胡玉萍, 薛留根, 馮三營(yíng)
(1.北京工業(yè)大學(xué) 應(yīng)用數(shù)理學(xué)院 北京 100024; 2.鄭州大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院 河南 鄭州 450001)
DOI: 10.13705/j.issn.1671-6841.2016356
半函數(shù)部分線性模型的經(jīng)驗(yàn)似然推斷
胡玉萍1,2, 薛留根1, 馮三營(yíng)2
(1.北京工業(yè)大學(xué) 應(yīng)用數(shù)理學(xué)院 北京 100024; 2.鄭州大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院 河南 鄭州 450001)
半函數(shù)部分線性模型; 經(jīng)驗(yàn)似然; 函數(shù)型數(shù)據(jù); 置信域
DOI: 10.13705/j.issn.1671-6841.2016356
對(duì)函數(shù)型數(shù)據(jù)的分析和處理是統(tǒng)計(jì)學(xué)的一個(gè)熱門問題,被廣泛應(yīng)用到計(jì)量經(jīng)濟(jì)學(xué)、生物醫(yī)學(xué)、心理學(xué)及其他領(lǐng)域.考慮半函數(shù)部分線性模型
其中:Y是實(shí)值響應(yīng)變量;X是取值于Rp上的隨機(jī)向量;m(·)是未知的光滑實(shí)函數(shù);T是取值于抽象無窮維空間H上的函數(shù)型協(xié)變量;|是隨機(jī)誤差,期望為零,方差有限,且與X和T是獨(dú)立的.
文獻(xiàn)[1]引入了函數(shù)線性模型,文獻(xiàn)[2-3]利用函數(shù)主成分分析法研究了函數(shù)型線性回歸模型的估計(jì)及預(yù)測(cè)問題.為了更好地?cái)M合數(shù)據(jù),一些學(xué)者開始研究函數(shù)型數(shù)據(jù)半?yún)?shù)模型.文獻(xiàn)[4] 提出了半函數(shù)部分線性模型(SFPLM),利用函數(shù)核光滑方法并結(jié)合最小二乘法給出了參數(shù)分量和非參數(shù)分量的估計(jì),得到了參數(shù)分量的漸近正態(tài)性和非參數(shù)分量的收斂速度.文獻(xiàn)[5]進(jìn)一步將SFPLM推廣應(yīng)用于時(shí)間序列預(yù)測(cè)問題.文獻(xiàn)[6]基于懲罰函數(shù)對(duì)SFPLM的高維線性回歸部分進(jìn)行了變量選擇,得到變量選擇的oracle性質(zhì)及非參數(shù)分量的非參收斂速度.文獻(xiàn)[7]利用主成分基函數(shù)展開及最小二乘法研究了部分函數(shù)線性模型的均方預(yù)測(cè)誤差的收斂速度.文獻(xiàn)[8]考慮了縱向函數(shù)型數(shù)據(jù)變系數(shù)模型,給出了模型中系數(shù)函數(shù)和歷史指標(biāo)函數(shù)的估計(jì),證明了它們的漸近性質(zhì).文獻(xiàn)[9]研究了縱向函數(shù)型數(shù)據(jù)單指標(biāo)模型,將經(jīng)典單指標(biāo)模型的最小平均方差估計(jì)(MAVE)方法推廣到函數(shù)型數(shù)據(jù)情形.文獻(xiàn)[10]研究了部分函數(shù)變系數(shù)模型,利用主成分基函數(shù)展開及局部光滑法得到了系數(shù)函數(shù)的估計(jì).
其中|i是相互獨(dú)立的模型誤差,且E(|i|Xi,Ti)=0,Var(|i|Xi,Ti)=σ2lt;∞,i=1,2,…,n.Ti∈H1,H1是H的緊子集.X=(X1,…,Xn)T,Xi=(Xi1,…,Xip)T,Y=(Y1,…,Yn)T.
Yi-E(Yi|Ti)=[Xi-E(Xi|Ti)]Tβ+|i.
其中λ為L(zhǎng)agrange乘子,滿足
為敘述方便,始終假設(shè)c表示一不依賴于n的正的常數(shù),c每次出現(xiàn)可以取不同的值.引入記號(hào):
B(t,h)={t′∈H:d(t,t′)≤h},qij=Xij-E(Xij|Ti),qi=(qi1,…,qip)T,
(C1)K滿足Lipschitz條件,支撐為[0,1],并且?c滿足?u∈[0,1],-K′(u)gt;cgt;0.
(C2) 存在一個(gè)(0,∞)上的正值函數(shù)φ和正值c0、c1、c2使得
(C3) 存在常數(shù)cgt;0,αgt;0,?f∈{m,g1,…,gp}, 都有|f(u)-f(v)|≤cdα(u,v).
令Sn1j表示Sn1的第j個(gè)分量,則有
a.s.=
由式(5)~(7)可知Sn1j=Op(n1/2).
