陳 蕓,劉 旗,鄧俊良,楊顏銥,高 爽,陳 憧,姚淑華
(四川農(nóng)業(yè)大學(xué) 動(dòng)物醫(yī)學(xué)院,動(dòng)物疫病與人類健康四川省重點(diǎn)實(shí)驗(yàn)室/環(huán)境公害與動(dòng)物疾病四川省高校重點(diǎn)實(shí)驗(yàn)室,四川 溫江 611130)
復(fù)合抗菌肽對(duì)山羊瘤胃菌群結(jié)構(gòu)的影響
陳 蕓,劉 旗,鄧俊良*,楊顏銥,高 爽,陳 憧,姚淑華
(四川農(nóng)業(yè)大學(xué) 動(dòng)物醫(yī)學(xué)院,動(dòng)物疫病與人類健康四川省重點(diǎn)實(shí)驗(yàn)室/環(huán)境公害與動(dòng)物疾病四川省高校重點(diǎn)實(shí)驗(yàn)室,四川 溫江 611130)
試驗(yàn)旨在探討復(fù)合抗菌肽對(duì)山羊瘤胃菌群結(jié)構(gòu)的影響,以期為抗菌肽應(yīng)用于反芻動(dòng)物提供理論依據(jù)。選取24只4月齡川中黑山羊,分為4組,每組6只,正常精料組(A),正常精料+抗菌肽組(C),雙倍精料組(D),雙倍精料+抗菌肽組(E)分別飼喂精料300、300、600和600 g·d-1·只-1,C與E組飼喂3 g·d-1·只-1復(fù)合抗菌肽。于21 d晨飼前每組隨機(jī)選取3只采集瘤胃液,提取樣品總DNA,擴(kuò)增16S rRNA V4區(qū),擴(kuò)增產(chǎn)物采用Miseq平臺(tái)測(cè)序。結(jié)果表明:1)共獲得高質(zhì)量序列629 634條,97%相似度下聚類后共獲得13 227個(gè)OTU。2)所得OTU經(jīng)物種注釋后,門水平上,除D組最優(yōu)勢(shì)菌門為厚壁菌門(Firmicutes)(34.30%)外,其余各組最優(yōu)勢(shì)菌門均為擬桿菌門(Bacteroidetes)(38.52%~43.68%),且添加復(fù)合抗菌肽顯著降低變形菌門(Proteobacteria)與螺旋菌門(Spirochaetes)含量(P<0.05);增加精料量顯著增加厚壁菌門與螺旋菌門含量(P<0.05),顯著降低擬桿菌門與變形菌門含量(P<0.05)。3)屬水平上,普雷沃菌屬(Prevotella)為所有樣品中最優(yōu)勢(shì)菌屬(25.54%~33.88%),添加抗菌肽后,琥珀酸菌屬(Succiniclasticum)、瘤胃球菌屬(Ruminococcus)、假丁酸弧菌屬(Pseudobutyrivibrio)、脫硫弧菌屬(Desulfovibrio)顯著或極顯著增加(P<0.05或P<0.01),琥珀酸弧菌屬(Succinivibrio)極顯著降低(P<0.01),且不受精料量影響,但月形單胞菌屬(Selenomonas)與密螺旋體(Treponema)的變化趨勢(shì)與精料量相關(guān),正常精料組顯著降低(P<0.05),而雙倍精料組無(wú)顯著變化(P>0.05);增加精料量顯著增加普雷沃菌屬、密螺旋體等含量(P<0.05),降低琥珀酸弧菌屬等含量(P<0.05)。4)各樣品在 alpha 多樣性Chao、ACE、Shannon和Simpson指數(shù)上,差異不顯著(P>0.05)。表明添加復(fù)合抗菌肽降低變形菌門和螺旋菌門的相對(duì)含量,提高部分降解纖維菌屬的含量;增加精料量可增加厚壁菌門和螺旋菌門相對(duì)含量,降低擬桿菌門和變形菌門的相對(duì)含量,增加普雷沃菌屬相對(duì)含量,降低琥珀酸弧菌屬相對(duì)含量;瘤胃細(xì)菌多樣性并不受復(fù)合抗菌肽及精料量的影響。
山羊;瘤胃細(xì)菌;菌群結(jié)構(gòu);高通量測(cè)序;復(fù)合抗菌肽;精料
反芻動(dòng)物瘤胃生態(tài)系統(tǒng)是一個(gè)相當(dāng)復(fù)雜的微生態(tài)系統(tǒng),與瘤胃內(nèi)營(yíng)養(yǎng)物質(zhì)的消化吸收及宿主健康極其相關(guān)[1],飼糧在瘤胃中消化降解,轉(zhuǎn)化為揮發(fā)性脂肪酸,為宿主提供主要能量[2]。瘤胃微生物包括細(xì)菌、原蟲、真菌和古菌等,其中,瘤胃細(xì)菌是瘤胃微生態(tài)重要組成部分,數(shù)量約為1×1011個(gè)·mL-1[3],在瘤胃生態(tài)系統(tǒng)中具有重要生物學(xué)意義,包括降解植物纖維、蛋白質(zhì)、淀粉等[4-5]。隨著反芻動(dòng)物營(yíng)養(yǎng)代謝研究的不斷深入,反芻動(dòng)物瘤胃內(nèi)菌群結(jié)構(gòu)的變化與宿主之間復(fù)雜的關(guān)系成為瘤胃營(yíng)養(yǎng)代謝研究的熱點(diǎn)。
抗菌肽(antimicrobial peptides)是一類存在于動(dòng)植物及無(wú)脊椎動(dòng)物組織和細(xì)胞內(nèi)的防御性多肽物質(zhì),具有廣譜殺菌、抗真菌、提高機(jī)體免疫力等作用[6],并且不易產(chǎn)生耐藥性,是替代抗生素的新選擇[7]。目前,已有研究結(jié)果表明抗菌肽作為飼料添加劑,可提高動(dòng)物生長(zhǎng)性能[8-9]、機(jī)體免疫力[10]、抗氧化功能[11]等。另有研究表明,抗菌肽可調(diào)節(jié)腸道菌群結(jié)構(gòu),降低腸道內(nèi)有害菌數(shù)量、促進(jìn)有益菌生長(zhǎng),改善腸道健康,促進(jìn)動(dòng)物生長(zhǎng)[12-14]。目前,抗菌肽作為飼料添加劑用于反芻動(dòng)物的研究還未見報(bào)道。本試驗(yàn)利用MiSeq高通量測(cè)序技術(shù)探討不同精料下復(fù)合抗菌肽對(duì)山羊瘤胃細(xì)菌菌群結(jié)構(gòu)的影響,為今后復(fù)合抗菌肽應(yīng)用于反芻動(dòng)物生產(chǎn)中提供理論依據(jù)。
