李 佳, 劉 芳, 張 宇, 薛亞東, 李迪強
中國林業(yè)科學研究院森林生態(tài)環(huán)境與保護研究所,國家林業(yè)局森林生態(tài)環(huán)境重點實驗室,北京 100091
氣候變化背景下野生動物脆弱性評估方法研究進展
李 佳, 劉 芳, 張 宇, 薛亞東, 李迪強*
中國林業(yè)科學研究院森林生態(tài)環(huán)境與保護研究所,國家林業(yè)局森林生態(tài)環(huán)境重點實驗室,北京 100091
脆弱性評估是研究氣候變化影響野生動物的重要內容,識別野生動物脆弱性,是適應和減緩氣候變化影響的關鍵和基礎。開展氣候變化背景下野生動物的脆弱性評估工作,目的是為了確定易受氣候變化影響的物種和明確導致物種脆弱性的因素,其評估結果有助于人類認識氣候變化對野生動物的影響,為野生動物適應氣候變化保護對策的制定提供科學依據(jù)。對野生動物而言(物種),脆弱性是物種受氣候變化影響的程度,包括暴露度、敏感性和適應能力三大要素。其中,暴露度是由氣候變化引起的外在因素,如溫度、降雨量、極值天氣等;敏感性是受物種自身因素影響,如種間關系、耐受性等;適應能力是物種通過自身調整來減小氣候變化帶來的影響,如遷移或擴散到適宜生境的能力、塑性反應和進化反應等。對近期有關氣候變化背景下野生動物脆弱性評估方法予以綜述,比較每種評估方法所選取指標的差異,總結在脆弱性評估中遇到的不確定性指標的處理方法,以及脆弱性評估結果在野生動物適應氣候變化對策中的應用。通過總結野生動物脆弱性評估方法,以期為氣候變化背景下評估我國野生動物資源的脆弱性提供參考方法。
氣候變化;脆弱性;暴露度;敏感性;適應性保護對策
氣候變化是國際社會普遍關注的重大全球環(huán)境問題,聯(lián)合國政府間氣候變化專門委員會(IPCC)第5次評估報告指出,全球氣候變暖這一不可否認的事實,人類活動是導致近百年來全球普遍增溫的主要原因,在過去的100多年間(1880—2012年),氣溫上升了約0.85℃,尤其是近60多年,氣溫升高了0.72℃[1]。人類活動所引起的溫室氣體增加以及由此造成的全球氣候變暖和對全球生物多樣性的影響越來越引起人們的關注[2- 3]。
全球氣候變暖對生物多樣性產(chǎn)生了很大的影響。大量觀測事實表明,氣候變暖對物種地理分布[4- 5]、種群動態(tài)[6- 7]、物候特征(包括產(chǎn)卵期、遷徙期、遷徙距離等)[8- 9]、進化[10- 11]等方面產(chǎn)生深刻影響,且這些影響在未來將會變得更加劇烈[12- 13]。如果氣候變暖的趨勢得不到有效的遏制,溫度升高2℃(升高2℃被聯(lián)合國氣候變化公約組織(UFCCC)定義為“危險”溫度[14]),全球將有15%─35%物種滅絕[15],這無疑將會給生物多樣性的保護帶來嚴峻挑戰(zhàn)。盡管氣候變化對生物滅絕程度和速度的預測存在一定的爭議,但氣候變暖加速生物滅絕的現(xiàn)狀和趨勢已經(jīng)被廣泛證實[16- 17]。目前,在全球氣候變化背景下,如何制定有效的生物多樣性保護對策,已成為政府、生態(tài)學家和民眾普遍關注的熱點問題。
脆弱性評估是研究氣候變化影響野生動物的重要內容,識別野生動物脆弱性,是適應和減緩氣候變化影響的關鍵和基礎,國際上IPCC、國際自然保護聯(lián)盟(IUCN)等相關組織以及美國、歐盟等國家正在開展這方面的研究,通過開展氣候變化背景下野生動物的脆弱性評估工作,提出建立野生動物適應氣候變化的科學對策,最終為人類能有效應對氣候變化和野生動物保護提供強有力的依據(jù)[3,18- 21]。在我國,氣候變化背景下野生動物脆弱性評估工作,已被《生物多樣性保護戰(zhàn)略與行動計劃(2011—2030年)》列為未來20年優(yōu)先行動計劃[22]。然而,目前該領域研究還處于探討、介紹的層面,評估方法認識還不足[23]。為此,本文對近期國外有關氣候變化背景下野生動物脆弱性評估方法予以綜述,以期為氣候變化背景下評估我國野生動物資源的脆弱性提供方法參考。
IPCC對脆弱性進行了較為完整的定義,認為脆弱性是指系統(tǒng)易于遭受或沒有能力去應對氣候變化引起的負面影響的程度,包括系統(tǒng)暴露度、敏感性和適應能力三大要素[24]。暴露度是系統(tǒng)遭受氣候變化脅迫的程度,敏感性是系統(tǒng)被氣候變化脅迫改變的程度,適應能力是系統(tǒng)通過調整來適應氣候變化的能力。通常來講暴露度和敏感度的增大,會加劇系統(tǒng)的脆弱性;適應能力的增強則會降低系統(tǒng)的脆弱性[25]。對野生動物而言(物種),脆弱性是物種受氣候變化影響的程度,同樣包括暴露度、敏感性和適應能力三大要素[26- 27]。敏感性是受物種自身因素影響,如生態(tài)學、生理學、生活史、行為、基因多樣性、種間關系等[28- 29];暴露度是由氣候變化引起的外在因素,如溫度、降雨量、極值天氣等直接影響因素,以及氣候變化改變物種棲息環(huán)境、植被結構和組成、海平面上升等間接影響因素[29- 31];適應能力是物種通過自身調整來減小氣候變化帶來的影響,如遷移或擴散到適宜生境的能力、塑性反應和進化反應等[32- 33]。
評估物種脆弱性,是為其制定有效的氣候變化適應對策提供科學依據(jù)[30]。脆弱性評估主要解決兩個問題:(1)確定易受氣候變化影響的物種;(2)明確導致物種脆弱性的因素[28]。脆弱性評估有利于科研人員和管理決策者理解氣候變化的影響,了解物種脆弱性分布、脆弱性成因,同時制定相應的適應性保護策略,從而增強物種的適應能力。因此,脆弱性評估工作被認為是一切適應氣候變化對策制定的開始[30]。
目前,氣候變化背景下野生動物脆性評估是一個比較新的研究領域,評估方法不多,現(xiàn)有文獻中有關氣候變化的野生動物脆弱性評估方法歸納為三類,生物氣候包絡模型評估、機理性生態(tài)位模型和脆弱性指數(shù)評估[27,30,34]。
3.1 生物氣候包絡模型評估
