng)烈吸附能力。研究表明,生物質(zhì)炭具有高比表面、強(qiáng)電子交換性、多孔隙和豐富碳質(zhì)組分等獨(dú)特結(jié)構(gòu),相比天然存在碳形式,生物質(zhì)炭對有機(jī)污染物的吸附能力極高[2-3]。此外,生物質(zhì)炭制備原料來源廣,成本低,制備工藝操作簡便,在改善土壤質(zhì)量、提高作物品質(zhì)、高效利用廢棄資源等方面具有很好的效益,受到科學(xué)家們的重視,在有機(jī)污染土壤修復(fù)中有巨大應(yīng)用潛力。

        生物質(zhì)炭獨(dú)特理化性質(zhì)是其強(qiáng)吸附性能的關(guān)鍵,制備工藝和原料類型是影響生物質(zhì)炭理化特性的重要因素[4]。研究不同原料和制備工藝下生物質(zhì)炭的吸附特性,揭示生物質(zhì)炭吸附有機(jī)污染物的機(jī)理,為生物質(zhì)炭在有機(jī)污染土壤修復(fù)中的合理應(yīng)用提供理論指導(dǎo)。本文在闡述生物質(zhì)炭吸附效能和吸附特性的基礎(chǔ)之上,著重綜述了生物質(zhì)炭-有機(jī)污染物相互作用機(jī)理及影響因素,并對目前生物質(zhì)炭在有機(jī)污染土壤修復(fù)中的應(yīng)用所存在的問題進(jìn)行了分析,進(jìn)一步展望了未來相關(guān)研究的發(fā)展。

        1 生物質(zhì)炭吸附效果與特性

        生物質(zhì)炭是具有比表面積大,孔隙結(jié)構(gòu)發(fā)達(dá)、表面官能團(tuán)豐富和芳香度高等特性的富碳材料,可以穩(wěn)定吸附固持污染物,降低其生物有效性,緩解環(huán)境風(fēng)險(xiǎn),同時(shí)其所含的豐富養(yǎng)分成分可以起到保肥固氮、提高土壤肥力的作用,這是生物質(zhì)炭實(shí)現(xiàn)污染土壤邊治理邊生產(chǎn)的關(guān)鍵[5-9]。研究表明,燃燒農(nóng)業(yè)殘?jiān)苽渖镔|(zhì)炭對敵草隆的吸附是土壤的400倍~2500倍,可有效控制這類有機(jī)農(nóng)藥的遷移和環(huán)境污染[10]。較大的比表面積為有機(jī)污染物的吸附提供可能,一般木質(zhì)材料生物質(zhì)炭具有更豐富的微孔結(jié)構(gòu),比表面積高于500 m2g-1,而以秸稈或固體廢物為原料制備的生物質(zhì)炭以中孔結(jié)構(gòu)為主,相對比表面積也較低,在130~310 m2g-1之間[11-12]。研究表明,不同生物質(zhì)原料對有機(jī)污染物吸附能力(Qe)與比表面積變化一致,孔隙形態(tài)以微孔為主的生物質(zhì)炭,相對比表面積也較大,相比以大、中孔隙為主的生物質(zhì)炭具有更強(qiáng)的表面吸附和微孔填充能力,更高的飽和吸附量[13-14]。此外,生物質(zhì)炭表面豐富的含氧官能團(tuán)在一定程度上影響其表面的電子得失、陽離子交換量(CEC)、極性和穩(wěn)定性,且伴隨著老化過程有脂肪族官能團(tuán)減少而羰基官能團(tuán)顯著增多的趨勢,因此生物質(zhì)炭極性增強(qiáng),極性官能團(tuán)是其與極性有機(jī)污染物相互作用的關(guān)鍵[15-17]。吳晴雯等[18]利用傅里葉紅外光譜(Fourier Transform Infrared Spectroscopy,F(xiàn)TIR)對比蘆葦生物質(zhì)炭吸附1,1-二氯乙烯(1,1-DCE)前后表面官能團(tuán)變化,表明有機(jī)物與-OH、C=C、C=O和C-H等官能團(tuán)成鍵和π-π相互作用是主要吸附機(jī)制,生物質(zhì)炭對水溶液中1,1-DCE的去除率高達(dá)90%。Wu等[19]利用FTIR和核磁共振(Nuclear Magnetic Resonance,NMR)檢測500℃熱解水稻秸稈生物質(zhì)炭官能團(tuán),發(fā)現(xiàn)C=C、C=H等芳香化官能團(tuán)含量高達(dá)98.5%,其中C-O芳香化結(jié)構(gòu)含量為24.7%。高度芳香性是生物質(zhì)炭與難降解有機(jī)污染物π-π相互作用的內(nèi)在原因[20-21]。

        生物質(zhì)炭不僅吸附容量大,而且對有機(jī)污染物的固持具有穩(wěn)定性。芳香結(jié)構(gòu)和無定形亂層微晶結(jié)構(gòu)共同決定了生物質(zhì)炭可以長期存在于土壤中,并隨著生物質(zhì)炭吸附態(tài)污染物的“老化”,長效阻控其生態(tài)風(fēng)險(xiǎn)[22]。Kuzyakov等[23]通過14C同位素標(biāo)記來追蹤碳的遷移轉(zhuǎn)化,發(fā)現(xiàn)生物質(zhì)炭在土壤中半衰期大約為1400年。余向陽等[24-25]研究發(fā)現(xiàn),向敵草隆污染農(nóng)田土壤中添加生物質(zhì)炭可提高土壤農(nóng)藥吸附量5倍~125倍,且吸附56 d后農(nóng)藥解吸率降低96%。Jones等[26]研究表明,隨生物質(zhì)炭添加量的增加,西瑪津半衰期顯著增長,1%添加比可延長其半衰期高達(dá)66%,且生物質(zhì)炭吸附能力并不隨老化過程而減弱。將生物質(zhì)炭添加至莠去津污染農(nóng)田土壤中,隨著生物質(zhì)炭的添加比增大和培養(yǎng)時(shí)間的延長,0.01 mol L-1CaCl2可提取態(tài)莠去津濃度顯著降低,蚯蚓對其吸收也降低了73%,這表明生物質(zhì)炭外源添加到土壤中可顯著降低污染物生物有效性[27]。另有研究表明,添加1%小麥秸稈生物質(zhì)炭顯著抑制了土壤中氯苯的消解,這與生物質(zhì)炭降低氯苯的生物有效性有關(guān)[28]。土壤中外源添加生物質(zhì)炭可顯著減少污染物向植物體內(nèi)遷移,從而降低其生態(tài)風(fēng)險(xiǎn)[29]。生物質(zhì)炭對土壤中污染物的吸附-解吸行為,對污染物生物有效性的影響一直是其環(huán)境行為研究的熱點(diǎn),由于生物質(zhì)炭性質(zhì)差異其對有機(jī)污染物的吸附效果和機(jī)理也具有區(qū)別,總結(jié)已有研究的生物質(zhì)炭吸附特征和機(jī)理很有必要。

        2 生物質(zhì)炭對有機(jī)污染物的吸附機(jī)理

        研究生物質(zhì)炭對有機(jī)污染物的吸附機(jī)制和規(guī)律,對評(píng)估其環(huán)境行為和應(yīng)用價(jià)值具有重要指導(dǎo)意義。目前,已有的研究表明吸附機(jī)理主要包括分配作用、表面吸附和孔隙截留三種,而在復(fù)雜的污染環(huán)境及多樣的生物質(zhì)炭類型條件下,多種吸附機(jī)理共同作用才能完全解釋有機(jī)污染物的吸附過程,表1總結(jié)了一些生物質(zhì)炭對常見有機(jī)污染物的吸附作用及機(jī)理。

        表1 生物質(zhì)炭對有機(jī)污染物吸附作用及機(jī)理Table 1 Summary of functions and mechanisms of biochar adsorbing organic contaminants

