李鋒鋒,蔡永豐,張明熹,2,常石巖,沈毅,李志宏
(1華北理工大學(xué)材料科學(xué)與工程學(xué)院,河北省無(wú)機(jī)非金屬材料重點(diǎn)實(shí)驗(yàn)室,河北省唐山市環(huán)境功能材料重點(diǎn)實(shí)驗(yàn)室,河北 唐山 063210;2中南大學(xué)輕合金研究院,湖南 長(zhǎng)沙 410012;3天津大學(xué)材料科學(xué)與工程學(xué)院,天津 300072)
磷酸銀光催化性能提升與增強(qiáng)機(jī)制的研究進(jìn)展
李鋒鋒1,蔡永豐1,張明熹1,2,常石巖1,沈毅1,李志宏3
(1華北理工大學(xué)材料科學(xué)與工程學(xué)院,河北省無(wú)機(jī)非金屬材料重點(diǎn)實(shí)驗(yàn)室,河北省唐山市環(huán)境功能材料重點(diǎn)實(shí)驗(yàn)室,河北 唐山 063210;2中南大學(xué)輕合金研究院,湖南 長(zhǎng)沙 410012;3天津大學(xué)材料科學(xué)與工程學(xué)院,天津 300072)
Ag3PO4是目前光催化效率最高的可見(jiàn)光光催化劑之一,在降解有機(jī)污染物、分解水制氫和CO2還原等領(lǐng)域具有廣泛的應(yīng)用前景。但 Ag3PO4光催化性能距離實(shí)際應(yīng)用還存在一定差距,化學(xué)性質(zhì)也不穩(wěn)定,因此對(duì)其性能提升受到了各國(guó)研究者的關(guān)注。圍繞 Ag3PO4納米化、形貌控制、異質(zhì)結(jié)構(gòu)等提升光催化性能的途徑及其增強(qiáng)機(jī)制進(jìn)行闡述,其中與Ag3PO4形成異質(zhì)結(jié)構(gòu)是目前提升其光催化性能的最主流的方法,Ag3PO4與金屬氧化物、鹵化物、硫化物、有機(jī)半導(dǎo)體、單質(zhì)金屬形成的異質(zhì)結(jié)構(gòu)均有效改善了其光催化性能,最后還對(duì) Ag3PO4基光催化劑未來(lái)的發(fā)展趨勢(shì)進(jìn)行了展望。
磷酸銀;催化;降解;環(huán)境;性能提升;增強(qiáng)機(jī)制
隨著當(dāng)今世界工業(yè)的快速發(fā)展,能源危機(jī)與環(huán)境污染問(wèn)題日趨嚴(yán)重。2015年全球一次能源消耗總量已達(dá)131億噸油當(dāng)量,這些化石燃料的使用不僅加劇了能源危機(jī),更對(duì)人類環(huán)境造成了嚴(yán)重的污染。光催化技術(shù)的問(wèn)世,為解決環(huán)境污染問(wèn)題和開(kāi)發(fā)新能源提供了新途徑。光催化劑通過(guò)吸收太陽(yáng)光,不僅可以有效降解有機(jī)污染物,還可以應(yīng)用于分解水制 H2和還原CO2等領(lǐng)域,是一種非常重要的能源材料。
光催化技術(shù)起源于 1972年,F(xiàn)ujishima 等[1]首先發(fā)現(xiàn)用TiO2可以光催化分解水制取氫氣和氧氣,隨后眾多研究者開(kāi)始致力于光催化技術(shù)的研究。但是TiO2由于自身量子效率低(僅4%~5%)、太陽(yáng)能的利用率較低等問(wèn)題,制約了其產(chǎn)業(yè)化應(yīng)用。研究在可見(jiàn)光下具有光催化活性的材料具有重要的實(shí)際意義,也是光催化走向?qū)嵱没年P(guān)鍵所在。為了實(shí)現(xiàn)可見(jiàn)光催化,除了對(duì)TiO2改性使光響應(yīng)拓展到可見(jiàn)光區(qū)域,WO3[2-3]、BiVO4[4-5]和 Ag3PO4[6]等具有可見(jiàn)光響應(yīng)的新體系光催化材料也得到了廣泛研究。