1.1 試驗(yàn)藥品及日糧組成
復(fù)合抗菌肽“態(tài)康利?!庇韶i防御素(37個(gè)氨基酸)和蒼蠅抗菌肽(40個(gè)氨基酸)復(fù)合而成,各占50%,由四川華德生物工程有限公司提供,包裝規(guī)格:每袋500 g?;A(chǔ)日糧組成如表1所示。
1.2試驗(yàn)設(shè)計(jì)與試驗(yàn)動(dòng)物管理
表1基礎(chǔ)日糧組成及營(yíng)養(yǎng)水平
Table1Composition and nutrient levels of the concentrate
原料Ingredients含量Content/%營(yíng)養(yǎng)Nutrients2)水平Levels玉米Corngrain51消化能DE/(MJ·kg-1)13.34麥麩Barleygrain23干物質(zhì)DM/%84.27菜籽餅Rapeseedcake10粗蛋白質(zhì)CP/%16.66豆粕Soybeanmeal10粗纖維CF/%4.17魚粉Fishmeal3中性洗滌纖維NDF/%13.72食鹽NaCl1酸性洗滌纖維ADF/%6.91預(yù)混料Premix1)2合計(jì)Total100
1)預(yù)混料為每kg飼糧提供:鐵(硫酸亞鐵)30 mg,Cu(硫酸銅)10 mg,Zn(硫酸鋅)50 mg,Mn(硫酸錳)60 mg,VA 2 937 IU,VD 343 IU,VE 30 IU;2)計(jì)算值
1) Premix provides the following to per kg of the diet: Fe( as ferrous sulfate) 30 mg, Cu( as copper sulfate) 10 mg, Zn( as zinc sulfate) 50 mg, Mn( as manganese sulfate) 60 mg, VA 2 937 IU, VD 343 IU, VE 30 IU; 2) Nutrient levels were calculated values
選擇24只4月齡、體質(zhì)量相近(16.17±0.72)kg的健康雄性(未閹割)川中黑山羊,隨機(jī)分成4組,每組6只。A組,正常精料組(300 g·d-1精料);C組,正常精料+抗菌肽(300 g·d-1精料+3.0 g·d-1抗菌肽);D組:雙倍精料組(600 g·d-1精料);E組:雙倍精料+抗菌肽(600 g·d-1精料+3.0 g·d-1抗菌肽)。括號(hào)中飼喂量為每只山羊每天飼喂量。每天8:00和18:00各飼喂精料一次,精料全部采食后,飼喂足夠新鮮青草,自由采食,單欄群養(yǎng),全天自由飲水。羊舍溫度20 ℃。預(yù)飼10 d后開始正式試驗(yàn)。
1.3 樣品采集及基因組DNA的提取
于正式試驗(yàn)第20天,每組隨機(jī)選取3只羊在晨飼前用真空泵胃管抽吸法[15]采集瘤胃液(100 mL·只-1),4層100目紗布過(guò)濾,111.8g離心5 min,分裝,-70 ℃中保存。各樣品取2 mL 瘤胃液用于總DNA提取(試劑盒為天根生化科技公司產(chǎn)品),將所提取的總基因組DNA于-20 ℃保存?zhèn)溆谩?/p>
1.4 16S rDNA基因的擴(kuò)增及MiSeq測(cè)序
細(xì)菌基因組文庫(kù)構(gòu)建及上機(jī)測(cè)序均由上海派森諾科技有限公司完成。以總DNA為模板,對(duì)細(xì)菌16S rRNA V4區(qū)進(jìn)行PCR擴(kuò)增,建立DNA文庫(kù),所采用的細(xì)菌通用引物為:520F(5’-GCACCTAAYTGGGYDTAAAGNG-3’)和802R(5’- TACNVGGGTATCTAATCC-3’), PCR產(chǎn)物進(jìn)行2%瓊脂糖凝膠電泳,并用Axygen 凝膠回收試劑盒回收目的片段。對(duì)文庫(kù)質(zhì)檢和定量,將合格的文庫(kù)利用MiSeq Reagent Kit V3(600 cycles)進(jìn)行2×300 bp的雙端測(cè)序。
1.5 數(shù)據(jù)分析
測(cè)序原始數(shù)據(jù)以Fastq格式保存,利用FLASH軟件(v1.2.7)篩選(按照引物和Index信息,識(shí)別分配入對(duì)應(yīng)樣本,并去除嵌合體等疑問序列)而獲得每個(gè)樣本的有效序列,再運(yùn)用QIIME 1.8.0識(shí)別疑問序列(要求序列長(zhǎng)度≥ 150 bp,且不允許存在模糊堿基N,剔除5’端引物錯(cuò)配堿基數(shù)>1的序列以及含有連續(xù)相同堿基數(shù)>8的序列),篩選得到高質(zhì)量序列。調(diào)用Uclust序列比對(duì)工具,按97%的序列相似度進(jìn)行歸類和可操作分類單元(Operational taxonomic units OUT)劃分。將每個(gè)OTU中豐度最高的序列作為該OTU的代表序列,并與Greengenes數(shù)據(jù)庫(kù)(Release 13.8,http://greengenes.secondgenome.com/)的模板序列相比對(duì),獲取每個(gè)OTU所對(duì)應(yīng)的分類學(xué)信息,并獲得每個(gè)樣本在各分類水平的具體組成。使用QIIME軟件繪制稀疏曲線,并分別對(duì)每個(gè)樣本計(jì)算Alpha多樣性指數(shù)(Chao1、ACE、Shannon、Simpson),并通過(guò)R軟件進(jìn)行菌群結(jié)構(gòu)分析。采用Excel 2003整理數(shù)據(jù),SPSS Statistics 20軟件進(jìn)行配對(duì)樣本t檢驗(yàn),P<0.05為差異顯著,P<0.01為差異極顯著,結(jié)果以平均值±標(biāo)準(zhǔn)差表示。