        2.1 分配作用

        分配作用是Chiou等[46]研究非離子有機(jī)化合物在土壤中的吸附過程時(shí)首次提出的簡單線性吸附過程,是分子間弱的相互作用,是有機(jī)物可以分配到土壤有機(jī)質(zhì)中,而不是在表面吸附位點(diǎn)上的吸附。污染物在有機(jī)質(zhì)中的分配系數(shù)(Kom)與其辛醇-水分配系數(shù)(Kow)之間呈現(xiàn)明顯的線性關(guān)系,因此,研究者認(rèn)為分配作用是有機(jī)污染物根據(jù)“相似相溶”原理在親水相和疏水相之間的分配,該過程主要取決于土壤中有機(jī)質(zhì)含量,與土壤顆粒表面積無關(guān)[47-50]。Huang等[51]認(rèn)為,分配作用主要是由生物質(zhì)炭與有機(jī)污染物的“匹配性”和“有效性”決定的,兩者極性相符,具有高匹配性,則主要發(fā)生分配作用過程;而有效性一方面是指無定形有機(jī)碳對有機(jī)污染物的有效“溶解”,另一方面指高濃度有機(jī)物質(zhì)在生物質(zhì)炭表面吸附有效性降低,此時(shí)主要發(fā)生非競爭性分配作用。

        有機(jī)污染物在生物質(zhì)炭有機(jī)碳中的分配作用與其極性和芳香性緊密相關(guān),一般用H/C和(N+O)/C原子比分別表示生物質(zhì)炭芳香性和極性,H/C值越小,生物質(zhì)炭芳香性越強(qiáng),而(N+O)/C值越大,極性越強(qiáng)[17]。隨著熱解溫度升高,生物質(zhì)炭比表面積增大,極性減弱而芳香性增強(qiáng)。不同熱解溫度生物質(zhì)炭對4-硝基甲苯的吸附研究結(jié)果表明,低溫(<300℃)生物質(zhì)炭比表面積小,吸附等溫線呈現(xiàn)線性,以分配作用為主,且Kom與(N+O)/C負(fù)相關(guān),說明生物質(zhì)炭極性越小對弱極性有機(jī)污染物的分配作用越強(qiáng),兩者之間極性的匹配更有利于有機(jī)污染物的吸附;而Kom與H/C正相關(guān),說明芳香碳不利于有機(jī)污染物的有效“溶解”,高度芳香性的生物質(zhì)炭對有機(jī)污染物分配作用較弱[14,52]。此外,低溫?zé)峤馓恐谢曳趾扛?,無機(jī)礦物占據(jù)了表面有效吸附位點(diǎn),有機(jī)污染物的吸附機(jī)理以非競爭性分配作用為主;高濃度有機(jī)物的吸附等溫線呈線性,也正是由于生物質(zhì)炭表面達(dá)到吸附位點(diǎn)飽和,此時(shí)非競爭性表面分配作用為主要吸附機(jī)制[14,38,53]。生物質(zhì)炭表面極性官能團(tuán)的親水性在其表面形成水膜包裹,阻礙了污染物與吸附位點(diǎn)的有效接觸,為分配作用提供了可能[54]。近年來,Chiou等[36]通過向吸附質(zhì)中添加對硝基酚(PNP)置換液,對比添加前后生物質(zhì)炭對鄰二甲苯(XYL)和1,2,3-三氯苯(TCB)這類非極性和弱極性有機(jī)物質(zhì)的吸附等溫線變化,用實(shí)驗(yàn)方法直接得出分配作用在吸附過程中所占比例,結(jié)果表明泥炭對XYL和TCB的吸附完全為分配作用,低溫?zé)峤猓?00℃和250℃)制備的松針生物質(zhì)炭和柴油煙灰生物質(zhì)炭(SRM-2975和SRM-1650)對XYL和TCB的吸附也以分配作用過程為主,此類生物質(zhì)炭共性在于均具有低比表面積,弱芳香性和豐富的表面極性官能團(tuán)。

        綜上所述,低溫制備生物質(zhì)炭對非極性或弱極性有機(jī)物質(zhì)的吸附,尤其當(dāng)污染物濃度高于生物質(zhì)炭表面最大承載量時(shí),吸附機(jī)理以非競爭性分配作用為主。

        2.2 表面吸附

        表面吸附是有機(jī)污染物與生物質(zhì)炭表面分子結(jié)構(gòu)相互作用的又一種重要吸附機(jī)理,是吸附質(zhì)在生物質(zhì)炭這種具有豐富表面極性官能團(tuán)和巨大相對比表面積的特殊材料表面吸附位點(diǎn)上富集的現(xiàn)象,是生物質(zhì)炭超強(qiáng)吸附能力的主要貢獻(xiàn)部分。根據(jù)吸附劑與吸附質(zhì)之間相互作用力差異可將其分為物理吸附和化學(xué)吸附,吸附熱力學(xué)表面自由能變化小于40 kJ mol-1以物理吸附為主,反之則以化學(xué)吸附為主[55]。

        靜電吸附是最常見的物理吸附,是有機(jī)污染物與生物質(zhì)炭表面含氧官能團(tuán)的弱相互作用。Zheng等[44]研究發(fā)現(xiàn),酸性環(huán)境下生物質(zhì)炭對莠去津吸附作用更強(qiáng),推測是由于污染物的質(zhì)子化作用,導(dǎo)致與生物質(zhì)炭表面負(fù)電荷靜電相互作用增強(qiáng)所致。臭氧氧化活性炭表面官能團(tuán)使得其零電荷點(diǎn)(pHpzc)減小,當(dāng)吸附環(huán)境pH高于pHpzc時(shí)吸附劑表面帶負(fù)電荷,與帶正電荷吸附質(zhì)主要發(fā)生靜電相互作用,吸附能力增強(qiáng)[56]。

        化學(xué)吸附會(huì)伴隨化學(xué)鍵(包括氫鍵、離子偶極鍵、配位鍵或π-π鍵等)的形成或強(qiáng)烈的分子間相互作用。堿性條件下磺胺甲嘧啶(SMT)發(fā)生去質(zhì)子化,與生物質(zhì)炭表面羧酸鹽官能團(tuán)形成氫鍵是其吸附的主要機(jī)制[57]。生物質(zhì)炭酸化處理有利于增強(qiáng)其對有機(jī)污染物的表面吸附作用。一方面是由于表面酸性含氧官能團(tuán)(-OH、-COOH)增加,促進(jìn)與極性有機(jī)物之間形成離子鍵,增強(qiáng)吸附能力;另一方面,酸化增強(qiáng)了對礦物的溶解,暴露更多生物質(zhì)炭的有效吸附位點(diǎn),促進(jìn)表面吸附作用[58-59]。Zhu等[54]對木質(zhì)生物質(zhì)炭加氫和再氧化處理,結(jié)果表明前后過程萘、菲、芘等有機(jī)污染物的吸附并沒有發(fā)生變化,否定了形成氫鍵的吸附過程,推測高度芳香性生物質(zhì)炭與苯環(huán)有機(jī)化合物之間通過π-π電子供受體(π-π EDA)作用力實(shí)現(xiàn)化學(xué)吸附過程。早在1968年,Coughlin等[60]發(fā)現(xiàn)生物質(zhì)炭表面的化學(xué)吸附氧可以減弱其吸附性能,正是因?yàn)閺?qiáng)氧化性化學(xué)吸附氧對生物質(zhì)炭本身含有的含氧官能團(tuán)進(jìn)行氧化,使其具有更強(qiáng)吸電子能力,與吸附質(zhì)之間的π-π EDA作用減弱。生物質(zhì)炭在π-π EDA作用力間既可以作為電子給體,又可以作為電子受體[61]。高溫?zé)峤馍镔|(zhì)炭對五氯苯酚(PCP)的吸附過程中,吸附系數(shù)(Kd)與H/C原子比顯著負(fù)相關(guān),推測芳香碳組分與PCP的苯環(huán)結(jié)構(gòu)通過π-π共軛結(jié)合,且生物質(zhì)炭含氧結(jié)構(gòu)少,吸電子能力減弱,更傾向于作π-供體,PCP作為π-受體[21]。