Ag3PO4是目前光催化性能最優(yōu)良的光催化劑之一,為黃綠色晶體,空間結(jié)構(gòu)為體心立方,晶格參數(shù)a=b=c=0.6013 nm,溶于酸、氰化鉀溶液和氨水,微溶于水和稀乙酸。對(duì)可見(jiàn)光有強(qiáng)烈吸收,在多種有機(jī)染料降解實(shí)驗(yàn)中表現(xiàn)出極其優(yōu)越的光催化活性,它的可見(jiàn)光催化能力要遠(yuǎn)優(yōu)于WO3、BiVO4等其他可見(jiàn)光催化材料,成為近年來(lái)的研究熱點(diǎn)。
但是,目前 Ag3PO4光催化劑的研究仍僅局限于實(shí)驗(yàn)室,特別是其光化學(xué)穩(wěn)定性較差,不利于循環(huán)使用。為了進(jìn)一步改善 Ag3PO4的光催化性能和穩(wěn)定性,研究者從粒子納米化、形貌控制、形成異質(zhì)結(jié)構(gòu)等方面展開(kāi)了研究,并取得了初步的研究成果。本文對(duì) Ag3PO4基可見(jiàn)光催化劑的國(guó)內(nèi)外研究現(xiàn)狀進(jìn)行了綜述,重點(diǎn)對(duì)各種提升光催化性能的途徑和增強(qiáng)機(jī)制進(jìn)行了總結(jié)、分析和討論,并展望了今后的發(fā)展趨勢(shì)和應(yīng)用前景。
2010年,Ye等[6]報(bào)道了一種新型的Ag3PO4光催劑,Ag3PO4禁帶寬度為2.36 eV,價(jià)帶電位2.43 eV,可以對(duì)太陽(yáng)光中小于530 nm的紫外-可見(jiàn)光波段吸收。他們研究得出 Ag3PO4分解水制氫的能力分別是WO3、BiVO4的8.8倍和2.6倍,對(duì)亞甲基藍(lán)的降解速率比所報(bào)道的BiVO4快幾十倍。為了進(jìn)一步解釋 Ag3PO4的高氧化活性,他們還進(jìn)行了密度泛函的計(jì)算并提出了光催化機(jī)理模型。
在這之后,他們圍繞 Ag3PO4光催化劑又做了大量的研究工作,Hu等[7]合成了規(guī)則立方體、四面體等不同形貌的Ag3PO4,獲得了比普通Ag3PO4和N摻雜TiO2等體系更高的可見(jiàn)光催化活性。Bi等[8]還通過(guò)在Ag納米線上選擇性生長(zhǎng)Ag3PO4的亞微米立方體,形成具有項(xiàng)鏈構(gòu)造的復(fù)合異質(zhì)結(jié)構(gòu)。這種復(fù)合光催化劑相比純Ag3PO4立方體和Ag納米線,對(duì)有機(jī)污染物的可見(jiàn)光降解活性更高,并將催化活性的提高歸結(jié)于二者接觸界面上高效的電荷分離以及Ag納米線充當(dāng)電子的快速出口。Guo等[9]通過(guò)原位沉淀法成功合成了 Ag3PO4/In(OH)3復(fù)合光催化劑,獲得了比Ag3PO4和In(OH)3更高的可見(jiàn)光催化活性,Ag3PO4/In(OH)3的摩爾比為1:1.65時(shí),反應(yīng)速率常數(shù)最大,kapp= 1.75 min-1,并認(rèn)為復(fù)合后,光催化劑表面能帶結(jié)構(gòu)被調(diào)控是多電子反應(yīng)增強(qiáng)的主要原因。Guo等[10]合成了Ag3PO4/氮化Sr2Nb2O7異質(zhì)結(jié),在光降解實(shí)驗(yàn)中檢測(cè)到,在該異質(zhì)結(jié)材料的催化作用下,CO2的釋放速率約為純 Ag3PO4的40倍。