2.1 測(cè)序深度及多樣性分析
本試驗(yàn)利用Illumina MiSeq平臺(tái)對(duì)細(xì)菌V4區(qū)測(cè)序,12個(gè)樣品共獲得高質(zhì)量序列629 634條,平均每條序列的長(zhǎng)度為225 bp。將序列聚類后(97%相似度下)共獲得13 227個(gè)OUT, A組平均獲得1 211個(gè)OTU,C組平均獲得1 192個(gè)OTU,D組平均獲得947個(gè)OTU,E組平均獲得1 058個(gè)OTU。由樣品稀釋曲線(圖1)所示,在本試驗(yàn)的測(cè)序深度下,各樣品稀疏曲線最終均趨于平緩,表明本試驗(yàn)測(cè)序深度下可以覆蓋各樣品的大多數(shù)微生物。
圖2-A顯示,本次試驗(yàn)各樣品聚類在一起,PCA獲得主成分1(PC1)的貢獻(xiàn)率為51.62%, 主成分2(PC2)的貢獻(xiàn)率為26.16%;門水平分類上的豐度熱圖(圖2-B)顯示各組樣品的主要菌群來(lái)自螺旋菌門Spirochaetes、厚壁菌門Firmicutes、浮霉菌門Planctomycetes、無(wú)壁菌門Tenericutes、放線菌門Actinobacteria、BacteriaTM7、黏膠球形菌門Lentisphaerae、疣微菌門Verrucomicrobia、纖維桿菌門Fibrobacteres、綠彎菌門Chloroflexi、Thermi、Elusimicrobia、Bacteria LD1、變形菌門Proteobacteria、酸桿菌門Acidobacteria、梭桿菌門Fusobacteria、衣原體Chlamydiae、Bacteria WPS-2、互養(yǎng)菌門Synergistetes、擬桿菌門Bacteroidetes、Armatimonadetes、藍(lán)細(xì)菌門Cyanobacteria、BacteriaSR1和廣古菌門Euryarchaeota。
Alpha多樣性常用于反映微生物群落的豐富度和均勻度,常用的度量指數(shù)主要包括側(cè)重于體現(xiàn)物種豐富度的Chao指數(shù)和ACE指數(shù),以及兼顧群落均勻度的Shannon指數(shù)和Simpson指數(shù)。
圖1 稀釋曲線Fig.1 Rarefaction curves
各組多樣性指數(shù)見表2,其中C組與A組無(wú)顯著差異(P>0.05),E組各指數(shù)高于D組,但差異不顯著(P>0.05),D(E)組各指數(shù)低于A(C)組,但差異亦不顯著(P>0.05)。由此可見,瘤胃細(xì)菌多樣性并不受本試驗(yàn)下復(fù)合抗菌肽及精料量改變的影響。
2.2菌群結(jié)構(gòu)分析
在門水平上共獲得23個(gè)細(xì)菌門類,同時(shí)還獲得古菌界下廣古菌門。各樣品的優(yōu)勢(shì)菌門均為擬桿菌門、厚壁菌門、變形菌門(表3),其他門類相對(duì)含量較低,如:無(wú)壁菌門、螺旋體門等。A組、C組和E組最優(yōu)勢(shì)菌門為擬桿菌門(40.87%、43.68%、38.52%),其次為厚壁菌門(27.19%、29.65%、31.91%),而D組中最優(yōu)勢(shì)菌門為厚壁菌門(35.29%),其次為擬桿菌門(34.30%)。組間差異顯著或極顯著菌群統(tǒng)計(jì)如表3所示,與相應(yīng)對(duì)照組相比,C、E兩組中變形菌門顯著降低(P<0.05),螺旋菌門極顯著降低(P<0.01),說(shuō)明添加抗菌肽后,可顯著降低變形菌門、螺旋菌門的相對(duì)含量。另外,與A組相比,D組中擬桿菌門、變形菌門的含量顯著降低(P<0.05),厚壁菌門、螺旋菌門含量顯著增加(P<0.05)。
圖2 瘤胃樣品細(xì)菌 OTU 的主成分分析圖(A)及其門水平分類上的熱圖(B)Fig.2 PCA profile(A) and heatmap in phylum(B) of the samples from the rumen
表2Alpha多樣性指數(shù)對(duì)比
Table2Comparison of alpha diversity indices
指標(biāo)Indices組GroupA組AgroupC組CgroupD組DgroupE組EgroupP值P-valueA-CD-EA-DC-EChao指數(shù)Chaoindex911±136.01914.33±157.67676.33±135.98754.33±60.720.9870.3280.3110.205ACE指數(shù)Aceindex1024.85±136.471029.74±146.54750.04±156.02814.05±113.190.980.4520.2790.147Simpson指數(shù)Simpsonindex0.95±0.040.95±0.030.96±0.020.96±0.030.3960.7470.8810.344Shannon指數(shù)Shannonindex6.56±1.0156.57±0.696.22±0.456.56±0.490.4770.5570.7440.189覆蓋率Coverage0.994±0.0020.993±0.0020.994±0.0020.993±0.0020.9830.9780.980.978
在屬水平上,所有樣品共檢測(cè)到35個(gè)屬,各樣品屬水平菌群結(jié)構(gòu)見圖3,各組中均含有大量未知屬,所占的比例高達(dá)40.27%、39.96%、36.58%與38.41%,這充分顯示出瘤胃內(nèi)還有很多有價(jià)值的生物種群信息需要深入挖掘。