基于空間生態(tài)位理論發(fā)展起來的生物氣候包絡模型(Bioclimate envelope)是評估物種脆弱性的方法之一,通過模型能獲得較準確的物種分布范圍,并能預測未來物種分布的變化[35- 38]。物種是否脆弱性主要通過對比物種現(xiàn)今潛在分布區(qū)和未來預測分布區(qū)的變化,如果物種未來預測分布區(qū)大范圍縮減,或者未來分布區(qū)與當前潛在分布區(qū)重疊較少,則表明氣候變化對物種影響較大[39- 41]。Lawler等利用模型預測氣候變化對2954種脊椎動物的影響,結果表明至少有10%的物種將會消失,且90%的物種分布區(qū)系將會發(fā)生變化[42];Sinervo等預測,到2080年氣候變化將會導致墨西哥20%的蜥蜴種類滅絕[43];Pearson等利用模型分析氣候變化對36種美國特有兩棲類和爬行類的影響,在不考慮氣候變化情景下,到2100年,只有少于1%的物種將會滅絕,而考慮CO2排放較高情景下,將有28%的物種會滅絕[44];生活在海洋中的生物同樣面臨著氣候變化的影響,Poloczanska等對全球1735種洋海生物進行研究,發(fā)現(xiàn)81%—83%的物種分布、物候、群落組成、豐富度等發(fā)生顯著變化[45]。類似結果如澳大利亞的樹袋熊(Phascolarctoscinereus)[46]、太平洋海象(Odobenusrosmarusdivergens)[47]、喜馬拉雅山的雪豹(Pantherauncia)[48]、中國的大熊貓(Ailuropodamelanoleuca)[37,49- 50],氣候變化可能導致這些物種未來適宜棲息地面積大量縮減,加快物種滅絕的速度。當然,氣候變化并非總是導致物種棲息地減少,有些物種可能得益于氣候變暖,導致其種群擴散,如華夏粗針蟻(Pachycondylachinensis)[51]、美國的牛蛙(Ranacatesbeiana)[52]、歐洲的葛氏鱸塘鱧(Perccottusglenii)[53]等物種,預測有可能在全球或局域擴散的趨勢。模型能準確預測物種分布范圍,然而簡單利用模型預測物種未來分布變化來評估物種脆弱性,這種評估方法有其不足和局限性[40,54]。模型主要考慮氣候因素,經(jīng)常會忽略掉一些重要的生物或非生物因素,如物種對環(huán)境因素的耐受性、物種間相互作用、遷移和進化能力、地理異質性等,這無疑將會影響模型的預測能力[40]。
3.2 機理性生態(tài)位模型評估
基于物種野外觀察(如種群動態(tài)、遷移等)和實驗(如生理耐受性)發(fā)展而來的模型,如種群生存力分析、生理耐受閾值和遷移模型等,總稱為機理性生態(tài)位模型,同樣被用于評估物種脆弱性[27,30,55]。機理性生態(tài)位模型主要通過分析未來氣候變化背景下物種滅絕的概率、物種對各因子的生理耐受范圍、物種是否遷移、土地利用變化等信息,來評物種脆弱程度[27]。Naveda-Rodríguez等結合物種分布模型和漩渦模型(Vortex model)分析安第斯禿鷹(Culturgryphus)種群滅絕風險,認為生境喪失是該物種面臨的最大威脅[56];Jenouvrier等認為氣溫變暖將會是導致棲息在南極洲帝企鵝(Aptenodytesforesteri)種群生存力下降[57]?;谏砟褪苄缘拇嗳跣栽u估方法認為動物對環(huán)境因子的生理耐受范圍限制了物種的分布[58],如大部分變溫動物主要分布在低洼熱帶雨林[59]、棲息在海洋中的變溫動物將向極地和赤道擴張分布[60],而一些地方特有或島嶼昆蟲類限制在海拔較低的區(qū)域[61];Schloss等利用物種遷移能力來評估氣候變化背景下西半球獸類脆弱性,認為氣候變化速率超出許多獸類遷移速率,西半球將會有39%的獸類無法通過自身擴散來適應氣候變化[62]。機理性生態(tài)位模型要求對各物種的基本信息非常準確,如生理耐受范圍、物種遷移能力、種群動態(tài)、種群結構等,而這些信息往往不易確定,需要開展大量的研究工作[27,63]。
3.3 脆弱性指數(shù)評估
自殺是一種復雜的社會現(xiàn)象,研究者可以從多個方面來理解和考察。在進化心理學的框架下,de Catanzaro(1991)提出的適應器理論激發(fā)了眾多的研究,值得感興趣的研究者予以關注。不過,這一理論依然還需要更多研究的檢驗,而感興趣的研究者可以在未來著重考慮以下幾個方面。
脆弱性指數(shù)利用物種敏感性、暴露度和適應能力等指標,通過給每個指標打分來評估物種脆弱度,是目前全球氣候變化背景下野生動物脆弱性評估使用最普遍的方法[30]。脆弱性指數(shù)需整合大量的物種信息,如物種分布、種群動態(tài)、生活史、生理、以及模型預測等[55,64]。大量信息可以通過已發(fā)表文獻、文學報道、實驗、野外觀察、以及從網(wǎng)站下載氣候數(shù)據(jù)等途徑獲取[30,55,65]。為簡化這些工作,許多研究人員和機構開發(fā)了一些框架或系統(tǒng)來更有效的評估物種脆弱性。
3.3.1 CCVI指數(shù)
CCVI指數(shù)(Climate Change Vulnerability Index, CCVI)由美國自然保護組織-自然服務開發(fā),自然服務建立了北美生物多樣性數(shù)據(jù)平臺,并開發(fā)了基于該數(shù)據(jù)庫的脆弱性指數(shù)評估,旨在用來評估未來50年內氣候變化背景下北美地區(qū)物種脆弱性,是目前脆弱性評估中使用最多的一種方法[54,64,66]。CCVI指數(shù)由以下4部分組成:(1)預測評估區(qū)域在未來氣候變化下的直接暴露度(如溫度升高、濕度變化等指標);(2)預測評估區(qū)域由氣候變引起的間接暴露度(如海平面上升);(3)物種敏感性因素(如生理耐受幅度、種間關系等指標);(4)物種對氣候變化的適應(模型預測未來適宜生境變化等指標)。Tuberville等利用CCVI指數(shù)評估氣候變化對美國東南部沙丘生態(tài)區(qū)域117種兩棲和爬行類動物的影響,結果表明該區(qū)域46.2%的物種將變得中等脆弱級別以上,只有14.5%的物種保持穩(wěn)定[34];類似結果如棲息在加州內華達山脈168種鳥類中有16個物種將變得中等脆弱,1個物種極度脆弱,生活在高山或水棲鳥類比其它生境中的鳥類更容易受到氣候變化的影響[67];獸類如美洲獅(Pumaconcolor)不脆弱、凱鹿(Odocoileusvirginianusclavium)比較脆弱、岡比亞巨囊鼠(Cricetomysgambianus)中等脆弱[68]。目前,CCVI指數(shù)并沒有被廣泛應用于脆弱性評估,主要原因在于該指數(shù)在研發(fā)時許多指標(如暴露度等指數(shù)),主要針對棲息在北美地區(qū)的物種,研究區(qū)域受到限制,然而該指數(shù)提供了非常全面的評估指標,值得其他地區(qū)在評估物種脆弱性時借鑒。
3.3.2 CCVA評估框架
CCVA評估框架(Climate Change Vulnerability Assessment, CCVA)由IUCN研發(fā),由3部分組成:(1)敏感性:ⅰ)生境專一性;ⅱ)生理耐受幅度;ⅲ)依賴環(huán)境誘因(如產(chǎn)卵日期、遷移時間等);ⅳ)依賴種間相互作用;ⅴ)稀有性;(2)適應能力:ⅰ)遷移能力;ⅱ)進化能力;(3)暴露度:ⅰ)溫度變化;ⅱ)降雨量變化。綜合敏感性、暴露度和適應能力,評估物種面對未來氣候變化的脆弱性[69- 70]。物種敏感性和暴露度較高,而適應能力較低,其脆弱度較高[69]。Foden等采用CCVA框架對全球鳥類、兩棲類和珊瑚類進行脆弱性評估,氣候變化將會導致全球6%—9%鳥類、11%—15%兩棲類和6%—9%珊瑚變得高度脆弱,且這些物種將會有滅絕的風險[71]。類似評估如非洲中東部28%兩棲類、20%鳥類、6%淡水魚類、30%獸類和42%爬行類,氣候變化將會導致這些物種變得非常脆弱,其中5種兩棲類、4種鳥類、5種淡水魚類和1種爬行類由于受到氣候變化的影響,將會有滅絕的風險[72]。CCVA評估方法比較容易掌握,但該方法針對全球物種,評估指標要充分考慮全球普遍可行性,因此,可能會忽略一些很有價值的評估指標。
