洪森榮,吳夏俊鵬,徐文慧,占學(xué)林,謝妮妮,蔣 妍,汪金華,凌 飛,吳麗霞,萬 琳
(上饒師范學(xué)院 生命科學(xué)學(xué)院,江西 上饒 334001)
低溫離體保存黃獨(dú)微型塊莖轉(zhuǎn)錄組、蛋白質(zhì)組和代謝組的關(guān)聯(lián)分析
洪森榮,吳夏俊鵬,徐文慧,占學(xué)林,謝妮妮,蔣 妍,汪金華,凌 飛,吳麗霞,萬 琳
(上饒師范學(xué)院 生命科學(xué)學(xué)院,江西 上饒 334001)
為探究黃獨(dú)微型塊莖低溫離體保存的內(nèi)在機(jī)理,對(duì)其轉(zhuǎn)錄組、蛋白質(zhì)組和代謝組進(jìn)行關(guān)聯(lián)分析。結(jié)果表明:黃獨(dú)微型塊莖低溫和常溫離體保存的轉(zhuǎn)錄本比例和蛋白比例的log2值均呈現(xiàn)正態(tài)分布,十分類似,符合真實(shí)生物樣品的要求;差異蛋白和差異轉(zhuǎn)錄本韋恩圖結(jié)果表明,84個(gè)轉(zhuǎn)錄本在兩者中均有差異,表明大多數(shù)差異的轉(zhuǎn)錄本在蛋白組數(shù)據(jù)均有差異;差異蛋白和差異轉(zhuǎn)錄本的log2對(duì)數(shù)熱圖分析結(jié)果表明,相對(duì)于蛋白質(zhì)組來說,轉(zhuǎn)錄組差異程度更大,兩者的差異轉(zhuǎn)錄本多數(shù)一致,少數(shù)不同;差異蛋白和差異轉(zhuǎn)錄本log2散點(diǎn)關(guān)聯(lián)密度圖分析結(jié)果表明,兩者的比例在0附近居多,左下角和右上角(轉(zhuǎn)錄本和蛋白的上下調(diào)關(guān)系一致)相對(duì)左上角和右下角(轉(zhuǎn)錄和蛋白上下調(diào)關(guān)系不一致)更多,表明兩者差異表達(dá)趨勢(shì)一致性的程度更高。低溫離體保存黃獨(dú)微型塊莖轉(zhuǎn)錄組、蛋白質(zhì)組和代謝組的關(guān)聯(lián)分析結(jié)果表明,低溫離體保存的黃獨(dú)微型塊莖主要涉及碳代謝、氨基酸生物合成、糖酵解途徑、淀粉蔗糖代謝和丙酮酸代謝等途徑,這為黃獨(dú)微型塊莖的低溫離體保存和低溫破除休眠提供了理論依據(jù)。
黃獨(dú);微型塊莖;低溫離體保存;轉(zhuǎn)錄組;蛋白質(zhì)組;代謝組
黃獨(dú)(DioscoreabulbiferaL.)為薯蕷科薯蕷屬多年生藤本植物[1-2],其地下塊莖,俗名黃藥子,性平、味苦、有毒,有散結(jié)消癭、清熱解毒和涼血止血的功效,在臨床上黃藥子還具有抗病毒、抗腫瘤等活性,常用于治療甲狀腺疾病[3]。黃獨(dú)長(zhǎng)期進(jìn)行營(yíng)養(yǎng)繁殖,造成病毒感染嚴(yán)重,產(chǎn)量逐年下降,品質(zhì)不斷退化[4]。因此,保存黃獨(dú)種質(zhì)資源具有一定的現(xiàn)實(shí)意義。黃獨(dú)的腋芽處常會(huì)長(zhǎng)出地上變態(tài)塊莖,俗稱零余子、珠芽等,在組織培養(yǎng)中特稱它為微型塊莖[5]。微型塊莖由于體積小、攜帶方便、活力久、成活率高,??勺鳛槭硎殞僦参锟焖俜敝车牟牧蟍6]。研究表明,黃獨(dú)微型塊莖能夠在黑暗和低溫條件下長(zhǎng)期保存而不喪失活力,還有助于打破休眠[7],但微型塊莖低溫離體保存的內(nèi)在原因尚無報(bào)道。高通量組學(xué)分析工具的發(fā)展,引導(dǎo)系統(tǒng)生物學(xué)進(jìn)入大數(shù)據(jù)時(shí)代,在單組學(xué)研究顯現(xiàn)瓶頸之際,可通過多組學(xué)整合關(guān)聯(lián)分析,深入闡明生命活動(dòng)的本質(zhì)和規(guī)律[8]。本研究將對(duì)黃獨(dú)微型塊莖低溫離體保存的轉(zhuǎn)錄組、蛋白質(zhì)組和代謝組三大組學(xué)進(jìn)行關(guān)聯(lián)分析,旨在為黃獨(dú)微型塊莖低溫離體保存提供理論依據(jù)。
1.1 材料
黃獨(dú)微型塊莖由上饒師范學(xué)院生命科學(xué)學(xué)院植物組織培養(yǎng)室提供。
1.2 方法
1.2.1 轉(zhuǎn)錄組、代謝組和蛋白質(zhì)組檢測(cè)
利用黃獨(dú)試管苗的帶芽莖段,接種到MS + KT 2 mg·L-1+ NAA 0.5 mg·L-1+蔗糖60 g·L-1的液體培養(yǎng)基中,使其誘導(dǎo)出微型塊莖,然后挑選出直徑約0.5 cm的微型塊莖轉(zhuǎn)移到100 mL無菌三角瓶(空瓶)中,4 ℃低溫離體保存。試驗(yàn)材料分成4 ℃處理組(以Con4表示)和25 ℃對(duì)照組(以Con25表示),保存60 d后進(jìn)行轉(zhuǎn)錄組學(xué)、代謝組學(xué)和蛋白質(zhì)組學(xué)檢測(cè)。每個(gè)溫度3個(gè)重復(fù)?;痉椒ㄈ缦?。