        因此,生物質(zhì)炭表面電負(fù)性、酸堿性、芳香性以及污染物性質(zhì)差異均會(huì)影響表面吸附過程。通常,高溫?zé)峤猓ǎ?00℃)生物質(zhì)炭具有高比表面積、低極性和豐富芳香結(jié)構(gòu),與有機(jī)污染物相互作用以表面吸附為主,具體表現(xiàn)為吸附等溫線非線性增強(qiáng)[14]。但關(guān)于表面吸附過程中具體作用力的研究還不足,實(shí)驗(yàn)直接表征方法鮮有報(bào)道,推測一般酸性生物質(zhì)炭因表面H+存在,與有機(jī)化合物以靜電力作用結(jié)合,生物質(zhì)炭表面極性官能團(tuán)有利于離子鍵的形成,而酯類官能團(tuán)則會(huì)促進(jìn)π-π作用力相互作用[59]。

        2.3 孔隙截留

        生物質(zhì)炭是一類以微孔結(jié)構(gòu)為主,多孔級(jí)同時(shí)存在的非勻質(zhì)特殊多孔固體材料[62]。微孔的存在是影響有機(jī)污染物慢吸附的重要因素,只有通過慢過程擴(kuò)散進(jìn)入微孔內(nèi)部,或者分配進(jìn)入生物質(zhì)炭剛性結(jié)構(gòu)內(nèi)部的污染物才能不可逆被吸附固定,被稱為殘留態(tài)有機(jī)污染物[63-65]。鎖定作用是有機(jī)污染物通過微孔填充作用被生物質(zhì)炭束縛,降低其生物有效性的關(guān)鍵。被鎖定的污染物與土壤中降解生物有效隔離,使其可穩(wěn)定長期存留于土壤中[64,66]。生物質(zhì)炭孔隙大小限制其對部分有機(jī)污染物的截留作用,孔隙太小會(huì)增大對大分子有機(jī)污染物的空間位阻,使其很難進(jìn)入生物質(zhì)炭內(nèi)部;孔隙太大,不能有效截留小分子有機(jī)污染物。研究表明,木質(zhì)生物炭(ENC1和NC1)對幾種有機(jī)污染物的最大吸附量與污染物分子體積呈反比,且凝聚狀態(tài)為固態(tài)的有機(jī)污染物(1,4-二氯苯或PAHs)在ENC1上的吸附強(qiáng)于NC1,正是由于ENC1具有更大的比表面積和微孔含量,而凝聚狀態(tài)為液態(tài)的有機(jī)污染物(1,2-二氯苯和1,2,4-三氯苯)在兩種生物質(zhì)炭上吸附作用無顯著差異[67]。張默等[68]利用顆粒內(nèi)擴(kuò)散模型表征玉米生物質(zhì)炭對萘的吸附均為多重線性,表明孔隙填充對萘的吸附發(fā)揮重要作用??紫督亓舨⒎呛唵蔚奈锢聿东@,微孔內(nèi)表面的親疏水性也起著重要作用[69-70]。生物質(zhì)炭孔隙內(nèi)表面電荷和羥基官能團(tuán)決定了其具有很強(qiáng)極性,水膜包被生物質(zhì)炭有利于親水性有機(jī)物的吸附固定。然而,水分子同時(shí)也降低了孔隙內(nèi)親水基團(tuán)密度,更有利于疏水性有機(jī)物質(zhì)的孔內(nèi)分配作用過程[71]。Zhang等[72]研究表明生物質(zhì)炭對雌二醇的吸附與孔隙結(jié)構(gòu)有關(guān),推測雌二醇主要與孔內(nèi)基團(tuán)形成氫鍵、π-π EDA等相互作用。此外,Braida等[39]采用非定域密度函數(shù)理論計(jì)算生物質(zhì)炭孔徑、孔隙分布和表面積,表明楓木生物質(zhì)炭吸附苯會(huì)使孔隙發(fā)生膨脹,且孔變形是不可逆的。吸附質(zhì)分子熱運(yùn)動(dòng)導(dǎo)致孔洞膨脹或生成新的孔洞,使剛性結(jié)構(gòu)微孔難以恢復(fù)基態(tài),被吸附的有機(jī)污染物也難以擺脫微孔壁的相互作用力,發(fā)生不可逆變化,出現(xiàn)吸附質(zhì)解吸滯后的現(xiàn)象[73-74]。

        綜上所述,孔隙截留是一種重要的生物質(zhì)炭吸附固定有機(jī)污染物的微觀機(jī)制,孔徑大小、孔隙內(nèi)官能團(tuán)組成以及有機(jī)污染物的形態(tài)與性質(zhì)均會(huì)影響孔隙截留吸附過程,但目前關(guān)于多種物質(zhì)共存環(huán)境下生物質(zhì)炭對有機(jī)污染物的孔隙截留少有報(bào)道,且生物質(zhì)炭多孔級(jí)結(jié)構(gòu)增大了孔內(nèi)相互作用力測定的難度,因此很難探討孔隙截留的具體機(jī)制。

        2.4 共同作用

        顯然,單獨(dú)的分配作用、表面吸附或孔隙截留作用解釋生物質(zhì)炭對有機(jī)污染物的吸附過程均存在局限性。因生物質(zhì)炭特性、有機(jī)污染物性質(zhì)和吸附環(huán)境等不同,生物質(zhì)炭吸附有機(jī)污染物的過程存在差異,通常以某種吸附機(jī)理為主,多種吸附機(jī)理共存。Weber等[75]在1992年提出雙吸附-雙遷移模型,用分配作用貢獻(xiàn)Qp和吸附作用貢獻(xiàn)Qad兩個(gè)參數(shù)區(qū)分分配作用和吸附作用在有機(jī)污染物吸附過程中的貢獻(xiàn)。陳寶梁等[14]引用上述模型解釋高濃度4-硝基酚在生物質(zhì)炭上吸附過程,結(jié)果表明100℃低溫?zé)峤馍镔|(zhì)炭對其吸附完全為分配作用,隨著生物質(zhì)炭熱解溫度升高,吸附機(jī)理從以分配作用為主轉(zhuǎn)變?yōu)橐员砻嫖阶饔脼橹鳎?00℃高溫?zé)峤馍镔|(zhì)炭對有機(jī)污染物吸附能力極高,因其比表面積極大,微孔結(jié)構(gòu)居多,孔隙填充機(jī)理可以解釋Kd劇增的現(xiàn)象,因此,4-硝基酚的復(fù)雜吸附過程需要分配作用、表面吸附和孔隙填充機(jī)理共同解釋。Zhu等[76]定量分析對硝基酚在有機(jī)膨潤土上的吸附,分配作用和表面吸附共同作用才能完整解釋該吸附過程。近年來,Chiou等[36]直接通過實(shí)驗(yàn)對比添加PNP前后生物質(zhì)炭對有機(jī)污染物的吸附等溫線,區(qū)分分配作用和表面吸附在各類生物質(zhì)炭吸附有機(jī)污染物中的占比,有機(jī)污染物的吸附過程需分配作用與表面吸附機(jī)理共同解釋。

        3 影響生物質(zhì)炭吸附有機(jī)污染物的因素

        生物質(zhì)炭吸附有機(jī)污染物的強(qiáng)度和機(jī)制受多種因素影響,生物質(zhì)炭自身理化特性決定了其應(yīng)用價(jià)值,此外有機(jī)污染物的極性、分子大小及吸附環(huán)境如環(huán)境pH、環(huán)境介質(zhì)、共存物質(zhì)等也會(huì)影響整個(gè)吸附過程。

        3.1 生物質(zhì)炭的理化性質(zhì)