3.3.3 EPA脆弱性評估框架
由美國環(huán)境保護局(Environmental Protection Agency, EPA)研發(fā)了一個框架來評估氣候變化背景下受威脅或瀕危物種脆弱性[73]。EPA框架由4個模塊組成,模塊1由11個當前面臨壓力指標組成(如種群數(shù)量大小和分布范圍變化、生活繁殖史等非氣候變化影響因素);模塊2由10個氣候變化影響指標組成(如極值天氣);模塊3整合模塊1和模塊2,最終評估瀕危物種面對未來氣候變化的脆弱性;模塊1和模塊2每個指標都給出一個可信度評分,模塊4則綜合模塊1和模塊2可信度評分,評估最終結果的可信度。利用EPA框架評估金頰黑背林鶯(Dendroicachrysoparia)、斑點林鸮(StrixOccidentalislucida)、格雷厄姆山紅松鼠(TamiasciurusHudsonicusgrahamensis)等瀕危物種脆弱性[73- 74];Moyle等通過修改部分EPA指標評估美國加利福尼亞州本土和外來入侵魚類脆弱性,結果表明82%的本地魚類和19%外來入侵魚類被評估為較高脆弱,并且認為氣候變化將會顯著地改變該區(qū)域魚類群系[75];Gardali等結合CCVI指數(shù)和EPA框架,對加利福尼亞州瀕危鳥類進行脆弱性評估,然后整合該地區(qū)鳥類瀕危級別與脆弱程度,得出應該針對該區(qū)域哪些鳥類采取優(yōu)先保護行動[65]。EPA框架評估過程相對簡單,主要針對于研究較為充分的瀕危物種,其評估結果可信度較高,但也正是因為評估對象僅僅為瀕危物種,導致其評估物種較少。
3.3.4 SVAS評估系統(tǒng)
SAVS評估系統(tǒng)(A System for Assessing Vulnerability of Species to Climate Change, SAVS)由美國國家林業(yè)局以問卷的形式調查氣候變化對陸生脊椎動物的影響[76]。問卷表由氣候變化影響物種棲息地、生理、物候、以及種間關系4部分組成。該系統(tǒng)評價準則:脆弱性高的物種,抵抗力較弱;脆弱低的物種,抵抗力較強[76]。研究人員利用SAVS對美國新墨西哥洲117種脊椎動物評估,認為未來氣候變化將會對該區(qū)域物種生境、物候、生理等方面產(chǎn)生強烈影響,許多物種未來將會變得高度脆弱,如索諾蘭叉角羚(AntilocapraAmericanasonoriensis)和沙漠龜(Gopherusmorafkai)等,種群數(shù)將會明顯下降[77- 78]。
3.3.5 SIVVA評估指數(shù)
由氣候變化引起的海平面上升對生物多樣性的間接影響同樣受到關注。Reece和Noss參照IUCN紅色名錄、NatureServe物種保護級別、以及CCVI等評估方法,研發(fā)出一套只適合評估氣候變化背景下沿海低洼區(qū)域物種脆弱度的指數(shù),稱之為SIVVA指數(shù)(Standardized Index of Vulnerability and Value, SIVVA)[79]。SIVVA指數(shù)增加了如經(jīng)濟價值、侵蝕度、鹽度等指標,使其更加符合棲息在沿海低洼區(qū)域物種的特點。目前,SIVVA評估方法僅用于佛羅里達洲低洼區(qū)野生動植物脆弱性評估,Reece等對該區(qū)域300種動植物進行脆弱性評估,認為氣候變化引起的海平面上升影響該區(qū)域的生物多樣性,應該對邁阿密藍蝶(Cyclargusthomasibethunebakeri)、凱鹿等物種采取優(yōu)先保護措施[80]。同時,相比于棲息在其它生境中的同類物種,棲息在佛羅里達洲礁島上的部分瀕危物種由于適應能力較差和遷移限制,無法適應氣候變化帶來影響,將會有滅絕的風險,且認為成功保護的可能性較低[81]。
氣候變化影響涉及野生動物的方方面面,采用哪些指標來衡量其脆弱性還沒有一個明確的標準[34]。利用敏感性、暴露度和適應能力作為評估指標,是所有方法的共同點[26,76]。然而,每種評估方法所選取的指標存在一定的差異,本文總結CCVI指數(shù)、CCVA框架、EPA框架、以及SAVS系統(tǒng)所使用的指標[30,64,71,73,76](表1)??偨Y以上脆弱性指數(shù)評估方法,將評估指標歸納為敏感性、暴露度、非氣候壓力和氣候模型預測4類。敏感性指標主要包括生境專一、種間關系、遷移能力、物候、生理耐受幅度、基因多樣性、季節(jié)性遷移、種群動態(tài)變化、生境變化、保護管理措施、食性多樣性等;物種對以上指標較為敏感,則氣候變化將會對其產(chǎn)生較大影響,如生境高度專一的物種,如果其所依賴的生境受到氣候變化較大的影響,物種可能會面臨著較大的滅絕風險;又如高度依賴人類保護和管理的物種,其命運比那些不依賴的物種更容易受到氣候變化的影響。暴露度主要包括溫度和降雨量變化、極值天氣、遷移障礙等指標;評估區(qū)域如果未來溫度升高幅度較大,降雨和干旱模式不斷變化,可預見極端天氣事件頻繁發(fā)生,將會對該區(qū)域物種產(chǎn)生重大影響;如果人類工程或自然存在的障礙阻隔了物種的遷移路線,將會近一步加劇物種的脆弱性。非氣候因素,如評估區(qū)域當前存在疾病傳播、環(huán)境污染、人為干擾等因素影響,同樣會加劇物種的脆弱性。氣候模型預測主要包括未來適宜生境變化、適宜生境的可獲得性、食物可獲得性等指標;利用模型預測氣候變化對物種的影響,預測結果為提出物種的適應性保護對策提供參考依據(jù)。指標的使用具有靈活性,針對不同區(qū)域、不同物種脆弱性評估,所選取的指標也存在差異,在進行評估時,應該篩選出符合該區(qū)域物種特點的評估指標[34,65,75]。