轉(zhuǎn)錄組學(xué):提取2組試驗(yàn)樣品的總RNA后,通過Bioanalyzer 2100(Agilent,Germany)完成質(zhì)量控制。然后進(jìn)行mRNA捕獲和片段化處理,隨后用SuperScriptIII cDNA Synthesis Kit (Life technologies,USA)進(jìn)行cDNA反轉(zhuǎn)錄。根據(jù)Illumina公司HiSeq SBS Kit and Cluster Kit v4(Illumina,Sandiego)說明制備Total RNA測(cè)序文庫(kù)。最后,按照Illumina公司Hiseq 2500的操作說明對(duì)cDNA文庫(kù)進(jìn)行2×125 bp的高通量測(cè)序。
代謝組學(xué):2組試驗(yàn)樣品在液氮中磨碎,并轉(zhuǎn)移到10 mL離心管,經(jīng)過渦旋振蕩、超聲波清洗機(jī)處理、氮?dú)獯蹈傻忍幚?,測(cè)定其次生代謝物含量,GC/MS檢測(cè)設(shè)備為Agilent 7890A/5975C氣-質(zhì)聯(lián)用儀(安捷倫,美國(guó))。利用GC-MS預(yù)處理軟件XCMS(www.bioconductor.org/)對(duì)Agilent 7890A/5975C氣質(zhì)聯(lián)用儀檢測(cè)獲得的原始文件進(jìn)行數(shù)據(jù)預(yù)處理。最后對(duì)樣本進(jìn)行信息比對(duì)分析,并對(duì)得到的數(shù)據(jù)進(jìn)行生物信息學(xué)分析。
蛋白質(zhì)組學(xué):提取2組試驗(yàn)樣品的蛋白,加入trypsin進(jìn)行酶解和TMT標(biāo)記,標(biāo)記后的樣本分段是用Agilent 300Extend C18 column(5 μm particles, 4.6 mm ID, 250 mm length)在高pH進(jìn)行反向HPLC分離,檢測(cè)用Thermo ScientificTM Q ExactiveTM Plus液質(zhì)聯(lián)用儀配備Thermo ScientificTM EASY-nLC 1000TM納升級(jí)UPHLC分離系統(tǒng)進(jìn)行分析。
1.2.2 轉(zhuǎn)錄組、蛋白質(zhì)組和代謝組的關(guān)聯(lián)分析
密度圖分析:密度分布圖用于考察轉(zhuǎn)錄組和蛋白組Con4/Con25差異倍性變化的分布,選用軟件為R語(yǔ)言(www.r-project.org)。
Venn圖分析:韋恩圖用于考察轉(zhuǎn)錄組和蛋白組差異蛋白之間的異同。在本研究中,由于蛋白分析所用的參考庫(kù)為轉(zhuǎn)錄組庫(kù),我們以所檢測(cè)蛋白為基礎(chǔ),分析差異轉(zhuǎn)錄本和蛋白之間的異同,所用軟件為venny2.0.2(http://bioinfogp.cnb.csic.es/tools/venny/)。
熱圖分析:對(duì)轉(zhuǎn)錄組和蛋白組Con4/Con25差異倍性變化進(jìn)行直觀的熱圖分析,考察轉(zhuǎn)錄本和蛋白差異的變化。所用方法為層次聚類,聚類軟件為R語(yǔ)言(www.r-project.org)包Pheatmap。
散點(diǎn)密度圖分析:對(duì)轉(zhuǎn)錄組和蛋白組Con4/Con25差異倍性變化進(jìn)行直觀的散點(diǎn)密度圖分析,考察轉(zhuǎn)錄本和蛋白差異的變化。選用軟件為R語(yǔ)言(www.r-project.org)。
代謝通路分析:對(duì)差異的蛋白和轉(zhuǎn)錄本及差異的代謝產(chǎn)物同時(shí)向KEGG通路進(jìn)行映射,從代謝通路圖上了解整體變化。
2.1黃獨(dú)低溫保存微型塊莖轉(zhuǎn)錄組、蛋白組和代謝組的簡(jiǎn)要分析
樣品間基因表達(dá)水平相關(guān)性是檢驗(yàn)實(shí)驗(yàn)可靠性和樣本選擇是否合理的重要指標(biāo),每個(gè)樣品有3個(gè)重復(fù),相關(guān)系數(shù)為0.885,表明樣品之間表達(dá)模式的相似度較高。在黃獨(dú)微型塊莖低溫離體保存中,共獲得164 145個(gè)差異表達(dá)基因,其中63 305個(gè)基因表達(dá)上調(diào),100 840個(gè)基因表達(dá)下調(diào),部分結(jié)果見表1。差異表達(dá)基因富集度極顯著(P<0.01)的部分相關(guān)GO term有液泡繼承、單鏈斷裂修復(fù)、紡錘體伸長(zhǎng)、麥芽糖分解代謝過程、甘露糖基轉(zhuǎn)移酶活性、甘露糖磷酸轉(zhuǎn)移酶活性、細(xì)胞壁甘露糖蛋白的生物合成過程、G1期細(xì)胞有絲分裂周期早期細(xì)胞芽和有絲分裂紡錘體定位的建立等。Con4、Con25兩組樣本的差異蛋白有106個(gè),上調(diào)表達(dá)蛋白61個(gè),下調(diào)表達(dá)蛋白45個(gè),其中,伸長(zhǎng)因子3, 6-磷酸葡萄糖酸脫氫酶、磷酸甘油酸激酶、蔗糖合成酶、分子伴侶DNAK和S-腺苷甲硫氨酸合成酶等為在4 ℃離體保存黃獨(dú)微型塊莖中上調(diào)表達(dá)的蛋白,而α-淀粉酶、淀粉磷酸化酶等為在4 ℃離體保存黃獨(dú)微型塊莖中下調(diào)表達(dá)的蛋白。與25 ℃離體保存的黃獨(dú)微型塊莖相比較,4 ℃離體保存的黃獨(dú)微型塊莖差異性代謝物有丙氨酸、兒茶素、N, N-雙(2-羥乙基)甲胺、水楊酸和山梨糖等。