        與有機(jī)污染物的吸附過程相關(guān)的生物質(zhì)炭理化性質(zhì)包括比表面積、孔隙結(jié)構(gòu)、元素組成、芳香性、酸堿度和穩(wěn)定性等,不同的原料種類和制備熱解條件是生成性質(zhì)各異生物質(zhì)炭的主要原因。一般常見的生物質(zhì)炭制備原料有木材、松木[77]、花生殼、秸稈、煙桿[78]、蘆葦、椰殼[79]、竹子或其他植物類廢棄物,動(dòng)物糞便及污泥等[80]。Lei和Zhang[81]對比木屑和干牛糞原料制備生物質(zhì)炭的性質(zhì),表明前者具有更高的比表面積、芳香性、pH和C/N比,更少的灰分組成,有利于增大土壤持水性,提高生物質(zhì)炭表面吸附量。原料中木質(zhì)素含量也會(huì)影響生物質(zhì)炭理化性質(zhì),玉米秸稈生物質(zhì)炭相比小麥秸稈生物質(zhì)炭具有更高的芳香性、穩(wěn)定性和碳含量,而其極性和灰分含量相對較低[82]。Crombie等[83]用元素分析法和加速老化法分別對比不同生物質(zhì)炭的碳素組成,結(jié)果表明生物質(zhì)炭的穩(wěn)定性與O/C原子比顯著正相關(guān),但原料中碳素組成并非主要決定因素,而與制備過程中碳轉(zhuǎn)化效率有關(guān)。生物質(zhì)炭的制備要求嚴(yán)格的厭氧甚至絕氧條件,熱解是目前較為常見的制備工藝,熱解條件包括停留時(shí)間、熱解溫度和熱轉(zhuǎn)化率等對生物質(zhì)炭的產(chǎn)量、性能和吸附效率均具有重要影響。一般慢速熱解條件生物質(zhì)炭產(chǎn)量最高,芳香性和穩(wěn)定性更強(qiáng)[84-88]。此外,隨著熱解溫度的升高,生物質(zhì)炭有機(jī)質(zhì)含量減少,極性減弱,芳香性增強(qiáng),同時(shí)伴有微孔結(jié)構(gòu)增多和比表面積增大,這是由于在此過程中碳形態(tài)從無定形態(tài)轉(zhuǎn)化為過渡態(tài),再到芳香態(tài)最終形成穩(wěn)定的亂層態(tài),且高溫炭化會(huì)打開部分阻塞的孔穴,因此,吸附機(jī)理也由分配作用為主向表面吸附和微孔截留轉(zhuǎn)變,生物質(zhì)炭吸附容量增大[14,21,59,81,89-91]。高溫條件下生物質(zhì)表面脂肪烷烴或酯基官能團(tuán)的分解,引起芳香族木質(zhì)素的暴露也可能是比表面積增大的原因,疏水性有機(jī)污染物分配到豐富的孔隙結(jié)構(gòu)內(nèi)實(shí)現(xiàn)吸附固定[43,92]。生物質(zhì)炭穩(wěn)定性決定了其會(huì)長期存在于土壤中,伴隨著生物質(zhì)炭的老化,理化性質(zhì)也會(huì)發(fā)生變化,對有機(jī)污染物的吸附能力會(huì)存在差異。研究表明,老化的低溫?zé)峤馍镔|(zhì)炭相比新炭芳香碳含量減小,烷基碳含量增加,極性增強(qiáng),此外隨著表面官能團(tuán)的解離,有堿性增強(qiáng),CEC增大的現(xiàn)象,這都會(huì)影響菲的吸附過程,而不同熱解溫度和原料的生物質(zhì)炭老化過程理化性質(zhì)變化也有所不同[93]。

        3.2 有機(jī)污染物性質(zhì)

        有機(jī)污染物在生物質(zhì)炭上的吸附受其極性、疏水性、芳香性、分子大小等因素的影響。吳晴雯等[18]對比蘆葦秸稈生物質(zhì)炭對菲(PHE)和1,1-二氯乙烯(1,1-DCE)的吸附,前者以分配作用為主,后者由于具有更強(qiáng)的極性和較小的分子體積,吸附機(jī)理以表面吸附和微孔填充為主,吸附量更大。Cederlund等[94]和Hale[95]等研究表明木質(zhì)生物質(zhì)炭對幾種殺蟲劑、除草劑的吸附存在顯著差異,吸附能力為敵草?。径舅莉纾疽宜犷悾∕CPA)>滅草松>草甘膦,這與有機(jī)物親酯性、極化率和分子大小有關(guān),敵草隆和毒死蜱具有強(qiáng)親酯性,生物質(zhì)炭對其吸附能力強(qiáng),敵草隆以疏水性和范德華力交互作用吸附為主,毒死蜱則以表面吸附固定于生物質(zhì)炭吸附位點(diǎn)上;MCPA和滅草松吸附強(qiáng)度與生物質(zhì)炭表面酸度、表面積等有關(guān);草甘膦在被三價(jià)鐵鹽包被的生物質(zhì)炭表面吸附作用增強(qiáng),吸附機(jī)理以強(qiáng)化學(xué)吸附為主。此外,生物質(zhì)炭芳香結(jié)構(gòu)更易與帶苯環(huán)結(jié)構(gòu)的有機(jī)物生成π-π相互作用力,強(qiáng)烈吸附于生物質(zhì)炭表面[54]。不同分子大小的污染物因空間位阻作用,在生物質(zhì)炭上的有效接觸和截留效力存在差異,因此吸附機(jī)制和吸附效果也不同[67]??梢?,生物質(zhì)炭對不同分子體積和極性的有機(jī)污染物吸附機(jī)理有所差異,對疏水性有機(jī)污染物以疏水分配作用為主,而強(qiáng)極性小分子有機(jī)物則通過與生物質(zhì)炭表面極性官能團(tuán)相互作用吸附固定,不同分子大小的有機(jī)污染物因微孔填充效果不同導(dǎo)致吸附量差異懸殊。

        3.3 吸附環(huán)境

        吸附環(huán)境對生物質(zhì)炭吸附有機(jī)污染物的影響主要包括環(huán)境pH、環(huán)境介質(zhì)和共存離子等。Teixido等[57]研究不同pH條件下生物質(zhì)炭對SMT的吸附,pH=1環(huán)境下以SMT+為主要存在形式,與生物質(zhì)炭表面豐富π電子形成π-π電子給體-受體相互作用,而堿性環(huán)境中SMT-為主,通過釋放OH-形成SMT0,氫鍵作用是其吸附主要機(jī)制。環(huán)境介質(zhì)中的水分子易于表面極性官能團(tuán)作用形成水膜,阻止有機(jī)污染物與生物質(zhì)炭接觸;水分子極性調(diào)節(jié)污染物表面電荷組成,影響其吸附過程;此外,環(huán)境水分波動(dòng)還會(huì)影響生物質(zhì)炭理化性質(zhì),影響其吸附性能。相比恒濕培養(yǎng),干濕交替老化過程顯著降低了生物質(zhì)炭對鄰苯二甲酸二乙酯的吸附作用,這可能與表面基團(tuán)結(jié)構(gòu)變化有關(guān)[96-97]。一般實(shí)際污染土壤多為復(fù)合污染,Bornemann等[98]研究表明,幾種有機(jī)物共存會(huì)導(dǎo)致生物質(zhì)炭對各有機(jī)污染物的吸附強(qiáng)度均有所下降,這說明有機(jī)污染物之間存在競爭吸附效應(yīng),共存離子對有機(jī)污染物的吸附過程產(chǎn)生影響。

        4 研究展望

        生物質(zhì)炭這種綠色吸附材料是有機(jī)污染土壤修復(fù)的重要手段,目前研究主要包括對殺蟲劑、除草劑、醫(yī)療廢物、染料、工業(yè)污染等的吸附治理,但生物質(zhì)炭種類多樣,大部分生物質(zhì)炭類型目前還只是停留在實(shí)驗(yàn)室研究階段,主要是對溶液或土壤懸液中有機(jī)污染物的吸附機(jī)理的探究,生物質(zhì)炭在實(shí)際污染土壤修復(fù)中的推廣仍需要很長的階段。此外,關(guān)于生物質(zhì)炭的研究在制備原料、制備工藝以及使用方法等方面存在很大差異,生物質(zhì)炭的真正修復(fù)效果很難評(píng)價(jià),我國土壤性質(zhì)分布各有不同,土壤污染種類多樣,使生物質(zhì)炭在實(shí)際應(yīng)用中的篩選變得更加困難。因此,需要探究不同生物質(zhì)炭理化性質(zhì)與其吸附機(jī)理的相互關(guān)系,全面剖析影響生物質(zhì)炭吸附效果的因素,為生物質(zhì)炭的廣泛應(yīng)用提供指導(dǎo)依據(jù)。生物質(zhì)炭主要通過降低污染物的生物有效性來阻控其環(huán)境風(fēng)險(xiǎn)的,高濃度殘留態(tài)污染物依然存在于土壤中,具有潛在環(huán)境風(fēng)險(xiǎn)[28-29],另有研究指出生物質(zhì)炭在制備過程中同樣存在環(huán)境健康影響[99-101],因此,規(guī)范生物質(zhì)炭制備工藝,長期監(jiān)控生物質(zhì)炭的環(huán)境行為,徹底消解生物質(zhì)炭中殘留的有機(jī)污染物很有必要。