脆弱性評估最大的挑戰(zhàn)在于指標信息的可獲得性,只有少數(shù)受人類關注的物種研究較為充分,大部分物種的基礎信息匱乏,如物候變化、生理反應、模型預測等,缺乏足夠的信息去完成全面的評估[26,34]。然而,氣候變化對生物多樣性的影響速度快,等收集完物種的全部信息,其生境可能已經(jīng)喪失,甚至存在瀕臨滅絕的風險[26,75]。因此,對于基礎信息有限的物種,評估其脆弱性時通常采取以下方法對相關信息進行估計:(1)參照與其密切相關的同類物種信息[26];(2)參考已發(fā)表的文獻、文學報道、實驗或野外觀察數(shù)據(jù)[30,55,65];(3)采用專家小組意見[73];(4)一些信息如生理耐受幅度,可采用物種在評估區(qū)域已經(jīng)歷的歷史溫度或降雨量變化替代[64,82];(5)部分信息如基因多樣性、生態(tài)學進化等,只能不充分的理解[26,73]。CCVI指數(shù)在處理信息不足時,如敏感性指標,只需滿足其中10條,評估結果就有效[64];EPA框架中的指標可以靈活使用,應根據(jù)評估物種的實際情況出發(fā)選擇指標,或補充一些該框架沒有考慮到的指標[75]。每種評估方法在對物種進行評估時,會考慮指標信息的不確定性,對其獲取信息的可信度進行評分,評估物種脆弱程度的可信度。值得注意的是,氣候變化是一個及其復雜的科學問題,其中的不確定性是客觀存在的,脆弱性評估并不需要考慮非常精確的定值,其評估結果代表物種近似的脆弱級別[75]。
表1 不同評估方法氣候變化脆弱性指標
(√): CCVA框架定義為適應能力
脆弱性評估主要目的是為了提出適應性保護對策,減緩氣候變化給野生動物帶來的不利影響[55]。本文將脆弱性評估結果的應用其及相應的保護對策總結為以下幾點:(1)明確物種脆弱性因素:在制定適應性保護對策時,必需掌握物種當前面臨的壓力(即主要威脅因子),才能制定適宜的對策,可借鑒脆弱性評估結果,即物種面對當前壓力的敏感性[28,73]。通過對物種脆弱性評估,使管理決策者能夠通過修改保護對策來適應不斷變化的情況,采取如長期系統(tǒng)監(jiān)測、減小人為干擾、加強外來物種入侵監(jiān)測等措施,并制定相關規(guī)劃、政策、制度和措施,來減小物種面臨的威脅[55,83-84];(2)確定脆弱物種:脆弱性評估能很好的篩選出優(yōu)先保護物種,篩選出那些不能通過自身擴散或進化能力來適應氣候變化的物種[78],這些物種需要借助人類的干預措施來消除氣候變化帶來的不利影響,如采取構建生態(tài)廊道等適應性保護對策,來減小脆弱物種交流及擴散的阻礙[31];(3)評估生境脆弱區(qū):利用模型預測物種當前和未來適宜生境變化,找出氣候變化會導致適宜生境喪失或降級的區(qū)域(即脆弱區(qū)域)[85],在脆弱區(qū)域采取生境恢復、加強管理以及長期監(jiān)測等保護策施,防止生境喪失或降級[86- 87];(4)尋找庇護所:利用模型預測物種當前和未來適宜生境變化,找出適宜生境沒有發(fā)生變化的區(qū)域,或當前不適宜生境在未來轉化為適宜生境的區(qū)域,這些區(qū)域將會成為野生動物躲避未來氣候災害的庇護所,需加強這些區(qū)域的監(jiān)督與管理,同時規(guī)劃野生動物遷移到庇護所的生態(tài)廊道,減小其遷移阻障[88- 89];(5)評估保護區(qū)成效性:利用空缺分析(Gap analysis)來評估已建立的自然保護區(qū)是否能夠覆蓋到物種當前和未來適宜生境[2,90],采取調整保護區(qū)或建立新的保護區(qū)等措施,提高保護區(qū)間的聯(lián)通性和整體保護能力[91- 92];(6)IUCN分類依據(jù):氣候變化背景下物種脆弱性評估結果被IUCN作為在紅色名錄中受威脅等級分類依據(jù),將有助于評估物種受到國際社會的關注,對物種的保護工作起到一定的促進和推動作用[93]。
由于氣候變化的不確定性,以及人類對野生動物認知的局限性,很多問題還無法完全明白,但大量證據(jù)都表明氣候變化確實在發(fā)生,尤其是近年來極端氣候事件頻繁發(fā)生[94],迫切需要探尋氣候變化與野生動物的關系,以便更好的應對氣候變化帶來的不利影響,緩解氣候變化給野生動物帶來的危害[95- 96]。我國動物資源非常豐富,地域分布廣泛,氣候變化正影響著我國野生動物是毋庸置疑的[97- 98],如已觀察到氣候變暖加速我國鳥類區(qū)系變化[99]、改變昆蟲類和兩棲類春季和秋季物候[100]、可能誘導鼠災暴發(fā)[101- 102]、導致物種局部消失[103]。我國開展氣候變化背景下野生動物脆弱性評估工作主要利用模型測物種未來適宜生境的變化,且大部分研究對象針對單一物種,如大熊貓[49- 50]、雪豹[89]、野駱駝(Camelusferus)[104]、川金絲猴(Rhinopithecusroxellana)[105]、黑臉琵鷺(Plataleaminor)[106]、黑頭噪鴉(Perisoreusinternigrans)[107]、四川山鷓鴣(Arborophilarufipectus)[108]等,少數(shù)研究針對多個物種,如鳥類[96]、兩棲類[109]、有蹄類[110]。雖然模型預測能準確評估出物種在哪些區(qū)域脆弱,但僅僅局限于大尺度上的影響(如氣候、地形等非生物因子),而忽略了在小尺度上的影響(如物種間相互作用、耐受范圍、生活史等生物因子),而往往局部的氣候災害帶來的影響可能更加深遠[111-112]。因此,在對物種進行脆弱性評估時,建議將氣候變化、物種自身的生物學特性以及模型預測等信息進行綜合考慮,有助于充分認識氣候變化對野生動物的影響,為野生動物適應氣候變化保護對策的制定提供更加合理的科學依據(jù)。
總體來講,我國在開展氣候變化背景下野生動物脆弱性評估這方面的研究相對較少,在制定野生動物保護對策時,大多數(shù)僅僅只考慮物種當前面臨的壓力,忽略氣候變化未來可能帶來的影響,適應氣候變化對策也同樣僅局限于概念,沒有形成有效的技術[23]?;诖?建議我國科研人員和管理決策者從以下幾方面進一步研究,提出長期有效的適應性保護對策來減小氣候變化對野生動物的危害。第一,建立長期系統(tǒng)的野生動物監(jiān)測計劃(如種群動態(tài)、物候、地理分布范圍等),為野生動物脆弱性評估工作提供數(shù)據(jù)支持;第二,基于國內當前對野生動物基礎信息的了解程度,還無法建立起像北美自然服務組織那樣如此全面的生物多樣性數(shù)據(jù)庫,但可以嘗試以自然保護區(qū)尺度來建立數(shù)據(jù)平臺,并實現(xiàn)數(shù)據(jù)共享;第三,加強氣候變化監(jiān)測研究,提高氣候變化預測能力,并建立預防極端氣候災害對野生動物影響的機制;第四,學習和引進新的脆弱性評估方法,建立氣候變化背景下野生動物脆弱性評估的指標體系,能有效地評估未來氣候變化情景下我國野生動物的脆弱程度;第五,開展野生動物對氣候變化適應過程和能力分析,如物種遷移能力和進化能力,為適應性保護對策提供理論和技術支持;第六,完善野生動物的適應性管理方式,加強宣傳教育,減少人為因素加劇氣候變化給野生動物帶來的危害。
[1] Intergovernmental Panel on Climate change (IPCC). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC, 2014: 151.