2.2黃獨(dú)低溫保存微型塊莖密度圖比較
對(duì)Con4/Con25各差異轉(zhuǎn)錄本和差異蛋白的log2進(jìn)行柱狀密度曲線分析,考察轉(zhuǎn)錄本比例和蛋白比例的分布。結(jié)果(圖1)表明,大多數(shù)轉(zhuǎn)錄本比例和蛋白比例的log2位于0附近,轉(zhuǎn)錄本比例和蛋白比例的log2均呈現(xiàn)正態(tài)分布,兩者比較類似,符合真實(shí)生物樣品的要求。
圖1 黃獨(dú)低溫保存微型塊莖差異轉(zhuǎn)錄本和蛋白比例密度曲線Fig.1 Differential transcript and protein density profile of Dioscorea bulbifera L. microtuber conserved at low temperature
2.3 Venn圖比較分析
以蛋白組獲得的蛋白為基礎(chǔ),同時(shí)對(duì)Con4和Con25中的差異蛋白和差異轉(zhuǎn)錄本進(jìn)行韋恩圖分析。由圖2可知,Con4和Con25中共有84個(gè)轉(zhuǎn)錄本在轉(zhuǎn)錄組和蛋白質(zhì)組中的表達(dá)均有差異,表明大多數(shù)差異轉(zhuǎn)錄本在蛋白質(zhì)組中均有差異。
表1黃獨(dú)低溫保存微型塊莖轉(zhuǎn)錄組、蛋白組部分差異表達(dá)結(jié)果
Table1Partial differential expression in transcriptome and proteome ofDioscoreabulbiferaL. microtuber conserved at low temperature
基因名稱Genename轉(zhuǎn)錄組Transcriptome上/下調(diào)Up/down表達(dá)量倍性變化的對(duì)數(shù)Logarithmofgeneploidyvaria-tion蛋白質(zhì)組Proteome蛋白倍性變化Variationofproteincontent蛋白量倍性變化的對(duì)數(shù)Logarithmofproteincon-tentploidyvariation上/下調(diào)Up/downHEXA_B下調(diào)Down-1.662970.718-0.47794下調(diào)DownRFWD2.COP1下調(diào)Down-3.55020.639-0.64611下調(diào)DownE1.11.1.7下調(diào)Down-1.440570.535-0.90239下調(diào)DownGLGP.PYG下調(diào)Down-7.051420.386-1.37333下調(diào)DownGST.GST下調(diào)Down-1.459430.738-0.43831下調(diào)DownE3.2.1.86B.BGLA下調(diào)Down未獲得Notapplicable0.644-0.63487下調(diào)DownAMYA.MALS下調(diào)Down-1.725830.349-1.5187下調(diào)DownPLD1_2下調(diào)Down-1.834780.745-0.42469下調(diào)DownGST.GST下調(diào)Down-4.19640.652-0.61706下調(diào)DownFDH下調(diào)Down-2.397250.591-0.75877下調(diào)DownRHM下調(diào)Down未獲得Notapplicable1.9950.996389上調(diào)UpMETE下調(diào)Down-1.975751.5260.609755上調(diào)UpMETK下調(diào)Down-1.142792.741.454176上調(diào)UpATPF1A.ATPA上調(diào)Up2.8073551.5570.638769上調(diào)UpMETK下調(diào)Down-1.556042.0131.009347上調(diào)UpGDHA上調(diào)Up1.1890342.3691.244278上調(diào)UpMDH2上調(diào)Up未獲得Notapplicable1.6190.695103上調(diào)UpMETE下調(diào)Down-2.121021.70.765535上調(diào)UpHPPA下調(diào)Down-2.860461.6770.745883上調(diào)UpPDXS.PDX1下調(diào)Down-1.591241.5580.639695上調(diào)UpISPH.LYTB下調(diào)Down-1.284531.5820.66175上調(diào)UpPGD.GND下調(diào)Down未獲得Notapplicable4.5312.179829上調(diào)UpPGK.PGK上調(diào)Up未獲得Notapplicable3.9971.998918上調(diào)UpGAPDH.GAPA上調(diào)Up未獲得Notapplicable1.030.042644無變化NochangeALDO下調(diào)Down-1.619520.846-0.24127無變化NochangeMETE下調(diào)Down-2.536051.3230.403813無變化NochangeENO.ENO上調(diào)Up3.946050.839-0.25326無變化NochangeE3.6.3.6上調(diào)Up3.8073551.2560.328836無變化NochangeATPEV1A.ATP6A上調(diào)Up未獲得Notapplicable1.0610.085425無變化NochangeLOX1_5下調(diào)Down-4.481130.904-0.14561無變化NochangeATPEV1A.ATP6A下調(diào)Down-1.510470.95-0.074無變化NochangeASNB.ASNS上調(diào)Up未獲得Notapplicable1.1640.219091無變化NochangeNOP1.FBL下調(diào)Down-5.321931.3770.461529無變化NochangeALDO下調(diào)Down-1.046540.885-0.17625無變化NochangeMAEB下調(diào)Down-1.259060.824-0.27928無變化NochangePK.PYK上調(diào)Up2.6130730.989-0.01596無變化NochangeMETE下調(diào)Down-2.562161.4590.54498無變化NochangeCHS上調(diào)Up3.4059921.0350.049631無變化NochangeE3.2.1.21下調(diào)Down-2.169930.782-0.35476無變化NochangeALDO下調(diào)Down-2.165340.909-0.13765無變化NochangeASD上調(diào)Up2.1203520.772-0.37333無變化Nochange
續(xù)表1
圖2 黃獨(dú)低溫保存微型塊莖差異轉(zhuǎn)錄本和蛋白維恩圖分析Fig.2 Venn diagram analysis of differential transcripts and proteins of Dioscorea bulbifera L. microtuber conserved at low temperature
2.4 熱圖比較分析
以蛋白組獲得的蛋白為基礎(chǔ),對(duì)差異蛋白和差異轉(zhuǎn)錄本的Con4/Con25各蛋白比例的log2進(jìn)行熱圖分析,比較兩者之間的異同。從圖3可知,相對(duì)于蛋白組來說,轉(zhuǎn)錄組差異程度更大,兩者差異蛋白多數(shù)一致,少數(shù)不同。兩者均表現(xiàn)差異的基因主要有氨基己糖苷酶、過氧化物酶、淀粉磷酸化酶、谷胱甘肽S-轉(zhuǎn)移酶、6-磷酸-β-葡糖苷酶、α-淀粉酶 、高半胱氨酸甲基轉(zhuǎn)移酶、S-腺苷甲硫氨酸合成酶、F型H +轉(zhuǎn)運(yùn)ATP酶α亞基、谷氨酸脫氫酶(NADP+)、蘋果酸脫氫酶酶、6-磷酸葡萄糖酸脫氫酶、磷酸甘油酸激酶等。
聚類軟件為R語(yǔ)言(www.r-project.org)包Pheatmap。紅色是表達(dá)顯著上調(diào)的蛋白,綠色表示表達(dá)顯著下調(diào)的蛋白The clustering software was R language pack (www.r-project.org) Pheatmap. Red meant significantly up-regulated proteins, and green meant significantly down-regulated proteins圖3 黃獨(dú)低溫保存微型塊莖差異轉(zhuǎn)錄本和蛋白比例熱圖Fig.3 Thermography of differential transcripts and proteins ratio of Dioscorea bulbifera L. microtuber conserved at low temperature
2.5 散點(diǎn)關(guān)聯(lián)密度圖比較
以蛋白組獲得的蛋白為基礎(chǔ),同時(shí)對(duì)差異蛋白和差異轉(zhuǎn)錄本中各蛋白Con4/Con25比例的log2值進(jìn)行散點(diǎn)關(guān)聯(lián)密度圖分析,比較兩者的異同。從圖4可知,兩者的比例在0附近居多,左下角和右上角(轉(zhuǎn)錄本和蛋白的上下調(diào)關(guān)系一致)相對(duì)左上角和右下角(轉(zhuǎn)錄本和蛋白的上下調(diào)關(guān)系不一致)更多,表明兩者差異表達(dá)趨勢(shì)一致性的程度更高。
圖4 黃獨(dú)低溫保存微型塊莖差異轉(zhuǎn)錄本和蛋白比例散點(diǎn)密度圖分析Fig.4 Density map analysis of differential transcripts and proteins of Dioscorea bulbifera L. microtuber conserved at low temperature
2.6 代謝通路綜合分析