        為了實(shí)現(xiàn)生物質(zhì)炭對有機(jī)污染物吸附的最佳效果,必須探究其對有機(jī)污染物的吸附機(jī)理,目前已有研究中較為認(rèn)可的機(jī)制主要包括表面吸附、分配作用、孔隙截留和多種機(jī)理共同作用。但至今關(guān)于具體的吸附機(jī)理仍以性質(zhì)分析和過程推測為主,缺少直接的定性和定量手段。一般通過元素分析、表面積測定(BET-N2)、電動(dòng)電位測定(Zetapotential)、拉曼光譜(Raman spectra)、FTIR、NMR、掃描電鏡分析(Scanning Electron Microscopy,SEM)等手段表征生物質(zhì)炭理化性質(zhì),再與其對有機(jī)污染物的吸附效果進(jìn)行相關(guān)性分析,或采用吸附等溫線表征該過程,進(jìn)而推斷可能存在的吸附機(jī)理,直接采用實(shí)驗(yàn)手段準(zhǔn)確揭示生物質(zhì)炭吸附有機(jī)污染過程仍少有研究。

        綜上,未來相關(guān)研究應(yīng)著重解決以下問題:1)實(shí)驗(yàn)表征生物質(zhì)炭吸附過程,深入探討其對不同物質(zhì)的吸附機(jī)理,進(jìn)一步剖析影響生物質(zhì)炭吸附有機(jī)污染物的因素,合理施用生物質(zhì)炭,使其具有最高吸附效能;2)探究生物質(zhì)炭的生態(tài)環(huán)境效應(yīng),包括對土壤理化性質(zhì)、土著微生物群落和土壤再利用價(jià)值的影響;3)明確生物質(zhì)炭制備原料和工藝的參數(shù),提高生物質(zhì)炭性能,可以對生物質(zhì)炭進(jìn)行修飾或改性,緩解生物質(zhì)炭對生態(tài)環(huán)境的不良影響,拓寬應(yīng)用范圍;4)生物質(zhì)炭外源添加到土壤中有利于土壤養(yǎng)分循環(huán)和生物擾動(dòng)[84,102-105],聯(lián)合生物質(zhì)炭與其他如植物、微生物修復(fù)等途徑,實(shí)現(xiàn)有機(jī)污染土壤的高效治理。

        [1] Ahmad M,Rajapaksha A U,Lim J E,et al. Biochar as a sorbent for contaminant management in soil and water:A review. Chemosphere,2014,99:19—33

        [2] Khorram M S,Zhang Q,Lin D,et al. Biochar:A review of its impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences,2016,44:269—279

        [3] Zhang G,Zhang Q,Sun K,et al. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environmental Pollution,2011,159(10):2594—2601

        [4] 李力,劉婭,陸宇超,等. 生物炭的環(huán)境效應(yīng)及其應(yīng)用的研究進(jìn)展. 環(huán)境化學(xué),2011,30(8):1411—1421 Li L,Liu Y,Lu Y C,et al. Review on environmental effects and applications of biochar(In Chinese).Environmental Chemistry,2011,30(8):1411—1421

        [5] Liang B,Lehmann J,Solomon D,et al. Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal,2006,70(5):1719—1730

        [6] Petit C,Kante K,Bandosz T J. The role of sulfurcontaining groups in ammonia retention on activated carbons. Carbon,2010,48(3):654—667

        [7] Yuan J H,Xu R K,Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology,2011,102(3):3488—3497

        [8] 王萌萌,周啟星. 生物炭的土壤環(huán)境效應(yīng)及其機(jī)制研究. 環(huán)境化學(xué),2013,32(5):768—780 Wang M M,Zhou Q X. Environmental effects and their mechanisms of biochar applied to soils(In Chinese).Environmental Chemistry,2013,32(5):768—780

        [9] 張晗芝,黃云,劉鋼,等. 生物炭對玉米苗期生長、養(yǎng)分吸收及土壤化學(xué)性狀的影響. 生態(tài)環(huán)境學(xué)報(bào),2010,19(11):2713—2717 Zhang H Z,Huang Y,Liu G,et al. Effect of biochar on corn growth,nutrient uptake and soil chemical properties in seeding stage(In Chinese). Ecology and Environmental Sciences,2010,19(11):2713—2717

        [10] Yang Y N,Sheng G Y. Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environmental Science amp; Technology,2003,37(16):3635—3639

        [11] 楚穎超. 不同溫度裂解椰子生物炭對重金屬吸附的研究. 海口:海南大學(xué),2015 Chu Y C. Adsorption of heavy metal on different temperature derived biochar from coconut(In Chinese). Haikou:Hainan University,2015

        [12] 楊晶晶. 竹屑生物炭吸附典型芳香性有機(jī)物的機(jī)制及規(guī)律. 杭州:浙江大學(xué),2016 Yang J J. Correlation and mechanisms of typical aromatic compounds adsorption on bamboo biochars(In Chinese). Hangzhou:Zhejiang University,2016

        [13] 張晗,林寧,黃仁龍,等. 不同生物質(zhì)制備的生物炭對菲的吸附特性研究. 環(huán)境工程,2016,34(10):166—171 Zhang H,Lin N,Huang R L,et al. Sorption of phenanthrene on biochars produced from different biomass materials(In Chinese). Environmental Engineering,2016,34(10):166—171

        [14] 陳寶梁,周丹丹,朱利中,等. 生物碳質(zhì)吸附劑對水中有機(jī)污染物的吸附作用及機(jī)理. 中國科學(xué),2008,38(6):530—537 Chen B L,Zhou D D,Zhu L Z,et al. The adsorption and mechanisms of biomass carbon adsorbent on organic pollutions in water(In Chinese). China Science,2008,38(6):530—537

        [15] 孟冠華,李愛民,張全興. 活性炭的表面含氧官能團(tuán)及其對吸附影響的研究進(jìn)展. 離子交換與吸附,2007,23(1):88—94 Meng G H,Li A M,Zhang Q X. The research on the surface oxygen functional groups of active carbon and its influence on the adsorption(In Chinese). Ion Exchange and Adsorption,2007,23(1):88—94

        [16] Cheng C H,Lehmann J,Thies J E,et al. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry,2006,37(11):1477—1488

        [17] Chen B L,Johnson E J,Chefetz B,et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials:Role of polarity and accessibility. Environmental Science amp; Technology,2005,39(16):6138—6146

        [18] 吳晴雯,孟梁,張志豪,等. 蘆葦秸稈生物炭對水中菲和1,1-二氯乙烯的吸附特性. 環(huán)境科學(xué),2016,37(2):680—688 Wu Q W,Meng L,Zhang Z H,et al. Sorption characteristics of phenanthrene and 1,1-dichloroethene onto reed straw biochar in aquatic solutions(In Chinese). Environmental Science,2016,37(2):680—688

        [19] Wu W,Yang M,F(xiàn)eng Q,et al. Chemical characterization of rice straw-derived biochar for soil amendment.Biomass amp; Bioenergy,2012,47:268—276

        [20] Xie M X,Chen W,Xu Z Y,et al. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions.Environmental Pollution,2014,186:187—194

        [21] Peng P,Lang Y H,Wang X M. Adsorption behavior and mechanism of pentachlorophenol on reed biochars:Ph effect,pyrolysis temperature,hydrochloric acid treatment and isotherms. Ecological Engineering,2016,90:225—233

        [22] Sohi S P. Carbon storage with benefits. Science,2012,338(6110):1034—1035

        [23] Kuzyakov Y,Subbotina I,Chen H Q,et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by14C labeling. Soil Biologyamp; Biochemistry,2009,41(2):210—219

        [24] 余向陽,王冬蘭,母昌立,等. 生物質(zhì)炭對敵草隆在土壤中的慢吸附及其對解吸行為的影響. 江蘇農(nóng)業(yè)學(xué)報(bào),2011,27(5):1011—1015 Yu X Y,Wang D L,Mu C L,et al. Role of biochar in slow sorption and desorption of diuron in soil(In Chinese). Jiangsu Journal of Agricultural Sciences,2011,27(5):1011—1015