令Sn2j表示Sn2的第j個(gè)分量,類似可證Sn2j=Op(n1/2),則,
Anij表示Ani的第j個(gè)分量,則有
證明利用引理1的證明方法及文獻(xiàn)[11]可證得上式.
定理1的證明由式(4)可得
由引理1~3可以證得
由引理1及2可證明定理1.
定理3的證明計(jì)算可得
由文獻(xiàn)[4]中定理2可得本定理證明.
[1] RAMSAY J O, SILVERMAN B W. Functional data analysis [M]. New York: Springer, 1997.
[2] CAI T T, HALL P. Prediction in functional linear regression [J]. Annals of statistics, 2007, 34(5): 2159-2179.
[3] HALL P, HOROWITZ J L. Methodology and convergence rates for functional linear regression [J]. Annals of statistics, 2007, 35(1): 70-91.
[4] ANEIROS-PEREZ G, VIEU P. Semi-Functional partial linear regression [J]. Statistics and probability letters, 2006, 76(11): 1102-1110.
[5] ANEIROS-PEREZ G, VIEU P. Nonparametric time series prediction: a semi-functional partial linear modeling [J]. Journal of multivariate analysis, 2008, 99(5): 834-857.
[6] ANEIROS-PEREZ G, VIEU P. Testing linearity in semi-parametric functional data analysis [J]. Computational statistics, 2013, 28(2): 413-434.
[7] SHIN H. Partial functional linear regression [J]. Journal of statistical planning and inference, 2009, 139(10): 3405-3418.
[9] JIANG C R, WANG J L. Functional single index models for longitudinal data [J]. Annals of statistics, 2011, 39:362-388.
[10] FENG S, XUE L G. Partially functional linear varying coefficient model [J]. Statistics, 2016, 50(4): 1-16.
[11] OWEN A B. Empirical likelihood ratio confidence intervals for a single function [J]. Biometrika, 1988, 75(2): 237-249.
[12] OWEN A B. Empirical likelihood ratio confidence regions [J]. Annals of statistics,1990, 18(1): 90-120.
[13] WANG Q H, JING B Y. Empirical likelihood for partial linear models with fixed design [J]. Statistics probability letters, 1999, 41(4): 425-433.
[14] CUI H J, CHEN S X. Empirical likelihood confidence region for parameter in the errors-in-variables models [J]. Journal of multivariate analysis, 2003, 84(1): 101-115.
[15] ZHU L X, XUE L G. Empirical likelihood confidence regions in a partially linear single-index model [J]. Journal of the royal statistical society, 2006, 68(3): 549-570.
[16] 胡玉萍,馮三營(yíng),薛留根. 部分函數(shù)線性模型的經(jīng)驗(yàn)似然推斷[J]. 應(yīng)用概率統(tǒng)計(jì), 2015, 31(2):146-158.
[17] FERRATY F, VIEU P. Nonparametric functional data analysis [M]. New York: Springer, 2006.
[18] 高集體, 洪圣巖, 梁華. 部分線性模型中估計(jì)的收斂速度[J]. 數(shù)學(xué)學(xué)報(bào), 1995, 38(5): 658-669.
[19] 趙培信. 半?yún)?shù)變系數(shù)部分線性模型的統(tǒng)計(jì)推斷[D]. 北京:北京工業(yè)大學(xué), 2010.
[20] XUE L G, ZHU L X. Empirical likelihood semiparametric regression analysis for longitudinal data [J]. Biometrika, 2007, 94(4): 921-93.
(責(zé)任編輯:方惠敏)
EmpiricalLikelihoodInferenceforSemi-functionalPartialLinearModel
HU Yuping1,2, XUE Liugen1, FENG Sanying2
(1.CollegeofAppliedSciences,BeijingUniversityofTechnology,Beijing100024,China; 2.SchoolofMathematicsandStatistics,ZhengzhouUniversity,Zhengzhou450001,China)
The estimation for semi-functional partial linear model was considered. The empirical likelihood method was developed to make inference for parameter of interest. The empirical likelihood ratio for the parameter was constructed, and it was asymptotically standard chi-square distribution. Therefore, the corresponding confidence region of the parameter was constructed. At the same time, the estimator of the nonparametric function was given, and the theoretical property of the convergence rate was studied under certain regular conditions.
semi-functional partial linear model; empirical likelihood; functional data; confidence region
2016-12-29
國(guó)家自然科學(xué)基金項(xiàng)目(11501522,11571025,11331011);北京市自然科學(xué)基金項(xiàng)目(1142003,L140003);鄭州大學(xué)青年啟動(dòng)基金項(xiàng)目(1512315004);鄭州大學(xué)優(yōu)秀青年基金項(xiàng)目 (32210452).
胡玉萍(1971—), 女, 河南開封人,副教授,主要從事非參數(shù)統(tǒng)計(jì)研究,E-mail:hyp@zzu.edu.cn.
O212.7
A
1671-6841(2017)04-0005-06