[2] Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity. Ecology Letters, 2012, 15(4): 365- 377.
[3] Cramer W, Yohe G W, Auffhammer M, Huggel U, Molau U, Da Sliva Dias M A F, Solow A, Stone D A, Tibig L. Detection and attribution of observed impacts // Field C B, Barros V R, Dokken D J, Mach K J, Mastrandrea M D, Bilir T E, Chatterjee M, Ebi K L, Estrada Y O, Genova R C, Girma B, Kissel E S, Levy A N, MacCracken S, Mastrandrea P R, White L L, eds. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspect. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA: Cambridge University Press, 2014: 979- 1037.
[4] Chen I C, Hill J K, Ohlemüller R, Roy D B, Thomas C D. Rapid range shifts of species associated with high levels of climate warming. Science, 2011, 333(6045): 1024- 1026.
[5] Ancillotto L, Santini L, Ranc N, Maiorano L, Russo D. Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation. The Science of Nature, 2016, 103(3/4): 15- 15.
[6] Auer S K, Martin T E. Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success. Global Change Biology, 2013, 19(2): 411- 419.
[7] Yan C, Stenseth N C, Krebs C J, Zhang Z B. Linking climate change to population cycles of hares and lynx. Global Change Biology, 2013, 19(11): 3263- 3271.
[8] Yang L H, Rudolf V H W. Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecology Letters, 2013, 13(1): 1- 10.
[10] Charmantier A, Gienapp P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evolutionary Applications, 2014, 7(1): 15- 28.
[11] Koen E L, Bowman J, Murray D L, Wilson P J. Climate change reduces genetic diversity of Canada Lynx at the trailing range edge. Ecography, 2013, 37(8): 375- 762.
[12] Rinawati F, Stein K, Lindner A. Climate change impacts on biodiversity-the setting of a lingering global crisis. Diversity, 2013, 5(1): 114- 123.
[13] Urban M C. Accelerating extinction risk from climate change. Science, 2016, 348(6234): 571- 573.
[14] United Nations Framework Convention on Climate Change (UNFCCC). Adoption of the Paris agreement. Report No. FCCC/CP/2015/L.9/Rev.1. 2015. http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf.
[15] Thomas C D, Cmeron A, Green R E, Bakkenes M, Beaumont L J, Collingham Y C, Erasmus B F N, de Siqueira M F, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld A S, Midgley G F, Miles L, Ortega-Huerta M A, Peterson A T, Phillips O L, Williams S E. Extinction risk from climate change. Nature, 2004, 427(6970) 145- 148.
[16] Malcolm J R, Liu C R, Neilson R P, Hansen L, Hannah L. Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 2006, 20(2): 538- 548.
[17] Pereira H M, Leadley P W, Proen?a V, Alkemade R, Scharlemann J P W, Fernandez-Manjarrés J F, Araújo M B, Balvanera P, Biggs R, Cheung W W L, Chini L, Cooper H D, Gilman E L, Guénette S, Hurtt G C, Huntington H P, Mace G M, Oberdorff T, Revenga C, Rodrigues P, Scholes R J, Sumaila U R, Walpole M. Scenarios for global biodiversity in the 21st century. Science, 2010, 330(6010): 1496- 1501.
[18] Levinsky I, Skov F, Svenning J C, Rahbek C. Potential impacts of climate change on the distributions and diversity patterns of European mammals. Biodiversity and Conservation, 2007, 16(13): 3830- 3816.
[19] Arribas P, Abellán P, Velasco J, Bilton D, Millán A, Sánchez-Fernández D. Evaluating drivers of vulnerability to climate change: a guide for insect conservation strategies. Global Change Biology, 2012, 18(7): 2135- 2146.
[20] Foden W B, Butchart S H M, Stuart S N, Vié J C, Ak?akaya H R, Angulo A, DeVantier L M, Gutsche A, Turak E, Cao L, Donner S D, Katariya V, Bernard R, Holland R A, Hughes A F, O′Hanlon S E, Garnett S T,ekerciolu C H, Mace G M. Identifying the world′s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One, 2013, 8(6): e65427.
[21] Oppenheimer M M, Campos M, Warren R, Birkmann J, Luber G, O′Neill B, Takahashi K. Emergent risks and key vulnerabilities // Field C B, Barros V R, Dokken D J, Mach K J, Mastrandrea M D, Bilir T E, Chatterjee M, Ebi K L, Estrada Y O, Genova R C, Girma B, Kissel E S, Levy A N, MacCracken S, Mastrandrea P R, White L L, eds. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspect. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and New York, NY, USA: Cambridge University Press, 2014: 1039- 1099.
[22] 環(huán)境保護部. 中國生物多樣性保護戰(zhàn)略與行動計劃. 北京: 中國環(huán)境科學出版社, 2011.
[23] 吳建國, 呂佳佳, 艾麗. 氣候變化對生物多樣性的影響: 脆弱性和適應. 生態(tài)環(huán)境學報, 2009, 18(2): 693- 703.
[24] Intergovernmental Panel on Climate change (IPCC). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge, UK: Cambridge University Press, 2007: 976- 976.
[25] Gallopin G C. Linkages between vulnerability, resilience, and adaptive capacity. Global Environmental Change, 2006, 16(3): 293- 303.
[26] Williams S E, Shoo L P, Isaac J L, Hoffmann A A, Langham G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology, 2008, 6(12): 2621- 2626.
[27] Foden W B, Pacifici M, Hole D. Chapter 2. Setting the scene // Foden W B, Young B E, eds. IUCN SSC guidelines for assessing species′ vulnerability to climate change. Version 1.0. Occasional Paper of the IUCN Species Survival Commission No.59. Gland, Switzerland and Cambridge, UK, 2016: 5- 11.
[28] Glick P, Stein B A, Edelson N A. Scanning the Conservation Horizon: A Guide to Climate Change Vulnerability Assessment. Washington, D. C: National Wildlife Federation, 2011.
[29] Dawson, T P, Jackson S T, House J I, Prentice I C, Mace G M. Beyond predictions: biodiversity conservation in a changing climate. Science, 2011, 332(6025): 53- 58.
[30] Rowland E L, Davison J E, Graumlich L J. Approaches to evaluating climate change impacts on species: a guide to initiating the adaptation planning process. Environment Management, 2011, 47(3): 322- 337.
[31] Stein B A, Glick P, Edelson N A, Staudt A. Climate-Smart Conservation: Putting Adaptation Principles Into Practice. Washington, D. C: National Wildlife Federation, 2011.
[32] Nicotra A B, Beever E A, Robertson A L, Hofmann G E, O′Leary J. Assessing the components of adaptive capacity to improve conservation and management efforts under global change. Conservation Biology, 2015, 29(5): 1268- 1278.