組間差異顯著或極顯著菌群統(tǒng)計(jì)結(jié)果見表3,各樣品中普雷沃菌屬Prevotella為所有樣品中最優(yōu)勢(shì)菌屬;由表3可知,添加抗菌肽后琥珀酸菌屬Succiniclasticum、瘤胃球菌屬Ruminococcus、假丁酸弧菌屬Pseudobutyrivibrio、脫硫弧菌屬Desulfovibrio顯著或極顯著增加(P<0.05或P<0.01),琥珀酸弧菌屬Succinivibrio極顯著降低(P<0.01),且不受精料量影響,但添加抗菌肽后月形單胞菌屬Selenomonas與密螺旋體Treponema的變化趨勢(shì)與精料量相關(guān),正常精料組顯著降低(P<0.05),而雙倍精料組無(wú)顯著變化(P>0.05),伯克氏菌屬Burkholderia與慢生根瘤菌屬Bradyrhizobium的變化也與精料量相關(guān),但含量過(guò)少。另外,D組與A組相比,組間相對(duì)豐度差異達(dá)顯著水平(P<0.05)的共有4個(gè)屬,普雷沃菌屬、假丁酸弧菌屬、密螺旋體的相對(duì)豐度顯著增加,伯克氏菌屬顯著降低;差異極顯著(P<0.01)的有2個(gè)屬,琥珀酸弧菌屬極顯著降低,慢生根瘤菌屬極顯著增加。
表3兩組間差異顯著和極顯著的菌屬
Table3The phylum and genus that were significantly different or extremely significantly different between groups
分類Classification組間有顯著差異的菌群結(jié)構(gòu)Significantlydifferentbacteriacommunitystructurebetweengroups/%ACDEP值P-valueA-CD-EA-DC-E擬桿菌門Bacteroidetes40.87±2.1943.68±3.5334.30±3.6738.52±2.950.4830.0580.0260.104普雷沃氏菌Prevotella25.54±2.6528.71±4.7731.57±3.9033.88±3.620.4670.5380.0480.349厚壁菌門Firmicutes27.19±1.7729.65±3.3235.29±1.5331.91±1.980.3870.6770.0160.472月形單胞菌屬Selenomonas2.95±0.161.75±0.442.75±0.652.98±0.190.0420.6250.2940.018琥珀酸菌屬Succiniclasticum1.01±0.091.80±0.080.85±0.261.96±0.130.0120.0040.2890.168瘤胃球菌屬Ruminococcus0.44±0.050.75±0.100.25±0.020.54±0.040.0250.0180.0570.023假丁酸弧菌屬Pseudobu-tyrivibrio0.10±0.010.24±0.020.31±0.040.60±0.020.0140.020.0120.004變形菌門Proteobacteria19.23±2.887.73±2.4512.54±2.557.19±1.310.0460.0420.0420.799琥珀酸弧菌屬Succinivibrio7.56±0.691.00±0.124.85±0.451.20±0.380.0030.0010.0010.004脫硫弧菌屬Desulfovibrio0.13±0.031.19±0.220.08±0.010.65±0.080.0140.0090.0690.088伯克氏菌屬Burkholderia0.06±0.010.06±0.030.02±0.020.07±0.020.9490.0350.0170.982慢生根瘤菌屬Bradyrhizobium0.05±0.0140.02±0.0020.41±0.050.09±0.130.0680.0480.0040.427螺旋菌門Spirochaetes1.25±0.170.41±0.083.02±0.431.43±0.390.0070.0010.0230.058密螺旋體Treponema1.22±0.150.38±0.112.35±0.361.67±0.240.0110.1790.0130.023綠彎菌門Chloroflexi0.20±0.160.03±0.0050.11±0.030.07±0.010.2250.070.5020.032廣古菌門Euryarchaeota0.07±0.010.13±0.020.07±0.0010.047±0.0070.0790.0510.9120.027
圖3 屬水平上瘤胃細(xì)菌菌群結(jié)構(gòu)Fig.3 Composition of rumen bacteria at genus level
3.1 多樣性分析
通過(guò)alpha多樣性分析來(lái)反映微生物群落的豐度和多樣性。由表2可知,添加抗菌肽對(duì)瘤胃細(xì)菌多樣性無(wú)顯著影響,而增加精料量對(duì)瘤胃細(xì)菌多樣性亦無(wú)顯著影響,但毛盛勇等[16]應(yīng)用454高通量測(cè)序技術(shù)研究高精料對(duì)奶牛瘤胃微生物區(qū)系的影響,發(fā)現(xiàn)高精料(精粗比70∶30)飼糧較對(duì)照組(精粗比40∶60)下瘤胃菌群豐富度(ACE、Chao)及多樣性(Shannon)指數(shù)顯著降低(P<0.05)。比較本試驗(yàn)所得A、D兩組alpha多樣性指數(shù), 雖然反映樣品中物種豐富度(Chao、ACE)和均勻度(Shannon)指數(shù)組間差異均不顯著,但在數(shù)值上,A 組的各項(xiàng)指數(shù)均大于 D 組,說(shuō)明A組多樣性高于D組,而差異不顯著的原因可能是由于組內(nèi)標(biāo)準(zhǔn)差過(guò)大。