在生物體內(nèi),不同蛋白相互協(xié)調(diào)行使其生物學(xué)功能,通過通路顯著性富集能確定差異表達(dá)蛋白參與的最主要生化代謝途徑和信號(hào)轉(zhuǎn)導(dǎo)途徑,KEGG(Kyoto Encyclopedia of Genes and Genomes)是有關(guān)通路的主要公共數(shù)據(jù)庫(kù)。與常溫離體保存相比,低溫離體保存的黃獨(dú)微型塊莖轉(zhuǎn)錄組分析表明,樣本差異基因富集的KEGG途徑有鈣信號(hào)通路、檸檬酸循環(huán)(TCA循環(huán))、氧化磷酸化、黃酮和黃酮醇的生物合成等(表2)。蛋白質(zhì)組分析表明,黃獨(dú)低溫保存微型塊莖部分差異蛋白富集的GO term有谷胱甘肽轉(zhuǎn)移酶活性、高爾基液泡運(yùn)輸和披網(wǎng)格蛋白小泡膜等(表3)。代謝組分析表明,差異性代謝物有丙氨酸、兒茶素和水楊酸等(表4)。其中,丙氨酸參與氰基氨基酸代謝,兒茶素參與次生代謝產(chǎn)物生物合成、黃酮類化合物的生物合成和苯丙素的生物合成;水楊酸參與多環(huán)芳烴降解、微生物在不同環(huán)境中的代謝,植物激素信號(hào)轉(zhuǎn)導(dǎo),次生代謝產(chǎn)物生物合成,二惡英降解,苯丙氨酸代謝,芳烴降解,植物激素生物合成,鐵載體組非核糖體肽合成和苯丙素的生物合成等。
表2黃獨(dú)低溫保存微型塊莖部分差異基因富集的KEGG途徑
Table2KEGG pathways of part differentially expressed genes ofDioscoreabulbiferaL. microtuber conserved at low temperature
途徑PathwayKOKEGG注釋的轉(zhuǎn)錄本數(shù)量NumbersoftranscriptswithKEGGannotationKEGG注釋的DELs數(shù)量NumbersofDETswithKEGGannotationP值P-value校正P值CorrectedP-value鈣信號(hào)通路Calciumsignalingpathwayko0402064580.0001420.000589檸檬酸循環(huán)Citratecycleko000206084720.0054630.019306氧化磷酸化Oxidativephosphorylationko001904523530.0074930.025607黃酮和黃酮醇的生物合成Flavoneandflavonolbiosynthesisko0094477680.0003710.001500
表3黃獨(dú)低溫保存微型塊莖部分差異蛋白富集的GO terms
Table3Enriched GO terms of part differentially proteins ofDioscoreabulbiferaL. microtuber conserved at low temperature
類別CategoryP值P-value差異蛋白數(shù)量Numberofdifferentialproteins蛋白數(shù)量Numberofproteins功能描述信息Functiondescriptioninformation功能信息FunctionalinformationGO:00043640.01304748434谷胱甘肽轉(zhuǎn)移酶活性Glutathionetransferaseactivity分子功能MolecularfunctionGO:00068960.02403472422高爾基液泡運(yùn)輸Golgitovacuoletransport生物學(xué)功能BiologicalprocessGO:00306650.02403472422披網(wǎng)格蛋白小泡膜Clathrin-Coatedvesiclemembrane細(xì)胞組件Cellularcomponent
表4黃獨(dú)低溫保存微型塊莖部分差異代謝物
Table4Differential metabolites inDioscoreabulbiferaL. microtuber conserved at low temperature
ID名稱NamesP值PvalueLog(Con4/Con25)VIP值VIPvalue34Alanine0.038054.1157861.9936197Catechin0.003892-1.635583.44036171Salicylicacid0.001429-2.139291.49439
VIP值,對(duì)模型貢獻(xiàn)度大(超過1)的化合物的值,一般根據(jù)PLS-DA模型的VIP值大于1、P<0.05的原則獲得差異性物質(zhì)。
The VIP value refered to the value of the compounds which were more than 1 and contributed greatly to the model. In generally, differential substances were obtained according to the principle that the VIP value of the PLS-DA model was greater than 1 and thePvalue was less than 0.05.