[33] Beever E A, O′Leary J, Mengelt C, West J M, Julius S, Green N, Magness D, Petes L, Stein B, Nicotra A B, Hellmann J J, Robertson A L, Staudinger M D, Rosenberg A A, Babij E, Brennan J, Schuurman G W, Hofmann G E. Improving conservation outcomes with a new paradigm for understanding species′ fundamental and realized adaptive capacity. Conservation Letters, 2016, 9(2): 131- 137.
[34] Tuberville T D, Andrews K M, Sperry J H, Grosse A M. Use of the NatureServe climate change vulnerability index as an assessment tool for reptiles and amphibians: lessons learned. Environmental Management, 2015, 56(4): 822- 834.
[35] Pearson R G, Dawson T P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 2003, 12(5): 361- 371.
[36] Elith J, Graham C H, Anderson R P, Dudík M, Ferrier S, Guisan A, Hijmans R J, Huettmann F, Leathwick J R, Lehmann A, Li J, Lohmann L G, Loisell B A, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J M M, Peterson A T, Phillips S J, Richardson K, Scachetti-Pereira R, Schapire R E, Soberón J, Williams S, Wisz M S, Zimmermann N E. Novel methods improve prediction of species′ distributions from occurrence data. Ecography, 2006, 29(2): 129- 151.
[37] Songer M, Delion M, Biggs A, Huang Q Y. Modeling impacts of climate change on giant panda habitat. International Journal of Ecology, 2012, 2012: 108752.
[38] Lawler J J, Shafer S L, Bancroft B A, Blaustein A R. Projected climate change impacts for the amphibians of the Western Hemisphere. Conservation Biology, 2010, 24(1): 38- 50.
[39] Thuiller W, Lavorel S, Araújo M B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 2005, 14(4): 347- 357.
[40] Heikkinen R K, Luoto M, Leikola N, P?yry J, Settele J, Kudrna O, Marmion M, Fronozek S, Thuiller W. Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodiversity and Conservation, 2010, 19(3): 695- 723.
[41] Kane A, Burkett TC, Kloper S, Sewall J. Virginia′s Climate Modeling and Species Vulnerability Assessment: How Climate Data Can Inform Management and Conservation. Reston, Virginia: National Wildlife Federation, 2013.
[42] Lawler J J, Shafer S L, White D, Kareiva P, Maurer E P, Blaustein A R, Bartlein P. Projected climate-induced faunal change in the western Hemisphere. Ecology, 2009, 90(3): 588- 597.
[43] Sinervo B, Mendez-de-la-Cruz F, Miles D B, Heulin B, Bastiaans E, Cruz M V S, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa M L, Meza-Lázaro R N, Gadsden H, Avila L J, Morando M, De La Riva I J, Sepulveda P V, Rocha C F D, Ibargüengoytía N, Puntriano C A, Massot M, Lepetz V, Oksanen T A, Chapple D G, Bauer A M, Branch W R, Clobert J, Sites J W Jr. Erosion of lizard diversity by climate change and altered thermal niches. Science, 2010, 328(5980): 894- 899.
[44] Pearson R G, Stanton K T, Shoemaker M E, Aiello-Lammens M E, Ersts P J, Horning N, Fordham D A, Raxworthy C J, Ryu H Y, McNees J, Ak?akaya H R. Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change, 2014, 4(3): 217- 221.
[45] Polocazanska E S, Brown C J, Sydeman W J, Kiessling W, Schoeman D S, Moore P J, Brander K, Bruno J F, Buckley J B, Burrows M T, Duarte C M, Halpern B S, Holding J, Kappel C V, O′Connor M I, Pandolfi J M, Parmesan C, Schwing F, Thompson S A, Richardson A J. Global imprint of climate change on marine life. Nature Climate Change, 2013, 3(10): 919- 925.
[46] Adams-Hosking C, Grantham H S, Rhodes J R, McAlpine C, Moss P T. Modeling climate-change-induced shifts in the distribution of the koala. Wildlife Research, 2011, 38(2): 122- 130.
[47] MacCracken J G, Garlich-Miller J, Snyder J, Meehan R, Meehan R. Bayesian belief network models for species assessments: An example with the pacific walrus. Wildlife Society Bulletin, 2013, 37(1): 226- 235.
[48] Forrest J L, Wikramanayake E, Shresha R, Shrestha R, Areendran G, Gyeltshen K, Maheshwari A, Mazumdar S, Naidoo R, Thapa G J, Thapa K. Conservation and climate change: Assessment the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biological Conservation, 2012, 150(1): 129- 135.
[49] Fan J T, Li J S, Xia R, Hu L L, Wu X P, Li G. Assessing the impact of climate change on the habitat distribution of the giant panda in the Qinling Mountains of China. Ecological Modelling, 2014, 274: 12- 20.
[50] Li R Q, Xu M, Wong M H G, Qiu S, Li X H, Ehrenfeld D, Li D M. Climate change threatens giant panda protection in the 21st century. Biological Conservation, 2015, 182: 93- 101.
[51] Bertelsmeier C, Guénard B, Courchamp F. Climate change may boost the invasion of the Asian needle ant. PLoS One, 2013, 8(10): e75438.
[52] Ficetola G F, Maiorano L, Falcucci A, Dendoncker N, Boitani L, Padoa-Schioppa E, Miaud C, Thuiller W. Knowing the past to predict the future: land-use change and the distribution of invasive bullfrogs. Global Change Biology, 2010, 16(2): 528- 537.
[53] Reshetnikov A N, Ficetola G F. Potential range of the invasive fish rotan (Perccottusglenii) in the Holarctic. Biological Invasions, 2011, 13(12): 2967- 2980.
[54] Young B E, Hall K R, Byers E, Gravuer K, Hammerson G, Redder A, Szabo K. Rapid assessment of plant and animal vulnerability to climate change // Brodie J, Post E, Doak D, eds. Wildlife Conservation in A Changing Climate. Chicago, IL: University of Chicago Press. 2012: 129- 150.
[55] Pacifici M, Foden W B, Visconti P, Watson J E M, Butchart S H M, Kovacs K M, Scheffers B R, Hole D G, Martin T G, Ak?akaya H R, Corlett R T, Huntley B, Bickford D, Carr J A, Hoffmann A A, Midgley G F, Pearce-Kelly P, Pearson R G, Williams S E, Willis S G, Young B, Rondinini C. Assessing species vulnerability to climate change. Nature Climate Change, 2015, 5(3): 215- 225.
[56] Naveda-Rodríguez A, Vargas F H, Kohn S, Zapata-Ríos G. Andean Condor (Vulturgryphus) in Ecuador: Geographic distribution, population size and extinction risk. PLoS One, 2016, 11(3): e0151827.
[57] Jenouvrier S, Caswell H, Barbraud C, Hollan M, Stroeve J, Weimerskirch H, Cohen J E. Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1844- 1847.
[58] Overgaard J, Kearney M R, Hoffmann A A. Sensitivity to thermal extremes in AustralianDrosophilaimplies similar impacts of climate change on the distribution of widespread and tropical species. Global Change Biology, 2014, 20(6): 1738- 1750.
[59] Huey R B, Kearney M R, Krockenberger A, Holtum J A M, Jess M, Williams S E. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B, 2012, 19(1596): 1665- 1679.
[60] Sunday J, Bates A E, Dulvy N K. Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2012, 2(9): 686- 690.
