馮 天,方志剛,陳 林,趙振寧,劉 琪,徐詩(shī)浩
(遼寧科技大學(xué) 化學(xué)工程學(xué)院,遼寧 鞍山 114051)
團(tuán)簇Ti3B2催化活性的研究
馮 天,方志剛,陳 林,趙振寧,劉 琪,徐詩(shī)浩
(遼寧科技大學(xué) 化學(xué)工程學(xué)院,遼寧 鞍山 114051)
基于密度泛函理論在B3LYP/Lanl2dz水平下的團(tuán)簇Ti3B2的優(yōu)化構(gòu)型,對(duì)其從HOMO、LUMO軌道貢獻(xiàn)、能隙差值以及Fermi能級(jí)圖等方面來(lái)研究其催化活性位點(diǎn)、化學(xué)反應(yīng)活性及催化活性。結(jié)果表明:在團(tuán)簇Ti3B2中,Ti原子在HOMO和LUMO軌道貢獻(xiàn)率總和均大于50%,為團(tuán)簇Ti3B2的潛在活性位點(diǎn),構(gòu)型1(1)的能隙差值最小(EGAP=0.054 a.u),反應(yīng)活性最強(qiáng);構(gòu)型1(1)容易接受豐富的電子,進(jìn)而參與催化過(guò)程;構(gòu)型4(1)容易提供大量的電子,且具有良好的催化活性。
結(jié)構(gòu);催化;活性位點(diǎn);Fermi能級(jí)
人類的生存發(fā)展,吃穿住行都離不開催化劑,要了解催化劑首先要研究的就是其催化活性。來(lái)自美國(guó)“太平洋西北國(guó)家實(shí)驗(yàn)室”的Hu等[1]首次看見了催化劑的活性位點(diǎn),確定了反應(yīng)發(fā)生的具體位置。他們的研究成果加深了人們對(duì)催化劑活性位在催化反應(yīng)機(jī)理中的認(rèn)識(shí),為工業(yè)界帶來(lái)新的應(yīng)用前景。其實(shí)對(duì)于催化劑活性的研究很早之前就有過(guò)相關(guān)報(bào)道。例如,20世紀(jì)90年代,Valden等人[2]研究的非金屬摻雜對(duì)催化活性的影響;Jasson N等人[3]研究了影響Pd/ZrO2催化活性的因素;近幾年,Kat.等人[4-6]研究了溫度等其他因素對(duì)催化活性的影響。時(shí)至今日,過(guò)渡態(tài)金屬的摻雜改變催化性能仍然是最受科研者關(guān)注的話題。對(duì)于B原子摻雜Ti團(tuán)簇有很多關(guān)于硬度、吸附及合成等方面的報(bào)道[7-10],但在其催化活性等方面的報(bào)道較少。2007年開始,N.Patel等人[11-15]分別研究了在Ti-B體系或Co-B體系中摻雜其他原子的三元體系的催化性能;Miki等人[16]發(fā)表了有關(guān)Ti摻雜SiO2的催化性能的報(bào)告;李麗等人[17-18]在文章中提到了Ti-B有較強(qiáng)的吸附性能以及TiB2的催化機(jī)理,等等。鑒于其他研究者都是通過(guò)宏觀實(shí)驗(yàn)得到有關(guān)催化性能的結(jié)論,也沒(méi)有進(jìn)行活性位方面的研究,所以本文將從微觀理論方面對(duì)團(tuán)簇Ti3B2通過(guò)HOMO、LUMO軌道能量以及Fermi能級(jí)圖等方面來(lái)研究其催化活性及催化活性位點(diǎn),期望為Ti-B體系催化性質(zhì)的研究提供堅(jiān)實(shí)的基礎(chǔ)。
采用密度泛函理論[19](Density functional theory,DFT),對(duì)團(tuán)簇Ti3B2所有存在的構(gòu)型進(jìn)行計(jì)算。對(duì)Ti原子采用Hay[20-21]等人的計(jì)算基組;對(duì)B原子采用Dunning/Huzinaga雙基組。
對(duì)團(tuán)簇Ti3B2各異構(gòu)體的含虛頻的不穩(wěn)定構(gòu)型以及相同構(gòu)型進(jìn)行排除,最終獲得單、三重態(tài)共8種穩(wěn)定構(gòu)型,如圖 1所示。其中 1(1)~4(1)為單重態(tài)穩(wěn)定構(gòu)型,1(3)~4(3)為三重態(tài)穩(wěn)定構(gòu)型。(1,2,3,…表示能量由低到高的順序,其右上角括號(hào)內(nèi)數(shù)字表示多重態(tài)。)由圖1可以看出,在團(tuán)簇Ti3B2中構(gòu)型 1(3)和 1(1)為三角雙錐構(gòu)型;構(gòu)型 2(3)、3(3)、4(3)和2(1)均為單“帽”三角錐型,其中構(gòu)型 2(3)和 3(3)互為對(duì)映異構(gòu)體;構(gòu)型3(1)和4(1)為平面五邊形。
圖1 團(tuán)簇Ti3B2的優(yōu)化構(gòu)型圖Fig.1 Optimized configurations of cluster Ti3B2