        [25] 余向陽,應(yīng)光國,劉賢進(jìn),等. 土壤中黑碳對農(nóng)藥敵草隆的吸附-解吸遲滯行為研究. 土壤學(xué)報(bào),2007,44(4):650—655 Yu X Y,Ying G G,Liu X J,et al. Hysteresis effect of charcoal on sorption and desorption of diuron by soil(In Chinese). Acta Pedologic Sinica,2007,44(4):650—655

        [26] Jones D L,Edwards-Jones G,Murphy D V. Biochar mediated alterations in herbicide breakdown and leaching in soil. Soil Biology amp; Biochemistry,2011,43(4):804—813

        [27] Cao X,Ma L,Liang Y,et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science amp;Technology,2011,45(11):4884—4889

        [28] 宋洋,王芳,楊興倫,等. 生物質(zhì)炭對土壤中氯苯類物質(zhì)生物有效性的影響及評(píng)價(jià)方法. 環(huán)境科學(xué),2012,33(1):169—174 Song Y,Wang F,Yang X L,et al. Inluence and assessment of biochar on the bioavailability of chlorobenzenes in soil(In Chinese). Environmental Science,2012,33(1):169—174

        [29] Yu X Y,Ying G G,Kookana R S. Reduced plant uptake of pesticides with biochar additions to soil.Chemosphere,2009,76(5):665—671

        [30] Hale S E,Hanley K,Lehmann J,et al. Effects of chemical,biological,and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. Environmental Science amp; Technology,2011,45(24):10445—10453

        [31] Liu P,Liu W J,Jiang H,et al. Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology,2012,121:235—240

        [32] Taha S M,Amer M E,Elmarsafy A E,et al.Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water.Journal of Environmental Chemical Engineering,2014,2(4):2013—2025

        [33] Cao X,Ma L,Gao B,et al. Dairy-manure derived biochar effectively sorbs lead and atrazine.Environmental Science amp; Technology,2009,43(9):3285—3291

        [34] Kong H,He J,Gao Y,et al. Cosorption of phenanthrene and mercury(ii)from aqueous solution by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry,2011,59(22):12116—12123

        [35] Khan S,Wang N,Reid B J,et al. Reduced bioaccumulation of PAHs by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and sewage sludge derived biochar. Environmental Pollution,2013,175:64—68

        [36] Chiou C T,Cheng J,Hung W N,et al. Resolution of adsorption and partition components of organic compounds on black carbons. Environmental Science amp;Technology,2015,49(15):9116—9123

        [37] 李洋,宋洋,王芳,等. 小麥秸稈生物炭對高氯代苯的吸附過程與機(jī)制研究. 土壤學(xué)報(bào),2015,52(5):1096—1105 Li Y,Song Y,Wang F,et al. Effect of wheat straw biochar on high chlorinated benzene sorption process and mechanism(In Chinese). Acta Pedologica Sinica,2015,52(5):1096—1105

        [38] 王菲,孫紅文. 生物炭對極性與非極性有機(jī)污染物的吸附機(jī)理. 環(huán)境化學(xué),2016,35(06):1134—1141 Wang F,Sun H W. Sorption mechanisms of polar and apolar organic contaminants onto biochars(In Chinese). Environmental Chemistry,2016,35(6):1134—1141

        [39] Braida W J,Pignatello J J,Lu Y F,et al. Sorption hysteresis of benzene in charcoal particles. Environmental Science amp; Technology,2003,37(2):409—417

        [40] Chen B L,Zhou D D,Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science amp;Technology,2008,42(14):5137—5143

        [41] Zhang H H,Lin K D,Wang H L,et al. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environmental Pollution,2010,158(9):2821—2825

        [42] Kasozi G N,Zimmerman A R,Nkedikizza P,et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons(biochars).Environmental Science amp; Technology,2010,44(16):6189—6195

        [43] Chen B L,Chen Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere,2009,76(1):127—133

        [44] Zheng W,Guo M X,Chow T,et al. Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials,2010,181(1/3):121—126[45] 陳翠蘋. 水中亞硝胺類污染物的吸附去除與作用機(jī)制.杭州:浙江大學(xué),2016 Chen C P. Removal of nitrosamines from aqueous solution by sorption process(In Chinese). Hangzhou:Zhejiang University,2016

        [46] Chiou C T,F(xiàn)reed V H,Schmedding D W,et al. Partition-coefficient and bioaccumulation of selected organic chemicals. Environmental Science amp;Technology,1977,11(5):475—478

        [47] Chiou C T,Lee J F,Boyd S A. The surface area of soil organic matter. Environmental Science amp; Technology,1990,24(8):1164—1166

        [48] Chiou C T,Peters L J,F(xiàn)reed V H. Physical concept of soil-water equilibria for nonionic organic compounds.Science,1979,206(4420):831—832

        [49] Chiou C T,Rutherford D W,Manes M. Sorption of N2and EGME vapors on some soils,clays,and mineral oxides and determination of sample surface-areas by use of sorption data. Environmental Science amp; Technology,1993,27(8):1587—1594

        [50] Fu Q L,He J Z,Blaney L,et al. Sorption of roxarsone onto soils with different physicochemical properties.Chemosphere,2016,159:103—112

        [51] Huang W H,Chen B L. Interaction mechanisms of organic contaminants with burned straw ash charcoal.Journal of Environmental Sciences,2010,22(10):1586—1594

        [52] Chun Y,Sheng G Y,Chiou C T,et al. Compositions and sorptive properties of crop residue-derived chars.Environmental Science amp; Technology,2004,38(17):4649—4655

        [53] 陳寶梁,陳再明,陳文遠(yuǎn),等. 有機(jī)污染物與生物炭的相互作用:吸附模型、機(jī)理和熱力學(xué). 第六屆全國環(huán)境化學(xué)大會(huì)暨環(huán)境科學(xué)儀器與分析儀器展覽會(huì)摘要集. 上海,2011 Chen B L,Chen Z M,Chen W Y,et al. Interaction of biochar and organic pollutants:Adsorption model,the mechanism and thermodynamics(In Chinese).Proceedings of the sixth national conference on environmental chemistry and environmental science instrument and analysis instrument exhibition.Shanghai,2011

        [54] Zhu D Q,Kwon S,Pignatello J J. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions.Environmental Science amp; Technology,2005,39(11):3990—3998

        [55] Carter M C,Kilduff J E,Weber W J. Site energy distribution analysis of preloaded adsorbents. Environmental Science amp; Technology,1995,29(7):1773—1780

        [56] Rivera-Utrilla J,Bautista-Toledo I,F(xiàn)effo-Garcia M A,et al. Bioadsorption of Pb(II),Cd(II),and Cr(VI)on activated carbon from aqueous solutions.Carbon,2003,41(2):323—330

        [57] Teixido M,Pignatello J J,Beltran J L,et al.Speciation of the ionizable antibiotic sulfamethazine on black carbon(biochar). Environmental Science amp;Technology,2011,45(23):10020—10027

        [58] Lou L P,Luo L,Wang L N,et al. The influence of acid demineralization on surface characteristics of black carbon and its sorption for pentachlorophenol. Journal of Colloid and Interface Science,2011,361(1):226—231

        [59] Zhang P,Sun H,Yu L,et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manurederived biochars:Impact of structural properties of biocharse. Journal of Hazardous Materials,2013,244:217—224

        [60] Coughlin R W,Ezra F S,Tan R N. Influence of chemisorbed oxygen in adsorption onto carbon from aqueous solution. Journal of Colloid and Interface Science,1968,28(3/4):386—396

        [61] Diaz-Flores P E,Leyva-Ramos R,Guerrero-Coronado R M,et al. Adsorption of pentachlorophenol from aqueous solution onto activated carbon fiber. Industrialamp; Engineering Chemistry Research,2006,45(1):330—336

        [62] Storck S,Bretinger H,Maier W F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Applied Catalysis A:General,1998,174(1/2):137—146