另外,本試驗(yàn)所得A組多樣性指數(shù),低于王繼文等[15]利用同樣測(cè)序平臺(tái)研究波爾山羊瘤胃細(xì)菌所得Chao指數(shù)(911 vs 2687)和Shannon指數(shù)(6.56 vs 7.26);但高于曾燕等[17]利用同樣測(cè)序平臺(tái)研究蒙古山羊瘤胃細(xì)菌所得(曾燕等用箱圖表示并未給出具體數(shù)值)。瘤胃微生物的多樣性是宿主和瘤胃微生物之間強(qiáng)烈選擇和協(xié)同進(jìn)化的結(jié)果,宿主動(dòng)物的進(jìn)化歷程的差異可能決定其瘤胃細(xì)菌的差異[18],不同的品種在進(jìn)化歷程中經(jīng)歷不同的自然選擇,因此,推測(cè)引起這種差異的主要原因是品種不同。這表明川中黑山羊瘤胃細(xì)菌豐富度和多樣性高于蒙古山羊而低于波爾山羊。
3.2復(fù)合抗菌肽對(duì)瘤胃細(xì)菌菌群結(jié)構(gòu)的影響
瘤胃微生物中,瘤胃細(xì)菌種類最為繁多,數(shù)量最為巨大,是瘤胃微生物中最主要的功能群,其菌群結(jié)構(gòu)的變化影響瘤胃發(fā)酵功能[19]。有研究表明抗菌肽可以殺滅動(dòng)物腸道中的有害菌,提高有益菌的數(shù)量,調(diào)節(jié)腸道菌群平衡, 增強(qiáng)消化吸收功能,促進(jìn)動(dòng)物生長(zhǎng)[20-21]。Peng等[22]證實(shí)日糧中添加重組豬β-防御素2(recombinant porcine β-defensin 2)可以提高斷奶仔豬生長(zhǎng)性能,減少盲腸內(nèi)大腸埃希菌(Escherichiacoli)、梭狀芽胞桿菌(Clostridiumspp.)等病原體的數(shù)量,降低仔豬腹瀉率。本試驗(yàn)利用MiSeq測(cè)序技術(shù)研究不同精料量下添加復(fù)合抗菌肽對(duì)瘤胃細(xì)菌菌群結(jié)構(gòu)的影響,結(jié)果表明,門水平上,添加復(fù)合抗菌肽后并不影響瘤胃內(nèi)最優(yōu)勢(shì)菌門,最優(yōu)勢(shì)菌門仍為擬桿菌門,其次為厚壁菌門,但變形菌門和螺旋菌門顯著降低,且與精料量的改變無(wú)關(guān);在屬水平上,添加抗菌肽后部分利于降解纖維的菌屬(琥珀酸菌屬、瘤胃球菌屬、假丁酸弧菌屬)[23]含量增加,琥珀酸弧菌屬(降解半纖維)[23]極顯著降低,且不受精料量影響,但月形單胞菌屬(降解淀粉)[23]與密螺旋體(降解半纖維)[23]的變化趨勢(shì)與精料量相關(guān),正常精料組顯著降低,而雙倍精料組無(wú)顯著變化,伯克氏菌屬與慢生根瘤菌屬的變化與精料量相關(guān),但含量過(guò)少,對(duì)瘤胃發(fā)酵功能影響不大。由此可見,添加復(fù)合抗菌肽并不影響瘤胃內(nèi)優(yōu)勢(shì)菌屬,僅增加一些相對(duì)含量較少的降解纖維菌屬,降低了與降解淀粉相關(guān)的月形單胞菌屬,因此推測(cè)復(fù)合抗菌肽并不影響瘤胃正常的發(fā)酵功能。
3.3不同精料量對(duì)瘤胃菌群結(jié)構(gòu)的影響
飼糧結(jié)構(gòu)是決定瘤胃發(fā)酵的主要因素,而改變飼糧精粗比,以研究瘤胃微生物區(qū)系的反應(yīng)也是闡明反芻動(dòng)物瘤胃微生物區(qū)系特點(diǎn)的重要手段[24-25]。
當(dāng)精料量從300 g·d-1改變?yōu)?00 g·d-1時(shí),門水平上,擬桿菌門、變形菌門含量顯著降低,厚壁菌門含量顯著增加,這與其他學(xué)者研究結(jié)果一致。林波等[26]研究飼糧精粗比對(duì)泌乳水牛瘤胃細(xì)菌區(qū)系的影響,結(jié)果亦表明隨著精料量的增加厚壁菌門相對(duì)含量顯著增加,而擬桿菌門相對(duì)含量顯著降低。Wetzels等[27]報(bào)道稱,60%精料水平組瘤胃壁上的厚壁菌門含量高于30%精料水平組。屬水平上,增加精料量后普雷沃菌屬的相對(duì)豐度顯著增加,琥珀酸弧菌屬(降解半纖維)的相對(duì)豐度極顯著降低。普雷沃菌屬是廣泛存在于瘤胃且含量最多的一類菌屬,具有降解并利用淀粉和植物細(xì)胞壁多糖的能力[28],增加精料量同時(shí)增加了淀粉的含量,因此,增加精料量后普雷沃菌屬含量也相對(duì)增加。這與Pitta等[29]研究結(jié)果一致,其研究表明,相比全粗料飼喂組,50∶50精粗比飼糧組普雷沃菌屬含量較高。但與Mao等[30]研究結(jié)果不一致,Mao等稱普雷沃菌屬、密螺旋體屬等屬的比例在高精料飼糧組中較低,其原因可能是本試驗(yàn)與該研究的動(dòng)物健康狀態(tài)有差別,該研究精料比例達(dá)到70%,奶牛瘤胃處于亞急性酸中毒狀態(tài)。此外,也有可能與物種不同有關(guān)。
1) 復(fù)方抗菌肽(3 g·d-1·只-1)可降低變形菌門和螺旋菌門的相對(duì)含量,提高部分降解纖維菌屬的含量。
2) 本試驗(yàn)下增加精料量可增加厚壁菌門和螺旋菌門相對(duì)含量,降低擬桿菌門和變形菌門的相對(duì)含量,增加普雷沃菌屬相對(duì)含量,降低琥珀酸弧菌屬相對(duì)含量。
[1] SINGH K M, PANDYA P R, TRIPATHI A K, et al. Study of rumen metagenome community using qPCR under different diets[J].MetaGene, 2014, 2(1):191-199.