圖2為團(tuán)簇Ti3B2各優(yōu)化構(gòu)型的吉布斯自由能變和能隙差值圖,設(shè)計(jì)團(tuán)簇Ti3B2的合成路線為3Ti+2B=Ti3B2,由圖2可以看出團(tuán)簇Ti3B2中所有優(yōu)化構(gòu)型的吉布斯自由能變均小于零,表明合成團(tuán)簇Ti3B2的路線可自發(fā)進(jìn)行,其中構(gòu)型1(3)的△G最?。?0.405 a.u),結(jié)合能最大(0.452 a.u),說(shuō)明構(gòu)型1(3)最容易生成且穩(wěn)定性最好。
圖2 團(tuán)簇Ti3B2各優(yōu)化構(gòu)型的吉布斯自由能變和能隙差Fig.2 Charge of Gibbs free energy andEGAPin stable structures of cluster Ti3B2
由計(jì)算結(jié)果可知,Ti原子上帶有較多正電荷[22],所以Ti原子可以作為親電反應(yīng)的活性中心。為了更深入地了解團(tuán)簇Ti3B2的反應(yīng)活性,圖3繪出了各優(yōu)化構(gòu)型中Ti原子在HOMO和LUMO軌道上的貢獻(xiàn),表1列出了團(tuán)簇Ti3B2的各優(yōu)化構(gòu)型的能級(jí)參數(shù)。其中HOMO為最高占據(jù)軌道,LUMO為最低未占據(jù)軌道,HOMO能級(jí)EHOMO、LUMO能級(jí)ELUMO、費(fèi)米能級(jí)EF及能隙差EGAP。
圖3 各構(gòu)型中Ti原子在HOMO和LUMO軌道上的貢獻(xiàn)Fig.3 Contribution of atom Ti to HOMO and LUMO orbitsof cluster Ti3B2
表1 團(tuán)簇Ti3B2各優(yōu)化構(gòu)型的能級(jí)參數(shù),a.uTab.1 Energy level parameters of cluster Ti3B2,a.u
結(jié)合圖2、圖3和表1可以看出,在團(tuán)簇Ti3B2所有優(yōu)化構(gòu)型中Ti原子在HOMO和LUMO軌道貢獻(xiàn)率總和均大于50%(HOMO軌道貢獻(xiàn)率總和為54.89%~94.88%,LUMO軌道貢獻(xiàn)率總和為65.93%~94.24%),說(shuō)明Ti原子為團(tuán)簇Ti3B2前線軌道的主要貢獻(xiàn)者,是團(tuán)簇Ti3B2的潛在活性位點(diǎn)。構(gòu)型1(1)的能隙差最?。‥GAP=0.054 a.u),說(shuō)明構(gòu)型1(1)的活性最強(qiáng);反之構(gòu)型3(1)的能隙差最大(EGAP=0.075 a.u),其活性也就最弱。
圖4 團(tuán)簇Ti3B2各優(yōu)化構(gòu)型Fermi能級(jí)附近的態(tài)密度Fig.4 Density of state near fermi level in stable structures of cluster Ti3B2
表2 團(tuán)簇Ti3B2的Fermi能級(jí)附近態(tài)密度圖最高峰及其距Fermi能級(jí)的距離Tab.2 Highest peak and distant of DOS nearby Fermi level for cluster Ti3B2
分析態(tài)密度曲線圖一定意義上可以看出催化劑的催化性能。圖4為團(tuán)簇Ti3B2各優(yōu)化構(gòu)型Fermi能級(jí)附近的態(tài)密度圖,表2為團(tuán)簇Ti3B2的Fermi能級(jí)附近態(tài)密度圖最高峰及其距Fermi能級(jí)的距離。其中,PLeft、ΔEF,Left分別為團(tuán)簇Ti3B2各優(yōu)化構(gòu)型的Fermi能級(jí)左側(cè)態(tài)密度最高峰峰值及其距Fermi能級(jí)的距離,Pright、ΔEF,right分別為其在Fermi能級(jí)右側(cè)態(tài)密度最高峰峰值及其距Fermi能級(jí)的距離,EF為Fermi能級(jí)值。左側(cè)峰值和峰距分別代表提供電子的數(shù)量和提供電子的能力;右側(cè)峰值和峰距分別代表接受電子的數(shù)量和接受電子的能力。
比較左側(cè)峰值和峰距:構(gòu)型 1(3)和 3(1)的峰值較大,分別為11.19%和10.45%,可提供豐富的電子,但峰距較遠(yuǎn),分別為3.374 eV和3.701 eV,說(shuō)明其電子傳遞困難;構(gòu)型2(3)和3(3)峰距最近,均為1.898 eV,說(shuō)明其提供電子能力較強(qiáng),但其峰值較小,均為5.97%,提供電子數(shù)量較少;構(gòu)型4(1)的峰值較大(8.96%)、峰距較?。?.054 eV),說(shuō)明構(gòu)型4(1)不僅可以提供豐富電子而且電子容易傳遞,具有良好的催化活性。
比較右側(cè)峰值和峰距:構(gòu)型 2(3)、3(3)、2(1)和4(1)峰值較大,分別為12.69%,12.69%,13.43%和13.43%,可接受大量的電子,但峰距較遠(yuǎn),分別為:3.102 eV,3.102 eV,3.075 eV和3.946 eV,接受電子的能力較弱;構(gòu)型1(1)的峰距最近(1.672 eV),且峰值也很大(10.45%),說(shuō)明構(gòu)型1(1)容易接受豐富的電子,具有良好的催化活性。