同時(shí)Ye的這項(xiàng)研究成果,也引發(fā)了世界各國(guó)研究者的極大關(guān)注。研究的熱點(diǎn)主要集中在Ag3PO4光催化性能的提升和光催化機(jī)理研究等方面。Ag3PO4的發(fā)現(xiàn)為可見(jiàn)光催化領(lǐng)域開(kāi)辟了新的途徑,有望在太陽(yáng)能轉(zhuǎn)換和環(huán)境凈化等方面獲得實(shí)際應(yīng)用。
采用納米半導(dǎo)體粒子作為光催化劑,一方面,量子尺寸效應(yīng)會(huì)使半導(dǎo)體能隙變寬,導(dǎo)帶電位變得更負(fù),而價(jià)帶電位變得更正,這使得其獲得了更強(qiáng)的氧化還原能力;另一方面,納米粒子的比表面積遠(yuǎn)遠(yuǎn)大于常規(guī)材料,高比表面使得納米材料具有強(qiáng)大的吸附污染物的能力,這對(duì)提高光催化反應(yīng)速率是十分有利的,而且,粒徑越小,電子與空穴復(fù)合概率越小,電荷分離效果越好,從而使催化活性得到提高。
2012年,Bi等[11]采用 Ag納米線在室溫下與H2O2、NaH2PO4水溶液反應(yīng),合成了具有二維樹(shù)枝狀結(jié)構(gòu)的納米Ag3PO4。并通過(guò)可見(jiàn)光照射下的有機(jī)污染物降解實(shí)驗(yàn)證實(shí),二維樹(shù)枝狀結(jié)構(gòu)的納米Ag3PO4與形貌不規(guī)則的Ag3PO4納米晶體、N摻雜TiO2等光催化劑相比,具有更高的光催化活性。隨后,Vu等[12]在油胺環(huán)境下,用H3PO4沉淀AgNO3成功合成了 Ag3PO4納米粒子,粒子的粒度范圍分布在5~10 nm。Ag3PO4納米粒子在470~475 nm范圍內(nèi),具有強(qiáng)烈的可見(jiàn)光吸收,對(duì)羅丹明B的可見(jiàn)光催化性能優(yōu)于TiO2納米粒子。Wu等[13]通過(guò)控制沉淀反應(yīng)制備了 Ag3PO4微/納米微晶,制備的Ag3PO4納米微晶包括3種不同的形態(tài),分別為500 nm的菱形十二面體、100 nm和20 nm球狀粒子。由于尺寸為20 nm的Ag3PO4納米粒子具有較大的比表面積,因此在水、乙二醇(EG)和二甲基亞砜(DMSO)等溶劑中的分散性較好,且具有最佳的抗菌活性。
一方面,通過(guò)粒子形貌的控制可以提升光催化劑與有機(jī)污染物的接觸面積,加速降解反應(yīng)的進(jìn)行;另一方面,還可以使更多的高活性位Ag粒子暴露出來(lái),提高光催化劑的反應(yīng)活性。
圖1 不同形貌的Ag3PO4晶體Fig.1 Ag3PO4 crystals with different morphologies
Xu等[14]采用陰離子交換法,合成了球狀[圖1(a)]、菱形十二面體狀[圖1(b)]、截?cái)喟嗣骐p錐狀[圖1(c)]和平行四邊形棱鏡狀[圖1(d)]等不同粒子形態(tài)的Ag3PO4晶體。通過(guò)可見(jiàn)光照射下的降解羅丹明 B實(shí)驗(yàn)研究發(fā)現(xiàn),截?cái)喟嗣骐p錐狀A(yù)g3PO4的光催化活性最高。Wang等[15]采用一種簡(jiǎn)單的尿素輔助水熱法合成了四足形態(tài)的 Ag3PO4粒子[圖1(e)],四足形態(tài)的Ag3PO4粒子具有高度暴露的{110}面,因此在降解有機(jī)毒性化合物時(shí),表現(xiàn)出了較高的光催化活性。