[2] AGARWAL U. Role of volatile fatty acids in regulating nitrogen utilization and urea nitrogen recycling in ruminants [D]. Maryland: University of Maryland, College Park, 2013.
[3] 申軍士, 毛勝勇, 朱偉云. 反芻動(dòng)物瘤胃高效產(chǎn)氨菌菌群結(jié)構(gòu)、功能及其調(diào)控[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2015, 27(8):2323-2327.
SHEN J S, MAO S Y, ZHU W Y. Ruminal hyper ammonia producing bacteria in ruminants: Community structure, function and its manipulation[J].ChineseJournalofAnimalNutrition, 2015, 27(8):2323-2327. (in Chinese with English abstract)
[4] ISAACSON H R, HINDS F C, BRYANT M P, et al. Efficiency of energy utilization by mixed rumen bacteria in continuous culture[J].JournalofDairyScience, 1975, 58(11):1645-1659.
[5] RUSSELL J B, SNIFFEN C J, SOEST P J V. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria[J].JournalofDairyScience, 1983, 66(66):763-775.
[6] BROWN K L, HANCOCK R E. Cationic host defense (antimicrobial) peptides[J].CurrentOpinioninImmunology, 2006, 18(1):24-30.
[7] FJELL C D, HISS J A, HANCOCK R E, et al. Designing antimicrobial peptides: form follows function[J].NatureReviewsDrugDiscovery, 2011, 11(1):37-51.
[8] 李方方, 蘇航, 張勇, 等. 飼糧添加復(fù)合抗菌肽與包被氧化鋅對(duì)斷奶仔豬生長(zhǎng)性能及血清生化指標(biāo)的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2015, 27(9):2811-2819.
LI F F, SU H, ZHANG Y, et al. Effects of dietary anti-microbial peptides and coated zinc oxide on growth performance and serum biochemical indices of weaning piglets[J].ChineseJournalofAnimalNutrition, 2015, 27(9):2811-2819. (in Chinese with English abstract)
[9] WU S, ZHANG F, HUANG Z, et al. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged withEscherichiacoli[J].Peptides, 2012, 35(2):225-230.
[10] 田春雷, 袁威, 任志華, 等. 復(fù)合抗菌肽“態(tài)康利?!睂?duì)斷奶仔豬紅細(xì)胞免疫功能的影響[J]. 中國(guó)獸醫(yī)學(xué)報(bào), 2015, 35(5):795-798.
TIAN C L, YUAN W, REN Z H, et al. The effect of the composite antibacterial peptide “Taikanglibao” on the immune function of erythrocytes in weaning piglets[J].ChineseJournalofVeterinaryScience, 2015, 35(5):795-798. (in Chinese with English abstract)
[11] 但啟雄, 袁威, 李剛, 等. 復(fù)合抗菌肽對(duì)斷奶仔豬血清抗氧化功能的影響[J]. 中國(guó)獸醫(yī)學(xué)報(bào), 2015, 35(5):804-808.
DAN Q X, YUAN W, LI G, et al. Effects of compound antibacterial peptide on antioxidant function of serum in weaned piglets[J].ChineseJournalofVeterinaryScience, 2015, 35(5):804-808. (in Chinese with English abstract)
[12] TANG Z R, YIN Y L, ZHANG Y M, et al. Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d[J].BritishJournalofNutrition, 2008, 101(7):998-1005.