本文從團(tuán)簇Ti3B2在HOMO和LUMO軌道貢獻(xiàn)及其各優(yōu)化構(gòu)型的能級(jí)參數(shù)來(lái)探討團(tuán)簇Ti3B2的催化活性與催化活性位點(diǎn),并得出以下結(jié)論:團(tuán)簇Ti3B2的合成路線可自發(fā)進(jìn)行;Ti原子在HOMO和LUMO軌道貢獻(xiàn)率總和均大于50%,說(shuō)明Ti原子為團(tuán)簇Ti3B2前線軌道的主要貢獻(xiàn)者,是團(tuán)簇Ti3B2的潛在活性位點(diǎn);構(gòu)型1(1)的能隙差最?。‥GAP=0.054 a.u),反應(yīng)活性最強(qiáng),構(gòu)型 3(1)的能隙差最大(EGAP=0.075 a.u),反應(yīng)活性最弱;構(gòu)型4(1)提供電子能力較強(qiáng)且可提供較多電子,說(shuō)明其具有良好的催化活性;構(gòu)型1(1)容易接受豐富電子,具有良好的催化活性。
[1]HU J Z,XU S,LI W Z,et al.Investigation of the structure and active sites of TiO2nanorod supported VOxcatalysts by high-field and fast-spinning 51V MAS NMR[J].ACS Catalysis,2015,5(7):3945-3952.
[2]VALDEN M,LAI X,GOODMAN D W.Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties[J].Science,1998,281(5383):1647-1650.
[3]CARSTENS J N,SU S C,BELL A T.Factors affecting the catalytic activity of Pd/ZrO2for the combustion of methane[J].Journal of Catalysis,1998,176(1):136-142.
[4]NAGAOKA K,TAKANABE K,AIKA K.Influence of the reduction temperature on catalytic activity of Co/TiO2(anatase-type)for high pressure dry reforming of methane[J].Applied Catalysis A:General,2003,255(1):13-21.
[5]ZHANG J,VUKMIROVIC M B,XU Y,et al.Control-ling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates[J].Angewandte Chemie International Edition,2005,44(14):2132-2135.
[6]SONG K,CHO E,KANG Y M.Morphology and activesite engineering for stable round-trip efficiency Li-O2Batteries:a search for the most active catalytic site in Co3O4[J].ACS Catalysis,2015,5(9):5116-5122.
[7]WU Y,WANG A H,ZHANG Z,et al.Microstructure,wear resistance and cell proliferation ability of in situ synthesized Ti-B coating produced by laser alloying[J].Opticsamp;Laser Technology,2015,67:176-182.
[8]LIU C,JIANG J,HUANG S,et al.Electronic and dehydrogenation properties of TiB2cluster-doped NaAlH 4(101)surface:A first-principle approach[J].International Journal of Hydrogen Energy,2014,39(26):14178-14183.
[9]LIU G,WANG Y,JIAO L,et al.Solid-state synthesis of amorphous TiB2nanoparticles on graphene nanosheets with enhanced catalytic dehydrogenation of MgH[2J].International Journal of Hydrogen Energy,2014,39(8):3822-3829.