系統(tǒng)生物學(xué)的發(fā)展產(chǎn)生了海量的基因組、轉(zhuǎn)錄組、蛋白質(zhì)組和代謝組等組學(xué)數(shù)據(jù)?;诙嗥脚_(tái)組學(xué)數(shù)據(jù)整合的代謝通路分析為全面深刻了解生物系統(tǒng)提供了前提條件[9]。近年來,系統(tǒng)生物學(xué)已逐漸成為后基因組學(xué)時(shí)代生命科學(xué)研究的新熱點(diǎn)。轉(zhuǎn)錄組學(xué)、蛋白質(zhì)組學(xué)、代謝組學(xué)技術(shù)是目前系統(tǒng)生物學(xué)研究的重要方法。通過轉(zhuǎn)錄組學(xué)、蛋白質(zhì)組學(xué)和代謝組學(xué)數(shù)據(jù)關(guān)聯(lián)分析,可以深入理解基因、蛋白質(zhì)和代謝物之間的內(nèi)在聯(lián)系[10]。張振亞等[11]對(duì)正常培養(yǎng)和鹽脅迫條件下的2個(gè)南方型紫花苜蓿的根系進(jìn)行轉(zhuǎn)錄組和蛋白質(zhì)組關(guān)聯(lián)分析,發(fā)現(xiàn)了紫花苜蓿耐鹽相關(guān)候選基因。馬進(jìn)等[8]通過蛋白質(zhì)組和轉(zhuǎn)錄組關(guān)聯(lián)分析,揭示了南方型紫花苜蓿適應(yīng)鹽脅迫環(huán)境的分子機(jī)制。張黛靜等[12]通過對(duì)銅脅迫下小麥幼根轉(zhuǎn)錄組學(xué)及蛋白質(zhì)組學(xué)的研究,發(fā)現(xiàn)小麥在重金屬逆境中轉(zhuǎn)錄水平和翻譯水平具有一致性,差異均表現(xiàn)在代謝、物質(zhì)合成、糖酵解等生命活動(dòng)方面。本研究通過黃獨(dú)微型塊莖低溫離體保存轉(zhuǎn)錄組、蛋白質(zhì)組和代謝組的關(guān)聯(lián)分析,發(fā)現(xiàn)轉(zhuǎn)錄本和蛋白的比例均呈現(xiàn)正態(tài)分布,兩者比較類似,符合真實(shí)生物樣品的要求;黃獨(dú)低溫離體保存微型塊莖差異基因富集的KEGG途徑主要有鈣信號(hào)通路、檸檬酸循環(huán)、氧化磷酸化、黃酮和黃酮醇的生物合成等,差異蛋白富集的GO term主要有谷胱甘肽轉(zhuǎn)移酶活性、高爾基液泡運(yùn)輸和披網(wǎng)格蛋白小泡膜等;差異代謝物主要有丙氨酸、兒茶素和水楊酸等。黃獨(dú)微型塊莖低溫離體保存的主要差異基因有過氧化物酶、谷胱甘肽S-轉(zhuǎn)移酶、淀粉磷酸化酶、S-腺苷甲硫氨酸合成酶、谷氨酸脫氫酶(NADP+)、蘋果酸脫氫酶、6-磷酸葡萄糖酸脫氫酶、磷酸甘油酸激酶等,這些基因大多與檸檬酸循環(huán)、氧化磷酸化相關(guān)。究其原因,推測(cè)與黃獨(dú)微型塊莖低溫保存需要較多能量供應(yīng)有關(guān)??梢?,黃獨(dú)微型塊莖低溫離體保存的轉(zhuǎn)錄水平、翻譯水平以及代謝水平具有一致性。
基因表達(dá)的主要環(huán)節(jié)包括轉(zhuǎn)錄、蛋白質(zhì)合成以及代謝物的形成。因此,從生長(zhǎng)條件和狀態(tài)相同的細(xì)胞、組織或器官獲得的轉(zhuǎn)錄組、蛋白質(zhì)組和代謝物數(shù)據(jù)之間應(yīng)該具有較高的相關(guān)性[13]。Koh等[14]比較了干旱脅迫下油菜的20個(gè)基因在轉(zhuǎn)錄和蛋白質(zhì)水平的表達(dá),發(fā)現(xiàn)盡管有些基因轉(zhuǎn)錄本和蛋白的表達(dá)模式不盡相同,但二者之間仍存在顯著正相關(guān)。Budak等[15]發(fā)現(xiàn),硬粒小麥品種Kiziltan和野生二粒小麥系TR39477、TTD22(T)在有些脅迫條件下,轉(zhuǎn)錄本的變化和蛋白水平的變化一致,但也有部分轉(zhuǎn)錄本的變化和蛋白水平的變化趨勢(shì)相反。本研究結(jié)果與這2項(xiàng)研究結(jié)果相一致。本研究中,黃獨(dú)微型塊莖低溫離體保存的差異蛋白和差異轉(zhuǎn)錄本韋恩圖分析結(jié)果表明,84個(gè)轉(zhuǎn)錄本在兩者中均為差異,表明大多數(shù)差異的轉(zhuǎn)錄本在蛋白組數(shù)據(jù)均為差異。差異蛋白和差異轉(zhuǎn)錄本的log2對(duì)數(shù)熱圖分析結(jié)果也表明,相對(duì)于蛋白組來說,轉(zhuǎn)錄組差異的程度更大,蛋白組數(shù)據(jù)差異的程度較小。兩者差異蛋白多數(shù)一致,少數(shù)有不同。差異蛋白和差異轉(zhuǎn)錄本log2散點(diǎn)關(guān)聯(lián)密度圖分析結(jié)果表明,兩者的比例在0附近居多,左下角和右上角(轉(zhuǎn)錄和蛋白上下調(diào)關(guān)系一致)相對(duì)左上角和右下角(轉(zhuǎn)錄和蛋白上下調(diào)關(guān)系不一致)更多,表明兩者差異表達(dá)趨勢(shì)一致性程度更高。但Peng等[16]在模擬干旱脅迫下,對(duì)體細(xì)胞雜交小麥品種Shanrong 3及其親本面包小麥品種Jinan 177苗期葉片和根進(jìn)行蛋白質(zhì)組學(xué)和轉(zhuǎn)錄組學(xué)分析,發(fā)現(xiàn)僅有20個(gè)(27.0%)差異表達(dá)蛋白在轉(zhuǎn)錄水平與蛋白水平有相關(guān)性,指出其蛋白質(zhì)組和轉(zhuǎn)錄組之間的相關(guān)性不強(qiáng)。黃獨(dú)微型塊莖低溫離體保存的轉(zhuǎn)錄組、蛋白質(zhì)組和代謝組的關(guān)聯(lián)分析,可以為黃獨(dú)微型塊莖低溫離體保存提供理論依據(jù)。
[1] PASSAM H C, WICKHAM L D, WILSON L A. Comparative observations on the polarity of sprouting of bulbils ofDioscoreabulbiferaL. andDioscoreaalataL.[J].AnnalsofBotany, 1982, 49(3): 359-366.