        [63] 李俊國,孫紅文. 芘在土壤中的長期吸附和解吸行為.環(huán)境科學(xué),2006,27(1):165—170 Li J G,Sun H W. The long-term adsorption and desorption behaviors of pyrene in soil(In Chinese).Environmental Science,2006,27(1):165—170

        [64] 李曉軍,李培軍,藺昕. 土壤中難降解有機(jī)污染物鎖定機(jī)理研究進(jìn)展. 應(yīng)用生態(tài)學(xué)報(bào),2007,18(7):1624—1630 Li X J,Li P J,Lin X. Research advances in sequestration mechanisms of hardly biodegradable organic contaminants in soil(In Chinese). Chinese Journal of Applied Ecology,2007,18(7):1624—1630

        [65] 王震宇,于曉冬,許穎,等. 土壤微孔對有機(jī)物吸附/解吸的影響及其表征. 生態(tài)學(xué)報(bào),2009,29(4):2087—2096 Wang Z Y,Yu X D,Xu Y,et al. Characterization of soil/ sediment micropores and their impacts on the sorption/ desorption behavior of organic pollutants(In Chinese). Acta Ecologica Sinica,2009,29(4):2087—2096

        [66] 李莉,苗明升,丁俊男,等. 土壤中鎖定殘留芘在體外消化系統(tǒng)中的生物可給性. 生態(tài)毒理學(xué)報(bào),2009,4(5):634—640 Li L,Miao M S,Ding J N,et al. Oral bioaccessibility of bound residue of pyrene in contamination soils determined by an in vitro gastrointestinal model(In Chinese). Asian Journal of Ecotoxicology,2009,4(5):634—640

        [67] Nguyen T H,Cho H H,Poster D L,et al. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environmental Science amp; Technology,2007,41(4):1212—1217

        [68] 張默,賈明云,卞永榮,等. 不同溫度玉米秸稈生物炭對萘的吸附動(dòng)力學(xué)特征與機(jī)理. 土壤學(xué)報(bào),2015,52(5):1106—1115 Zhang M,Jia M Y,Bian Y R,et al. Sorption kinetics and mechanism of naphthalene on corn-stalk-derived biochar with different pyrolysis temperature(In Chinese). Acta Pedologica Sinica,2015,52(5):1106—1115

        [69] Cheng H,Hu E,Hu Y. Impact of mineral micropores on transport and fate of organic contaminants:A review.Journal of Contaminant Hydrology,2012,129:80—90

        [70] Hu E,Cheng H. Impact of surface chemistry on microwave-induced degradation of atrazine in mineral micropores. Environmental Science amp; Technology,2013,47(1):533—541

        [71] Muller E A,Gubbins K E. Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces. Carbon,1998,36(10):1433—1438

        [72] Zhang F,Li Y,Zhang G,et al. The importance of nano-porosity in the stalk-derived biochar to the sorption of 17β-estradiol and retention of it in the greenhouse soil. Environmental Science and Pollution Research,2017,24(10):9575—9584

        [73] Sander M,Lu Y F,Pignatello J J. Conditioningannealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion.Environmental Science amp; Technology,2006,40(1):170—178

        [74] Sander M,Pignatello J J. An isotope exchange technique to assess mechanisms of sorption hysteresis applied to naphthalene in kerogenous organic matter.Environmental Science amp; Technology,2005,39(19):7476—7484

        [75] Weber W J Jr,McClinley P M,Katz L E. A distributed reactivity model for sorption by soils and sediments.1.Conceptual basis and equllibrium assessments.Environmental Science amp; Technology,1992,26(10):1955—1962

        [76] Zhu L Z,Chen B L. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water. Environmental Science amp; Technology,2000,34(14):2997—3002

        [77] 顏鈺,王子瑩,金潔,等. 不同生物質(zhì)來源和熱解溫度條件下制備的生物炭對菲的吸附行為. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(9):1810—1816 Yan Y,Wang Z Y,Jin J,et al. Phenanthrene adsorption on biochars produced from different biomass materials at two temperatures(In Chinese). Journal of Agriculture Environment Science,2014,33(9):1810—1816

        [78] 張利波,彭金輝,夏洪應(yīng),等. 微波加熱制備煙桿基高比面積活性炭的研究. 武漢理工大學(xué)學(xué)報(bào),2008,30(12):76—79 Zhang L B,Peng J H,Xia H Y,et al. Research of preparation of high specific surface area activated carbon from tobacco stem by microwave heating(In Chinese). Journal of Wuhan University of Technology,2008,30(12):76—79

        [79] Yang K,Peng J,Srinivasakannan C,et al. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresource Technology,2010,101(15):6163—6169

        [80] 王懷臣,馮雷雨,陳銀廣. 廢物資源化制備生物質(zhì)炭及其應(yīng)用的研究進(jìn)展. 化工進(jìn)展,2012,31(4):907—914 Wang H C,F(xiàn)eng L Y,Chen Y G. Advances in biochar production from wastes and its applications(In Chinese). Chemical Industry and Engineering Progress,2012,31(4):907—914

        [81] Lei O,Zhang R. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. Journal of Soils and Sediments,2013,13(9):1561—1572

        [82] 陳靜文. 兩類生物炭的熱穩(wěn)定性和化學(xué)穩(wěn)定性比較. 昆明:昆明理工大學(xué),2014 Chen J W. Thermal stability and chemical stability of two types of biochar(In Chinese). Kunming:Kunming University of Science and Technology,2014

        [83] Crombie K,Masek O,Sohi S P,et al. The effect of pyrolysis conditions on biochar stability as determined by three methods. Global Change Biology Bioenergy,2013,5(2):122—131

        [84] Beesley L,Moreno-Jimenez E,Gomez-Eyles J L,et al.A review of biochars' potential role in the remediation,revegetation and restoration of contaminated soils.Environmental Pollution,2011,159(12):3269—3282

        [85] Mohan D,Pittman C U.,Steele P H. Pyrolysis of wood/biomass for bio-oil:A critical review. Energy amp; Fuels,2006,20(3):848—889

        [86] Mohanty P,Nanda S,Pant K K,et al. Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw,timothy grass and pinewood:Effects of heating rate. Journal of Analytical and Applied Pyrolysis,2013,104:485—493

        [87] Zhang M,Gao B,Varnoosfaderani S,et al.Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology,2013,130:457—462

        [88] 李保強(qiáng),劉鈞,李瑞陽,等. 生物質(zhì)炭的制備及其在能源與環(huán)境領(lǐng)域中的應(yīng)用. 生物質(zhì)化學(xué)工程,2012,46(1):34—38 Li B Q,Liu J,Li R Y,et al. The preparation of biomass carbon and the application in the field of energy and the environment(In Chinese). Biomass Chemical Engineering,2012,46(1):34—38

        [89] Keiluweit M,Nico P S,Johnson M G,et al.Dynamic molecular structure of plant biomass-derived black carbon(biochar). Environmental Science amp;Technology,2010,44(4):1247—1253

        [90] 馮琪波. 稻田土壤水稻秸稈生物質(zhì)炭穩(wěn)定性研究. 杭州:浙江大學(xué),2013 Feng Q B. Study on the stability of rice straw biochar on paddy soil(In Chinese). Hangzhou:Zhejiang University,2013

        [91] 周丹丹. 生物碳質(zhì)對有機(jī)污染物的吸附作用及機(jī)理調(diào)控. 杭州:浙江大學(xué),2008 Zhou D D. The adsorption and mechanism of biomass carbon on organic pollutions(In Chinese).Hangzhou:Zhejiang University,2008

        [92] Uchimiya M,Chang S,Klasson K T. Screening biochars for heavy metal retention in soil:Role of oxygen functional groups. Journal of Hazardous Materials,2011,190(1/3):432—441

        [93] 唐偉. 生物質(zhì)炭老化過程表面性質(zhì)的變化及其對菲吸附性能的影響機(jī)制. 南京:南京農(nóng)業(yè)大學(xué),2014 Tang W. Changes in biochar surface structure during aging and influences on phenanthrene adsorption(In Chinese). Nanjing:Nanjing Agricultural University,2014

        [94] Cederlund H,B?rjesson E,Lundberg D,et al.Adsorption of pesticides with different chemical properties to a wood biochar treated with heat and iron.Water,Air,amp; Soil Pollution,2016,227,DOI:10.1007/s 11270-016-2894-z