Zheng等[16]成功地通過(guò)簡(jiǎn)單的濕化學(xué)法合成了具有四面體形態(tài)的 Ag3PO4單晶,通過(guò)理論計(jì)算證明了{(lán)111}晶面的表面能最高,帶隙寬度最大,有利于光生電子和空穴的分離。Kumar等[17]采用銀-氨配合物合成了棱角分明的梯形狀A(yù)g3PO4晶體[圖1(f)],并證實(shí)了這種Ag3PO4晶體的吸附能力和可見(jiàn)光催化活性比常規(guī) Ag3PO4高得多。
通過(guò)將磷酸銀與其他具有適當(dāng)禁帶寬度的半導(dǎo)體物質(zhì)形成異質(zhì)結(jié),可以有效調(diào)控磷酸銀能帶結(jié)構(gòu),促進(jìn)電荷分離,提高光催化劑的反應(yīng)活性。異質(zhì)結(jié)構(gòu)是目前提升 Ag3PO4光催化性能方法中報(bào)道最多的一種技術(shù)手段。
2.3.1 金屬氧化物復(fù)合 金屬氧化物半導(dǎo)體在半導(dǎo)體領(lǐng)域占據(jù)重要的位置,多用于氣敏元件、光敏元件,也已經(jīng)有部分應(yīng)用于光催化領(lǐng)域,最典型的是TiO2,TiO2(P25)目前已經(jīng)實(shí)現(xiàn)工業(yè)化生產(chǎn)。TiO2的導(dǎo)帶、價(jià)帶電位分別為2.91 eV和-0.29 eV,滿足異質(zhì)結(jié)的形成條件,因此 TiO2/Ag3PO4異質(zhì)結(jié)復(fù)合光催化也是目前的研究熱點(diǎn)[18-22]。
Yao等[18]通過(guò)原位沉積法將 Ag3PO4納米粒子修飾到 TiO2(P25)表面形成異質(zhì)結(jié)構(gòu)。這種復(fù)合光催化劑降低了Ag的負(fù)載量47%~77%(質(zhì)量分?jǐn)?shù)),節(jié)約了Ag3PO4的應(yīng)用成本。Teng等[20]通過(guò)連續(xù)的化學(xué)浴沉積將Ag3PO4納米粒子負(fù)載TiO2納米管陣列(TiO2-NTs)上,隨后又在紫外線照射下,將納米 Ag3PO4中部分 Ag+還原為金屬 Ag,形成了Ag/Ag3PO4/TiO2納米管異質(zhì)結(jié)構(gòu)。并通過(guò)實(shí)驗(yàn)證實(shí)了納米簇Ag/Ag3PO4的形成沒(méi)有對(duì)TiO2納米管陣列的有序結(jié)構(gòu)造成損傷。由于 Ag/Ag3PO4/TiO2-NTs發(fā)光強(qiáng)度比TiO2納米管低得多,也說(shuō)明了Ag/Ag3PO4納米顆粒沉積在TiO2納米管表面能促進(jìn)光生電子的轉(zhuǎn)移,從而抑制電子和空穴的有效復(fù)合。
另外,Ag3PO4與 CeO2[23]、Bi2O3[24]、SnO2[25]、ZnO[26]、WO3[27-28]、CuO[29]、Fe2O3[30]、Co3O4[31]等半導(dǎo)體物質(zhì)的異質(zhì)結(jié)構(gòu)也得到了研究。