[2] TEPONNO R B, PONOU B K, TAPONDJOU L A, et al. Bafoudiosbulbin H, a new clerodane diterpene from the flowers ofDioscoreabulbiferaL. varsativa[J].PhytochemistryLetters, 2013, 6(2): 310-314.
[3] 劉勁松, 高衛(wèi)娜, 鄭娟, 等. 黃獨(dú)鮮塊根化學(xué)成分研究[J]. 中國(guó)中藥雜志, 2017, 42(3): 510-516.
LIU J S, GAO W N, ZHENG J, et al. Chemical constituents from fresh tubers ofDioscoreabulbifera[J].ChinaJournalofChineseMateriaMedica, 2017, 42(3): 510-516. (in Chinese with English abstract)
[4] 尹明華, 洪森榮. 黃獨(dú)的莖尖培養(yǎng)和病毒檢測(cè)[J]. 中草藥, 2009, 40(9): 1462-1466.
YIN M H, HONG S R. Shoot tip culture and virus detection ofDioscoreabulbifera[J].ChineseTraditionalandHerbalDrugs, 2009, 40(9): 1462-1466. (in Chinese with English abstract)
[5] 王運(yùn)英, 張曉麗, 白英豪, 等. 山藥微型塊莖萌發(fā)影響因素研究[J]. 北方園藝, 2015 (17): 194-196.
WANG Y Y, ZHANG X L, BAI Y H, et al. Impact factors in germination of microtubers fromDioscoreaopposite[J].NorthernHorticulture, 2015 (17): 194-196. (in Chinese with English abstract)
[6] 李明軍, 鄧麗, 劉欣英, 等. 生長(zhǎng)素和細(xì)胞分裂素對(duì)懷山藥微型塊莖誘導(dǎo)形成的影響[J]. 河南農(nóng)業(yè)科學(xué), 2008, 37(11): 102-106.
LI M J, DENG L, LIU X Y, et al. Effects of auxin and cytokinin on the induction of microtuber ofDisocoreaoppositaThunb.[J].JournalofHenanAgriculturalSciences, 2008, 37(11): 102-106. (in Chinese with English abstract)
[7] 尹明華, 洪森榮, 夏瑾華, 等. 黃獨(dú)微型塊莖低溫保存及其萌發(fā)苗遺傳穩(wěn)定性研究[J]. 廣西植物, 2015 (5): 733-740.
YIN M H, HONG S R, XIA J H, et al. Low temperature conservation ofDioscoreabulbiferamicrotuber and genetic stability of its germination seedling[J].Guihaia, 2015 (5): 733-740. (in Chinese with English abstract)
[8] 馬進(jìn), 鄭鋼, 裴翠明, 等. 南方型紫花苜蓿葉片響應(yīng)鹽脅迫蛋白質(zhì)組和轉(zhuǎn)錄組關(guān)聯(lián)分析[J]. 核農(nóng)學(xué)報(bào), 2016, 30(9): 1706-1715.
MA J, ZHENG G, PEI C M, et al. Correlation analysis on proteomic and transcriptomic of salt-response in leaves of southern typeAlfalfa[J].JournalofNuclearAgriculturalSciences, 2016, 30(9): 1706-1715. (in Chinese with English abstract)
[9] 周滔, 李靜宜, 馬毅, 等. 基于組學(xué)數(shù)據(jù)庫(kù)整合工具的代謝通路分析應(yīng)用[J]. 國(guó)際藥學(xué)研究雜志, 2015, 42(5): 587-592.
ZHOU T, LI J Y, MA Y, et al. Metabolic pathway analysis and application based on the database and integrated tool of omics[J].JournalofInternationalPharmaceuticalResearch, 2015, 42(5): 587-592. (in Chinese with English abstract)
[10] WU H X, JIA H M, MA X W, et al. Transcriptome and proteomic analysis of mango (MangiferaindicaLinn) fruits[J].JournalofProteomics, 2014, 105: 19-30.