[13] 潘行正, 黃正明, 李永新. 抗菌肽制劑對(duì)母豬死產(chǎn)率和仔豬成活率的影響[J]. 現(xiàn)代農(nóng)業(yè)科技, 2010 (12):285-286.
PAN X Z, HUANG Z M, LI Y X. Effect of antimicrobial peptides on the death rate and survival rate of piglets[J].ModernAgriculturalScienceTechnology, 2010 (12):285-286. (in Chinese with English abstract)
[14] 劉莉如, 楊開倫, 滑靜, 等. 抗菌肽對(duì)蛋用仔公雞生長(zhǎng)性能、免疫指標(biāo)及空腸組織相關(guān)細(xì)胞因子基因mRNA表達(dá)的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2012, 24(7):1345-1351. DOI: 10.3969/j.issn.1006-267x.2012.07.020
LIU L R, YANG K L, HUA J, et al. Antimicrobial peptides: Effects on growth performance, immune indices and mRNA expression of related cytokine genes in jejunum of young roosters for egg production[J].ChineseJournalofAnimalNutrition,2012, 24(7):1345-1351. (in Chinese with English abstract)
[15] 王繼文, 王立志, 閆天海, 等. 山羊瘤胃與糞便微生物多樣性[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2015, 27(8): 2559-2571.
WANG J W, WANG L Z, YAN T H, et al. Diversity of ruminal and fecal microbiota of goat[J].ChineseJournalofAnimalNutrition, 2015, 27(8):2559-2571. (in Chinese with English abstract)
[16] 毛勝勇, 張瑞陽(yáng), 王東升, 等. 應(yīng)用454高通量測(cè)序研究高精料對(duì)奶牛瘤胃微生物區(qū)系的影響 [C]//李愛科,李紹鈺. 第七屆中國(guó)飼料營(yíng)養(yǎng)學(xué)術(shù)研討會(huì)論文集. 北京:中國(guó)農(nóng)業(yè)大學(xué)出版社, 2014: 463-463.
MAO S Y, ZHANG R Y, WANG D S, et al. Application of 454 high throughput sequencing to study the effect of high concentrate on rumen microflora in dairy cows [C]// LI A K, LI S Y. Proceedings of the seventh Chinese feed nutrition seminar. Beijing: China Agricultural University Press, 2014: 463-463. in Chinese)
[17] 曾燕, 簡(jiǎn)平, 倪學(xué)勤, 等. Illumina MiSeq測(cè)序平臺(tái)測(cè)定蒙古羊瘤胃液相和固相菌群多樣性[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2015, 27(10): 3256-3262.
ZENG Y, JIAN P, NING X Q, et al. Bacteria community diversity of liquid and solid phases of ruminal contents of mongolian sheep analyzed by Illumina MiSeq platform[J].ChineseJournalofAnimalNutrition, 2015, 27(10): 3256-3262. (in Chinese with English abstract)
[18] 裴彩霞, 毛勝勇, 朱偉云. 山羊瘤胃產(chǎn)甲烷古菌多樣性及與其他動(dòng)物瘤胃的比較[J]. 畜牧獸醫(yī)學(xué)報(bào), 2012, 43(6): 909-914.
PEI C X, MAO S Y, ZHU W Y. Molecular diversity of rumen methanogens from the goat and its comparison with other ruminants[J].ActaVeterinariaEtZootechnicaSinica, 2012, 43(6):909-914. (in Chinese with English abstract)
[19] SHI P J, MENG K, ZHOU Z G, et al. The host species affects the microbial community in the goat rumen[J].LettersinAppliedMicrobiology, 2008, 46(1):132.
[20] 侯振平, 印遇龍, 王文杰, 等. 乳鐵蛋白素B和天蠶素P1對(duì)投喂大腸桿菌斷奶仔豬生長(zhǎng)及腸道微生物區(qū)系的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2011, 23(9): 1536-1544.
HOU Z P, YIN Y L, WANG W J, et al. Effects of lactoferricin B and cecropin P1 on growth and gut microflora in weaned piglets challenged with enterotoxigenicEscherichiacoli[J].ChineseJournalofAnimalNutrition, 2011, 23(9):1536-1544. (in Chinese with English abstract)
[21] TANG Z R. Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d[J].BritishJournalofNutrition, 2009, 101(7):998-1005.
[22] PENG Z, WANG A, XIE L, et al. Use of recombinant porcine β-defensin 2 as a medicated feed additive for weaned piglets[J].ScientificReports, 2016, 6:26790.
[23] 馮仰廉,盧德勛,陸治年,等. 反芻動(dòng)物營(yíng)養(yǎng)學(xué) [M]. 北京:科學(xué)出版社, 2006.
[24] 娜仁花, 董紅敏, 陳永杏, 等. 日糧精粗比對(duì)瘤胃發(fā)酵特性的影響[J]. 中國(guó)畜牧雜志, 2011, 47(9):49-54.
NA R H, DONG H M, CHEN Y X, et al. Effect of dietary forage to concentrate ratio on rumen fermentation characteristics[J].ChineseJournalofAnimalScience, 2011, 47(9):49-54. (in Chinese)
[25] PETRI R M, FORSTER R J, YANG W, et al. Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage[J].JournalofAppliedMicrobiology, 2012, 112(6):1152.
[26] 林波, 梁辛, 李麗莉, 等. 飼糧精粗比對(duì)泌乳水牛瘤胃細(xì)菌和甲烷菌區(qū)系的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào), 2016, 28(10):3101-3109.