[61] Lancaster L T. Widespread range expansions shape latitudinal variation in insect thermal limits. Nature Climate Change, 2016, 6(6): 618- 621.
[62] Schloss C A, Nuez T A, Lawler J J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(22): 8606- 8611.
[63] Morin X, Thuiller W. Comparing niche-and process-based models to reduce prediction uncertainty in species range shifts under climate change. Ecology, 2009, 90(5): 1301- 1313.
[64] Young B E, Byers E, Hammerson G, Frances A, Oliver L, Treher A. Guidelines for Using the NatureServe Climate Change Vulnerability Index (Release 3. 0). Arlington, VA: NatureServe, 2015.
[65] Gardali T, Seavy N E, DiGaudio R, Comrack L A. A climate change vulnerability assessment of California′s at-risk bird. PLoS One, 2012, 7(3): e29507.
[66] Young B E, Dubois N S, Rowland E L. Using the climate change vulnerability index to inform adaptation planning: lessons, innovations, and next steps. Wildlife Society Bulletin, 2014, 39(1): 174- 181.
[67] Siegel R B, Pyle P, Thorne J H, Holguin A J, Howell C A, Stock S, Tingley M W. Vulnerability of birds to climate change in California′s Sierra Nevada. Avian Conservation and Ecology, 2014, 9(1): 7- 7.
[68] Dubois N, Caldas A, Boshoven J, Delach A. Integrating Climate Change Vulnerability Assessments Into Adaptation Planning: A Case Study Using the NatureServe Climate Change Vulnerability Index to Inform Conservation Planning for Species in Florida. Washington D. C: Defenders of Wildlife, 2011.
[69] Foden W, Mace G M, Vié J C, Angulo A, Butchart S, DeVantier L, Dublin H, Gutsche A, Stuart S N, Turak E. Species susceptibility to climate change impacts // Vié J C, Hiton-Taylor C, Stuart S N, eds. The 2008 review of the IUCN Red List of threatened species. Switzerland: IUCN Gland, 2008.
[70] Foden W B, Young B E. IUCN SSC guidelines for assessing species′ vulnerability to climate change. Version 1. 0. occasional paper of the IUCN species survival commission No. 59. Cambridge. UK and Gland, Switzerland: IUCN Species Survival Commission, 2016: X+114pp.
[71] Foden W B, Butchart S H M, Stuart S N, Vié J C, Ak?akaya H R, Angulo A, DeVantier L M, Gutsche A, Turak E, Cao L, Donner S D, Katariya V, Bernard R, Holland R A, Hughes A F, O′Hanlon S E, Garnett S T,ekerciolu C H, Mace G M. Identifying the world′s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One, 2013, 8(6): e65427.
[72] Carr J A, Outhwaite W E, Goodman G L, Oldfield T E E, Foden W B. Vital but Vulnerable: Climate Change Vulnerability and Human Use of Wildlife in Africa′s Albertine Rift. Occasional Paper of the IUCN Species Survival Commission No. 48. Gland, Switzerland and Cambridge, UK: IUCN, 2013: Xii+224.
[73] U. S. Environmental Protection Agency (EPA). A Framework for Categorizing the Relative Vulnerability of Threatened and Endangered Species to Climate Change (External Review Draft). Washington, DC: U.S. Environmental Protection Agency, 2009.
[74] U.S. Fish and Wildlife Service. Final Recovery Plan for the Mexican Spotted Owl (Strixoccidentalislucida), first revision. U.S. Fish and Wildlife Service. New Mexico, USA: Albuquerque, 2012: 413- 413.
[75] Moyle P B, Kiernan K D, Crain P K, Muiones R M. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach. PLoS One, 2013, 8(5): e63883.
[76] Bagne K E, Friggens M M, Finch D M. A System for Assessing Vulnerability of Species (SAVS) to Climate Change. Gen. Tech. Rep. RMRS-GTR- 257. Fort Collins, CO. U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2011: 28- 28.
[77] Bagne K E, Finch DM. Vulnerability of Species to Climate Change in the Southwest: Threatened, Endangered, and Risk Species at the Barry M. Goldwater Range, Arizona. Gen. Tech. Rep. RMRS-GTR- 257. Fort Collins, CO: U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2012: 139- 139.
[78] Friggens M M, Finch D M, Bagne K E, Coe S J, Hawksworth D L. Vulnerability of species to climate change in the Southwest: terrestrial species of the middle Rio Grande. Gen. Tech. Rep. RMRS-GTR- 306. Fort Collins, CO. U. S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2013: 191- 191.
[79] Reece J S, Noss R F. Prioritizing species by conservation value and vulnerability: a new index applied to species threatened by sea-level rise and other risks in Florida. Natural Areas Journal, 2014, 34(1): 31- 45.
[80] Reece J S, Noss R F, Oetting J, Hoctor T, Volk M. A vulnerability assessment of 300 species in Florida: threats from sea level rise, land use, and climate change. PLoS One, 2013, 8(11): e80658.
[81] Benscoter A M, Reece J S, Noss R F, Brandt L A, Mazzotti F J, Romaach S S, Watling J I. Threatened and endangered subspecies with vulnerable ecological traits also have high susceptibility to sea level rise and habitat fragmentation. PLoS One, 2013, 8(8): e70647.
[82] Addo-Bediako A, Chown S L, Gaston K J. Thermal tolerance, climatic, variability and latitude. Proceedings of the Royal Society B: Biological Sciences, 2000, 267(1445): 739- 745.
[83] Jiang G S, Ma J Z, Zhang M H, Stott P. Multiple spatial-scale resource selection function models in relation to human disturbance for moose in northeastern China. Ecological Research, 2009, 24(2): 423- 440.
[84] Jeschke J M, Strayer D L. Usefulness of bioclimatic models for studying climate change and invasive species. Annals of the New York Academy of Sciences, 2008, 1134(1): 1- 24.
[85] Carvalho S B, Brito J C, Crespo E J, Possingham H P. From climate change predictions to actions-conservation vulnerable animals groups in hotspots at a regional scale. Global Change Biology, 2010, 16(12): 3257- 3270.
[86] Hole D G, Huntley B, Arinaitwe J, Butchart S H M, Collingham Y C, Fishpool L D C, Pain D J, Willis S G. Toward a management framework for networks of protected areas in the face of climate change. Conservation Biology, 2011, 25(2): 305- 315.
[87] Beechie T, Imaki H, Greene J, Wade A, Wu H, Pess G, Roni P, Kimball J, Stanford J, Kiffney P, Mantua N. Restoring salmon habitat for a changing climate. River Research and Applications, 2013, 28(8): 939- 960.
[88] Ashcroft M B. Identifying refugia from climate change. Journal of Biogeography, 2010, 37(8): 1407- 1413.
[89] Li J, McCarthy T M, Wang H, Weckworth B V, Schaller G B, Mishra C, Lu Z, Beissinger S R. Climate refugia of snow leopards in high Asia. Biological Conservation, 2016, 203: 188- 196.
[90] Belle E M S, Burgess N D, Misrachi M, Arnell A, Masumbuko B, Somda J, Hartley A, Jones R, Janes T, McSweeney C, Mathison C, Buontempo C, Butchart S, Willis S G, Baker D J, Carr J, Hughes A, Foden W, Smith R J, Smith J, Stolton S, Dudley N, Hockings M, Mulongoy J, Kingston N. Climate change impacts on biodiversity and protected area in West Africa, Summary of the main outputs of the PARCC project, Protected area resilient to climate change in West Africa. Cambridge, UK: UNEP-WCMC, 2016.