2.3.2 鹵化物半導(dǎo)體復(fù)合 AgX半導(dǎo)體(除價(jià)帶較大的AgCl)的導(dǎo)帶和價(jià)帶電位比Ag3PO4更負(fù),可以通過(guò)異質(zhì)結(jié)構(gòu)促進(jìn)光生電子-空穴對(duì)的遷移和分離[32-36]。為了進(jìn)一步提高 Ag3PO4的抗侵蝕性及光催化活性,Amornpitoksuk 等[33]采用 AgNO3與Na2HPO4+ KX(X = Cl-,Br-,I-)溶液的共沉淀法進(jìn)一步合成了AgX(X = Cl,Br,I),并通過(guò)實(shí)驗(yàn)證明了AgCl和AgBr可以誘導(dǎo)Ag3PO4增加其光催化脫色效率。Katsumata等[34]通過(guò)原位離子交換法制備了不同摩爾比的 AgBr/Ag3PO4復(fù)合光催化劑,AgBr為 60%(摩爾分?jǐn)?shù))時(shí),復(fù)合光催化劑對(duì)酸性橙的脫色表現(xiàn)出最高的光催化活性。
2.3.3 硫化物半導(dǎo)體復(fù)合 作為寬帶隙半導(dǎo)體納米,硫化物半導(dǎo)體納米材料具有優(yōu)異的光、電、磁等性質(zhì),一直受到科研工作者的廣泛關(guān)注,MoS2、CdS、In2S3、WS2等與Ag3PO4復(fù)合形成光催化劑得到了較為廣泛的研究[37-40]。
Zhu等[37]通過(guò)水和乙醇混合溶劑沉淀法合成了可見(jiàn)光驅(qū)動(dòng)的Ag3PO4/ MoS2復(fù)合光催化劑,并通過(guò)實(shí)驗(yàn)得出,MoS2摻量為 0.648%(質(zhì)量分?jǐn)?shù))時(shí),光催化活性最高,可以在60 min內(nèi)降解所有的MB,且化學(xué)穩(wěn)定性優(yōu)良。Yu等[39]通過(guò)在 WS2片上可控生長(zhǎng) Ag3PO4/WS2復(fù)合催化劑,WS2片的表面和邊緣暴露的S原子,在Ag3PO4/WS2復(fù)合形成中起重要作用。當(dāng)引入0.05 mol C2H3AgO2(AgAc)時(shí),Ag3PO4/WS2顯示出最高的光催化活性,WS2片還可以減少Ag離子的水溶性,提高Ag3PO4穩(wěn)定性。
2.3.4 有機(jī)半導(dǎo)體復(fù)合 目前,由有機(jī)半導(dǎo)體材料與光催化劑復(fù)合提高光催化活性也已有報(bào)道,這些有機(jī)半導(dǎo)體主要包括石墨烯(GO)[41-43]、氮化碳(g-C3N4)[44-46]、聚丙烯腈(PAN)[47]和導(dǎo)電聚苯胺(PANI)[48]等。
2012年,Liu等[41]報(bào)道了GO/Ag3PO4復(fù)合光催化劑。他們采用離子交換法合成的GO/Ag3PO4復(fù)合光催化劑顯示出優(yōu)良的抗菌和可見(jiàn)光催化消毒能力。Panigrahy等[43]報(bào)道了一種GO/rGO(0.13 %,0.26 %和0.52%,質(zhì)量分?jǐn)?shù))-Ag3PO4復(fù)合材料及其在可見(jiàn)光照射下的光降解染料羅丹明 B(RhB)和有機(jī)污染物氯酚(2-CP)的機(jī)理模型,證實(shí)了抗壞血酸和水合肼作還原劑制備出的 rGO比硼氫化鈉作還原劑具有更好的光催化活性,并分析了復(fù)合材料的光催化活性的增強(qiáng)應(yīng)歸因于范德瓦耳斯力的相互作用以及在GO/rGO和Ag3PO4的界面上形成的勢(shì)阱。
Kumar等[44]較早就開(kāi)展了Ag3PO4/g-C3N4的復(fù)合研究。2013年,他們采用室溫原位沉積的方法將Ag3PO4納米粒子負(fù)載于g-C3N4表面,并通過(guò)TEM證實(shí)了Ag3PO4納米粒子在g-C3N4表面的原位生長(zhǎng)。當(dāng)g-C3N4所占質(zhì)量分?jǐn)?shù)為25%時(shí),Ag3PO4/g-C3N4光催化效果最佳,分別為純 g-C3N4、Ag3PO4的 5倍和3.5倍。