LIN B, LIANG X, LI L L, et al. Dietary forage to concentrate ratio affects ruminal bacterial and methanogen community composition of water buffaloes[J].ChineseJournalofAnimalNutrition,2016, 28(10):3101-3109. (in Chinese with English abstract)
[27] WETZELS S U, MANN E, METZLER-ZEBELI B U, et al. Pyrosequencing reveals shifts in the bacterial epimural community relative to dietary concentrate amount in goats[J].JournalofDairyScience, 2015, 98(8):5572-5587.
[28] DODD D. Degradation of xylan by rumen Prevotella SPP [D]. Illinois: Urbana-Champaign, 2010.
[29] PITTA D W, KUMAR S, VEICCHARELLI B, et al. Bacterial diversity associated with feeding dry forage at different dietary concentrations in the rumen contents of Mehshana buffalo (Bubalusbubalis) using 16S pyrotags[J].Anaerobe, 2014, 25(1):31-41.
[30] MAO S Y, ZHANG R Y, WANG D S, et al. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing[J].Anaerobe, 2013, 24(12):12-19.
(責(zé)任編輯盧福莊)
Effectsofcompositeantimicrobialpeptideonrumenbacteriacommunitystructureofgoat
CHEN Yun, LIU Qi, DENG Junliang*, YANG Yanyi, GAO Shuang, CHEN Chong, YAO Shuhua
(1.CollegeofVeterinaryMedicine,SichuanAgricultureUniversity;KeyLaboratoryofAnimalDiseaseandHumanHealthofSichuanProvince;KeyLaboratoryofEnvironmentalHazardsandAnimalDiseasesofSichuanProvinceCollegesandUniversities,Wenjiang611130,China)
The aim of this study was to evaluate the effects of composite antimicrobial peptide (AMP) on rumen bacteria community structure by MiSeq high throughput sequencing technology, which could provide theoretical basis for the application of antimicrobial peptide in ruminant. Twenty-four male goats (4-month-old) were randomly divided into 4 groups according to the similar weight. Four groups were normal concentrate group A (concentrate 300 g·d-1·goat-1), normal concentrate+AMP group C (concentrate 300 g·d-1·goat-1+ AMP 3 g·d-1·goat-1), double concentrate group D (concentrate 600 g·d-1·goat-1), double concentrate + AMP group E (concentrate 600 g·d-1·goat-1+ AMP 3 g·d-1·goat-1). The rumen fluid samples were collected after 20 d, and then the total DNA were extraced for amplification 16S rRNA(520F-802R), sequencing by MiSeq Illumina250. Results showed as follows: 1) A total of 629 634 valid 16S rDNA sequences and 13 227 operational taxonomic unit (OTU) across 12 samples were obtained. 2) At phylum level, Bacteroidetes was the most abundant phyla in A, C and E groups (38.52%-43.68%), except for the D group (Firmicutes was the most abundant phyla, 34.30%), and Proteobacteria and Spirochaetes were significantly decreased when adding AMP (P<0.05); Firmicutes and Spirochaetes were significantly increased in D group compared with A group(P<0.05), while Bacteroidetes and Proteobacteria were significantly decreased (P<0.05). 3) At genus level,Prevotellawas the most abundant genus in all samples (25.54%-33.88%),Succiniclasticum,Ruminococcus,PseudobutyrivibrioandDesulfovibriowere significantly increased when adding AMP (P<0.05 orP<0.01), whileSuccinivibriowas extremely significantly decreased (P<0.01), and it was not affected by the amount of concentrate; But the change tendency ofSelenomonasandTreponemawere affected by the amount of concentrate when adding AMP, significantly decreased in C group compared with A group (P<0.05), but no significant difference between D and E groups (P>0.05).PrevotellaandTreponemawere significantly increased in D group compared with A group (P<0.05), whileSuccinivibriowas significantly decreased (P<0.05). 4) There were no significant differences (P>0.05) between groups on alpha diversity index (Chao, ACE, Shannon and Simpson). In conclusion, Proteobacteria and Spirochaetes were decreased when adding complex antibacterial peptide, while some genus of cellulolytic were increased; Firmicutes and Spirochaetes were increased when the amount of concentrate changed from 300 to 600 g·d-1·goat-1, while Bacteroidetes and Proteobacteria were decreased, andPrevotellawas increased, whileSuccinivibriowas decreased. Moreover alpha diversity index was not affected by complex antibacterial peptide or the amount of concentrate changed from 300 to 600 g·d-1·goat-1.
goat; rumen bacteria; community structure; high-throughput sequencing; composite antimicrobial peptide; concentrate
陳蕓,劉旗,鄧俊良,等. 復(fù)合抗菌肽對(duì)山羊瘤胃菌群結(jié)構(gòu)的影響[J].浙江農(nóng)業(yè)學(xué)報(bào),2017,29(11): 1800-1808.
10.3969/j.issn.1004-1524.2017.11.05
2017-03-20
“長(zhǎng)江學(xué)者和創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃”創(chuàng)新團(tuán)隊(duì)項(xiàng)目(IRT0848);四川農(nóng)業(yè)大學(xué)雙支計(jì)劃(03572070)
陳蕓(1992—),女,云南昭通人,碩士研究生,研究方向?yàn)橹形鳙F醫(yī)與臨床。E-mail:609835279@qq. com
*通信作者,鄧俊良, E-mail:dengjl213@126. com
S827;Q939
A
1004-1524(2017)11-1800-09