[91] Hannah L, Midgley G, Andelman S, Araujo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P. Protected area needs in a changing climate. Frontiers in Ecology and the Environment, 2007, 5(3): 131- 138.
[92] Gross J, Watson J, Woodley S, Welling L, Harmon D. Responding to Climate Change: Guidance for Protected Area Managers and Planners. IUCN WCPA Best Practice Protected Area Guidelines Series No. XX. Gland, Switzerland: IUCN, 2015.
[93] Foden W, Ak?akaya R. Chapter 7. The IUCN Red List and Climate Change Vulnerability // Foden W B, Young B E, eds. IUCN SSC Guidelines for Assessing Species′ Vulnerability to Climate Change. Version 1. 0. Occasional Paper of the IUCN Species Survival Commission No. 59. Gland, Switzerland and Cambridge, UK, 2016: 57- 58.
[94] 科學技術部社會發(fā)展科技司, 中國21世紀義程管理中心. 適宜氣候變化國家戰(zhàn)略研究. 北京: 科學出版社, 2011.
[95] Wu X P, Lin X, Zhang Y, Gao J J, Guo L, Li Z S. Impacts of climate change on ecosystem in priority areas of biodiversity conservation in China. Chinese Science Bulletin, 2014, 59(34): 4668- 4680.
[96] Li X Y, Clinton N, Si Y L, Liao J S, Liang L, Gong P. Projected impacts of climate change on protected birds and nature reserves in China. Chinese Science Bulletin, 2015, 60(19): 1644- 1653.
[97] 蔣志剛. 保護生物學原理. 北京: 科學出版社, 2014.
[98] Shen Z H, Ma K P. Effects of climate change on biodiversity. Chinese Science Bulletin, 2014, 59(34): 4637- 4638.
[99] 杜寅, 周放, 舒曉蓮, 李一琳. 全球氣候變暖對中國鳥類區(qū)系的影響. 動物分類學報, 2009, 34(3): 664- 674.
[100] Ge Q S, Wang H J, Rutishauser T, Dai J H. Phenological response to climate change in China: a meat-analysis. Global Change Biology, 2015, 24(1): 265- 274.
[101] Jiang G S, Liu J, Xu L, Yu G R, He H L, Zhang Z B. Climate warming increases biodiversity of small rodents by favoring rare or less abundant species in a grassland ecosystem. Integrative Zoology, 2013, 8(2): 162- 174.
[102] Jiang G, Zhao T, Liu J, Xu L, Yu G, He H, Krebs C J, Zhang Z. Effects of ENSO-linked climate change and vegetation on population dynamics of sympatric rodent species in semiarid grasslands of Inner Mongolia, China. Canadian Journal of Zoology, 2011, 89(8): 679- 691.
[103] 馬瑞俊, 蔣志剛. 全球氣候變化對野生動物的影響. 生態(tài)學報, 2005, 25(11): 3061- 3066.
[104] 楊海龍. 庫姆塔格沙漠地區(qū)野駱駝棲息地分析及氣候變化影響[D]. 北京: 中國林業(yè)科學研究院, 2011.
[105] Luo Z H, Zhou S R, Yu W D, Yu H L, Yang J Y, Tian Y H, Zhao M, Wu H. Impacts of climate change on the distribution of Sichuan snub-nosed monkeys (Rhinopithecusroxellana) in Shennongjia area, China. American Journal of Primatology, 2014, 77(2): 135- 151.
[106] Hu J H, Hu H J, Jiang Z G. The impacts of climate change on the wintering distribution of an endangered migratory bird. Oecologia, 2010, 164(2): 555- 565.
[107] Lu N, Jing Y, Lloyd H, Sun Y H. Assessing the distributions and potential risks from climate change for the Sichuan Jay (Perisoreusinternigrans). The Condor, 2012, 114(2): 365- 376.
[108] Lei J C, Xu H G, Cui P, Guang Q W, Ding H. The potential effects of climate change on suitable habitat for the Sichuan hill partridge (Arborophilarufipectus, Boulton): Based on the maximum entropy modelling. Polish Journal of Ecology, 2014, 62(4): 771- 787.
[109] Duan R Y, Kong X Q, Huang M Y, Varela S, Ji X. The potential effects of climate change on amphibian distribution, range fragmentation and turnover in China. PeerJ, 2016, 4(10): e2185.
[110] Luo Z H, Jiang Z G, Tang S H. Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecological Applications, 2015, 25(1): 24- 38.
[111] Suggitt A J, Gillingham P K, Hill J K, Huntley B, Kunin W E, Roy D B, Thomas C D. Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos, 2011, 120(1): 1- 8.
[112] Franklin J, Davis F W, Ikegami M, Syphard A D, Flint L E, Flint A L, Hannah L. Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Global Change Biology, 2013, 19(2): 473- 483.
Overviewofmethodsforassessingthevulnerabilityofwildlifetoclimatechange
LI Jia, LIU Fang, ZHANG Yu, XUE Yadong, LI Diqiang*
InstituteofForestryEcology,EnvironmentandProtection,ChineseAcademyofForestry,KeyLaboratoryofForestEcologyandEnvironmentofStateForestryAdministration,Beijing100091,China
In order to mitigate the widely recognized and harmful impacts of climate change on wildlife, it is imperative to assess the vulnerability of species to future climate change and to adopt adaptive conservation strategies. Assessments of climate change vulnerability make two essential contributions to adaptation planning, including the identification of species that are likely to be most strongly affected by climate change and the identification of underlying mechanisms that make these species vulnerable. Here, we define climate change vulnerability as the extent to which wildlife species will be affected by climate change, considering exposure, sensitivity, and adaptive capacity, which we respectively define as extrinsic factors that will result from climate change (e.g., increasing temperature and precipitation and extreme weather), intrinsic species traits (e.g., biotic interactions and physiological tolerances), and the degree to which species are able to reduce or avoid the adverse effects of climate change through dispersal and plastic ecological or evolutionary responses. In this review, we describe the different methods used for assessing the vulnerability of wildlife to climate change, as well as the corresponding data requirements, and then address the uncertainty factors in each method and describe the importance of vulnerability assessments in designing adaptive climate change-related conservation strategies. The purpose of this review is to provide a reference for assessing the vulnerability of wildlife to climate change in China.
climate change; vulnerability; exposure; sensitivity; adaptation conservation strategies
國家科技支撐計劃項目(2013BAC09B02);自然保護區(qū)生物標本資源共享子平臺項目(2005DKA21404)
2016- 07- 30; < class="emphasis_bold">網(wǎng)絡出版日期
日期:2017- 06- 01
*通訊作者Corresponding author.E-mail: lidq@caf.ac.cn
10.5846/stxb201607301564
李佳, 劉芳, 張宇, 薛亞東, 李迪強.氣候變化背景下野生動物脆弱性評估方法研究進展.生態(tài)學報,2017,37(20):6656- 6667.
Li J, Liu F, Zhang Y, Xue Y D, Li D Q.Overview of methods for assessing the vulnerability of wildlife to climate change.Acta Ecologica Sinica,2017,37(20):6656- 6667.