[10]LIN Y,LEI Y,LI X,et al.A study of TiB2/TiB gradient coating by laser cladding on titanium alloy[J].Opticsamp;Lasers in Engineering,2016,82:48-55.
[11]PATEL N,KALE A,MIOTELLO A.Improved dehydrogenation of ammonia borane over Co-PB coating on Ni:A single catalyst for both hydrolysis and thermolysis[J].Applied Catalysis B:Environmental,2012,111:178-184.
[12]LI H,YANG P,CHU D,et al.Selective maltose hydrogenation to maltitol on a ternary Co-P-B amorphous catalyst and the synergistic effects of alloying B and P[J].Applied Catalysis A:General,2007,325(1):34-40.
[13]AYDIN M,HASIMOGLU A,OZDEMIR O K.Kinetic properties of Cobalt-Titanium-Boride(Co-Ti-B)catalysts for sodium borohydride hydrolysis reaction[J].International Journal of Hydrogen Energy,2016,41(1):239-248.
[14]SHPAK A P,SOBOL’O V,KUNITSKII Y A,et al.Radiation factor:Effect on the structure and stress state of condensates produced by ion sputtering of Ti-WB refractory materials[J].Powder Metallurgy and Metal Ceramics,2008,47(1):54-62.
[15]ZHANG H L,HAN Y F,WANG J,et al.An ab initio molecular dynamics study on the structural and electronic properties of AlB2,TiB2and(Alx,Ti(1?x))B2in Al-Ti-B master alloys[J].Journal of Alloys and Compounds,2014,585:529-534.
[16]FUKUDA M,TSUNOJI N,YAGENJI Y,et al.Highly active and selective Ti-incorporated porous silica catalysts derived from grafting of titanium(iv)acetylacetonate[J].Journal of Materials Chemistry A,2015,3(29):15280-15291.
[17]LI L,ZHANG Z C,WANG Y J,et al.Direct synthesis and dehydrogenation properties of NaAlH4,catalyzed with ball-milled Ti-B[J].Rare Metals,2016:1-6.
[18]LI L,QIU F,WANG Y,et al.Crystalline TiB2:an efficient catalyst for synthesis and hydrogen desorption/absorption performances of NaAlH4system[J].Journal of Materials Chemistry,2012,22(7):3127-3132.
[19]PARR R G.Density functional theory[M].Electron Distributions and the Chemical Bond.Springer US,1982:95-100.
[20]HAY P J.Gaussian basis sets for molecular calculations.The representation of 3d orbitals in transition-metal atoms[J].The Journal of Chemical Physics,1977,66(10):4377-4384.
[21]HAY P J,WADT W R.Ab initio effective core potentials for molecular calculations.Potentials for the transition metal atoms Sc to Hg[J].The Journal of Chemical Physics,1985,82(1):270-283.
[22]馮天,方志剛,趙振寧,等.團(tuán)簇Ti3B2結(jié)構(gòu)穩(wěn)定性、成鍵及電子性質(zhì)[J].遼寧科技大學(xué)學(xué)報(bào),2016,39(6):462-467.
Catalytic activity of cluster Ti3B2
FENG Tian,F(xiàn)ANG Zhigang,CHEN Lin,ZHAO Zhenning,LIU Qi,XU Shihao
(School of Chemical Engineering,University of Science and Technology Liaoning,Anshan 14051,China)
The optimized configuration of cluster Ti3B2based on density functional theory at B3LYP/Lanl2dz level is studied.The catalytic sites,chemical activity and catalytic activity of cluster Ti3B2are studied according to their HOMO、LUMO orbital contributions,energy gap difference,and Fermi energy levels.The results show that:the contribution rate of Ti atom in HOMO and LUMO orbitals is greater than 50%and,is considered as a potential active site of cluster Ti3B2;the energy gap of configuration 1(1)is the smallest( EGAP=0.054 a.u),which means the strongest reaction activity;configuration 1(1),as the acceptors of electrons,participate in the catalytic process;configuration 4(1),as the doptors of electrons,has good catalytic activity.
structure;catalysis;active site;Fermi energy level
July 11,2017)
O641.12
A
1674-1048(2017)04-0246-06
10.13988/j.ustl.2017.04.002
2017-07-11。
2017年國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(201710146000277);2017年國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(201710146000355);2017年遼寧省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(201710146000097);2016年國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃(201610146033);國(guó)家自然基金重點(diǎn)項(xiàng)目(51634004)。
馮天(1998—),女,遼寧營(yíng)口人。
方志剛(1964—),男,遼寧鞍山人,教授。