        [95] Hale S E,Arp H P H,Kupryianchyk D,et al. A synthesis of parameters related to the binding of neutral organic compounds to charcoal. Chemosphere,2016,144:65—74

        [96] Hao R,Wang P C,Wu Y P,et al. Impacts of water level fluctuations on the physicochemical properties of black carbon and its phenanthrene adsorptiondesorption behaviors. Ecological Engineering,2017,100:130—137

        [97] Zhang X K,He L Z,Mao X L,et al. Effect of different aging processes on the adsorption and desorption of diethyl phthalate to soil amended with biochars. Acta Scientiae Circumstantiae,2015,35(12):4012—4020

        [98] Bornemann L C,Kookana R S,Welp G. Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere,2007,67(5):1033—1042

        [99] Quilliam R S,Rangecroft S,Emmett B A,et al.Is biochar a source or sink for polycyclic aromatic hydrocarbon(PAHs)compounds in agricultural soils?Global Change Biology Bioenergy,2013,5(2):96—103

        [100] Zhurinsh A,Zandersons J,Dobele G. Slow pyrolysis studies for utilization of impregnated waste timber materials. Journal of Analytical and Applied Pyrolysis,2005,74(1/2):439—444

        [101] 李增波,王聰穎,蔣新,等. 生物質(zhì)炭中多環(huán)芳烴的潛在環(huán)境風(fēng)險(xiǎn)研究進(jìn)展. 土壤學(xué)報(bào),2016,53(6):1357—1370 Li Z B,Wang C Y,Jiang X,et al. Progress of the research on potential environmental risk of polycyclic aromatic hydrocarbons(PAHs)in biochar(In Chinese). Acta Pedologica Sinica,2016,53(6):1357—1370

        [102] Beesley L,Moreno-Jimenez E,Gomez-Eyles J L.Effects of biochar and greenwaste compost amendments on mobility,bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution,2010,158(6):2282—2287

        [103] Brussaard L,Behan-Pelletier V M,Bignell D E,et al. Biodiversity and ecosystem functioning in soil.Ambio,1997,26(8):563—570

        [104] Song Y,Li Y,Zhang W,et al. Novel biochar-plant tandem approach for remediating hexachlorobenzene contaminated soils:Proof-of-concept and new insight into the rhizosphere. Journal of Agricultural and Food Chemistry,2016,64(27):5464—5471

        [105] Van Zwieten L,Kimber S,Morris S,et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil,2010,327(1/2):235—246

        (責(zé)任編輯:盧 萍)

        A Review of Researches on Biochar Adsorbing Organic Contaminants and Its Mechanism

        LI Xiaona1,2SONG Yang1JIA Mingyun1WANG Fang1BIAN Yongrong1JIANG Xin1?
        (1 Key Laboratory of Soil Environment and Pollution Remediation,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
        (2 University of the Chinese Academy of Sciences,Beijing 100049,China)

        Biochar is a kind of porous and carbon-rich material prepared out of waste biomass through pyrolyzation anaerobically or aerobically. Thanks to its high adsorption capacity,handy resources,low preparation cost and environment-friendliness,biochar has aroused more and more attention among the academic circles. Knowledge about mechanism and rules of biochar adsorbing organic contaminants is crucial to proper evaluation of its environmental behaviors and application value. This article reviewed with emphasis reports available on mechanisms of biochar adsorbing organic pollutants,such as partition,surface adsorption,pore interception,etc. Generally speaking,biochar prepared at low temperature adsorbs nonpolar organics mainly via partitioning. This non-competitive adsorption mechanism can be used to explain the process of biochar adsorbing pollutant high in concentration. Surface adsorption is a kind of competitive sorption mechanism. Organic contaminants caught on the effective sites on the surface of biochar are adsorbed via electrostatic interaction or hydrogen bonding,ionic bonding,π-electron donor-acceptor(π-π EDA),etc. Pore interception is another microscopic mechanism of biochar adsorbing organic pollutants. Partitioning and adsorption of organic pollutants inside the pores is also an important portion of the biochar adsorption capacity. Both polar and/or non-polar organic contaminants can be sorbed on biochar via pore interception. In fact,the mechanisms of biochar adsorbing organic compounds are various with one dominated and additional other mechanisms also occurred. In addition,this paper analyzed and summarized influencing factors of mechanisms of biochar adsorbing organic contaminants. Physico-chemical properties of biochar including high specific area,well-developed porosity,rich polar functional groups and stable aromatic structure are essential to determine the application value of this super-sorbent. Only biochar with properties matchable to organic contaminants in polarity,aromaticity,molecular size can be used to bring their adsorption capacity into full play. Sorption environment such as pH,medium and co-existing ions is also an important factor affecting adsorption effect of biochar. All account for the complex process of biochar adsorbing organic compounds. However,the researches reported in the literature are found to have some problems. For example,some of them remained on the stage of laboratory and little is reported in the literature on using experimental methods to probe mechanisms of biochar adsorbing organic compounds. At the end,the article brought forth solutions to the existing problems and described prospects of the application of biochar in remediation of organic polluted soils in future.

        Biochar;Organic contaminants;Sorptioncharacteristics;Sorption mechanisms

        X53

        A

        10.11766/trxb201704060004

        * 國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(2014CB441105)、國家自然科學(xué)基金項(xiàng)目(41671236)和中國科學(xué)院“一三五”計(jì)劃與領(lǐng)域前沿項(xiàng)目(ISSASIP1614)共同資助 Supported by the National Basic Research Program of China(973 Program)(No.2014CB441105),the National Natural Science Foundation of China(No.41671236)and the“135”Plan and Frontiers Program of Chinese Academy of Sciences(No.ISSASIP1614)

        ? 通訊作者 Corresponding author,E-mail:jiangxin@issas.ac.cn

        李曉娜(1993—),女,博士研究生,主要從事環(huán)境化學(xué)與污染控制研究。E-mail:xnli@issas.ac.cn

        2017-04-06;

        2017-06-27;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-08-21

        猜你喜歡
        官能團(tuán)極性機(jī)理
        熟記官能團(tuán)妙破有機(jī)題
        隔熱纖維材料的隔熱機(jī)理及其應(yīng)用
        在對比整合中精準(zhǔn)把握有機(jī)官能團(tuán)的性質(zhì)
        跟蹤導(dǎo)練(四)
        煤層氣吸附-解吸機(jī)理再認(rèn)識(shí)
        中國煤層氣(2019年2期)2019-08-27 00:59:30
        霧霾機(jī)理之問
        表用無極性RS485應(yīng)用技術(shù)探討
        污泥中有機(jī)官能團(tuán)的釋放特性
        一種新型的雙極性脈沖電流源
        逆向合成分析法之切斷技巧
        国产又黄又爽视频| 80s国产成年女人毛片| 精品成在人线av无码免费看| 亚洲色欲久久久久综合网| 精品亚洲少妇一区二区三区| 亚洲av乱码国产精品观看麻豆| 亚洲综合中文字幕综合| 亚洲va中文字幕无码毛片| 日本色噜噜| 玩弄放荡人妻一区二区三区| 24小时免费在线观看av| 国产后入又长又硬| 在线亚洲综合| 久久亚洲精品成人av观看| 国产亚洲精品久久午夜玫瑰园| 草草浮力地址线路①屁屁影院| 久久久久亚洲av成人网址| 永久免费看黄在线观看| 亚洲av中文无码字幕色本草| 人妻少妇看a偷人无码精品| 亚洲国产欧美久久香综合| 日韩在线不卡一区三区av| 久久精品国产精品青草| 色窝窝在线无码中文| 精品日本一区二区视频| av高清在线不卡直播| 人禽伦免费交视频播放| 久久久久久岛国免费网站| 日韩少妇人妻精品中文字幕| 成人国产精品一区二区网站公司| 欧美日韩另类视频| 国内偷拍第一视频第一视频区| 97se色综合一区二区二区| 亚洲av无码一区二区三区系列| 国产精品女同学| 日本一区二区三区人妻| 中国国语毛片免费观看视频| 免费一级国产大片| 少妇又紧又爽丰满在线视频| 熟妇激情内射com| 91情侣视频|