[11] 張振亞, 裴翠明, 馬進(jìn). 基于轉(zhuǎn)錄組和蛋白質(zhì)組關(guān)聯(lián)研究技術(shù)篩選紫花苜蓿耐鹽相關(guān)候選基因[J]. 植物生理學(xué)報(bào), 2016, 52(3): 317-324.
ZHANG Z Y, PEI C M, MA J. Screening of candidate salt tolerance-related genes inalfalfabased on transcriptome-proteome correlation research techniques[J].PlantPhysiologyJournal, 2016, 52(3): 317-324. (in Chinese with English abstract)
[12] 張黛靜, 王多多, 董文,等. 銅脅迫下小麥幼根轉(zhuǎn)錄組學(xué)及蛋白質(zhì)組學(xué)研究[J]. 河南農(nóng)業(yè)科學(xué), 2015, 44(4): 31-35.
ZHANG D J, WANG D D, DONG W, et al. Transcriptomics and proteomics analysis in root of wheat under copper stress[J].JournalofHenanAgriculturalSciences, 2015, 44(4): 31-35. (in Chinese with English abstract)
[13] 張紅亮, 王道文, 張正斌. 利用轉(zhuǎn)錄組學(xué)和蛋白質(zhì)組學(xué)技術(shù)揭示小麥抗旱分子機(jī)制的研究進(jìn)展[J]. 麥類作物學(xué)報(bào), 2016, 36(7): 878-887.
ZHANG H L, WANG D W, ZHANG Z B. Progress and prospects in the research on wheat drought response and resistance mechanisms using transcriptomic and proteomic approaches[J].JournalofTriticeaeCrops, 2016, 36(7): 878-887. (in Chinese with English abstract)
[14] KOH J, CHEN G, YOO M J, et al. Comparative proteomic analysis ofBrassicanapusin response to drought stress[J].JournalofProteomeResearch, 2015, 14(8): 3068-3081.
[15] BUDAK H, AKPINAR B A, UNVER T, et al. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS[J].PlantMolecularBiology, 2013, 83(1): 89-103.
[16] PENG Z, WANG M, LI F, et al. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat[J].Molecular&CellularProteomics, 2009, 8(12): 2676-2686.
(責(zé)任編輯侯春曉)
Correlationanalysisoftranscriptome,proteomeandmetabolomeofDioscoreabulbiferaL.microtubersconservedinvitroatlowtemperature
HONG Senrong, WU-XIA Junpeng, XU Wenhui, ZHAN Xuelin, XIE Ni’ni, JIANG Yan, WANG Jinhua, LING Fei, WU Lixia, WAN Lin
(CollegeofLifeSciences,ShangraoNormalUniversity,Shangrao334001,China)
In order to explore the internal mechanism ofDioscoreabulbiferaL. microtubers conservedinvitroat low temperature, the correlation of transcriptome, proteome and metabolome was analyzed. The results showed that Log2of transcript ratio and protein ratio ofD.bulbiferaL. microtubers conservedinvitroat low temperature and room temperature all showed normal distribution, which were very similar and consistent with the requirements of real biological samples; Wayne plot analysis of differential proteins and differential transcripts showed that the 84 transcripts were different in both groups, indicating that most of the transcripts were differentially expressed in proteome data; Log2logarithm thermal analysis of differential proteins and differential transcripts showed that the difference in transcriptome was greater than that in proteome, most of their differential transcripts were consistent, few were different; Analysis of log2logarithmic scatter correlation density plot showed that ratio of differential proteins and transcripts was in the vicinity of 0, the lower left corner and upper right corner that indicating the up/down regulation relationship of transcripts and proteins was consistent were more compared with the upper left corner and lower right corner that indicating the up/down regulation relationship of transcripts and proteins was not consistent, which indicated that consistency degree of the trend of differential expression was higher. Correlation analysis results of transcriptome, proteome and metabolome showed that conservationinvitroofD.bulbiferaL. microtubers at low temperature mainly involved the pathway, such as carbon metabolism, amino acid biosynthesis, glycolysis, starch and sucrose metabolism, and pyruvate metabolism etc., which could provide a theoretical basis for conservationinvitroat low temperature and low temperature breaking dormancy forD.bulbiferaL. microtubers.
DioscoreabulbiferaL.; microtuber; conservationinvitroat low-temperature; transcriptome; proteome; metabolome
洪森榮,吳夏俊鵬,徐文慧, 等. 低溫離體保存黃獨(dú)微型塊莖轉(zhuǎn)錄組、蛋白質(zhì)組和代謝組的關(guān)聯(lián)分析[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2017, 29(11): 1827-1834.
10.3969/j.issn.1004-1524.2017.11.08
2017-04-05
國(guó)家自然科學(xué)基金項(xiàng)目(31360072)
洪森榮(1974—),男,江西永新人,碩士,教授,研究方向?yàn)樗幱弥参锷锛夹g(shù)。E-mail: hongsenrong@163. com
S632.1
A
1004-1524(2017)11-1827-08