另外,有機(jī)共軛半導(dǎo)體也是一種非常重要的有機(jī)半導(dǎo)體材料,通常是指具有共軛雙鍵的高分子類半導(dǎo)體物質(zhì)。有機(jī)共軛半導(dǎo)體典型載流子是π-π鍵中的空穴和電子。由于離域π-π鍵共軛結(jié)構(gòu),可以與光催化劑的能級(jí)完美配合,加之兩者界面的混合效應(yīng),導(dǎo)致在電子轉(zhuǎn)移過(guò)程中能夠產(chǎn)生快速的光致電荷分離和較低的電荷復(fù)合,因此可以提高光催化效果。Yu等[47]通過(guò)聚丙烯腈(PAN)作為聚合物模板,采用靜電紡絲技術(shù)制備了一種項(xiàng)鏈狀結(jié)構(gòu)的Ag3PO4/PAN的納米纖維,這種納米纖維對(duì)降解有機(jī)污染物具有優(yōu)異的光催化性能。Liu等[48]通過(guò)化學(xué)吸附法合成了一種具有核殼結(jié)構(gòu)的 Ag3PO4@聚苯胺(PANI)可見(jiàn)光催化劑。Ag3PO4@PANI(5 %,質(zhì)量分?jǐn)?shù))對(duì)苯酚和 2,4-二氯酚降解效果最佳,分別達(dá)到100%和95.3%,分別是Ag3PO4的1.44倍和1.38倍。
2.3.5 肖特基異質(zhì)結(jié)構(gòu) 沉積在 Ag3PO4表面的金屬納米粒子可以作為電子受體,在金屬納米粒子/Ag3PO4界面上,產(chǎn)生較高的肖特基勢(shì)壘,形成肖特基異質(zhì)結(jié),從而有效誘導(dǎo)界面電荷轉(zhuǎn)移,提高電荷分離效率。
納米Ag是目前研究者采用較多的一種電子受體[49-50]。Hu等[49]在室溫下,通過(guò)在單晶銀納米線上生長(zhǎng)Ag3PO4的方法,合成了Ag/Ag3PO4核-殼結(jié)構(gòu)的同軸異質(zhì)納米線,Ag/Ag3PO4異質(zhì)納米線比純Ag3PO4立方體顆粒、Ag納米線和N摻雜TiO2光催化劑具有更高的可見(jiàn)光活性。Wu等[50]采用電化學(xué)法,在垂直排列的銀納米片上形成了Ag3PO4,合成了Ag/Ag3PO4納米片光陽(yáng)極,外層的Ag3PO4層作為光吸收材料產(chǎn)生電子-空穴對(duì),而內(nèi)層的銀納米片不僅起到結(jié)構(gòu)框架的作用,同時(shí)也是連接 Ag3PO4和導(dǎo)電襯底之間的電子通道。
另外,其他納米金屬及復(fù)合納米金屬作為電子受體也得到了研究。Yan等[51]以硼氫化鈉作為還原劑,采用化學(xué)沉積方法制備了M/Ag3PO4(M = Pt,Pd, Au)肖特基型異質(zhì)結(jié),并在可見(jiàn)光照射下(λ> 420 nm),通過(guò)對(duì)甲基橙、亞甲基藍(lán)、羅丹明B 3種染料的降解實(shí)驗(yàn),評(píng)價(jià)了M/Ag3PO4(M = Pt, Pd, Au)的光催化活性。研究發(fā)現(xiàn)這些貴金屬納米粒子高度分散在Ag3PO4表面后,極大增加了Ag3PO4在紫外和可見(jiàn)光區(qū)域的光吸收,且 M/Ag3PO4表面的光響應(yīng)比純Ag3PO4高得多,順序?yàn)镻t > Au > Pd。
Ye等在初次報(bào)道 Ag3PO4的可見(jiàn)光催化性能時(shí),就提出了 Ag3PO4的分解水制氫的光催化機(jī)理模型,如圖2所示。圖2說(shuō)明了由于Ag/Ag3PO4的電極電勢(shì)介于H+和Ag/AgNO3之間,因此Ag3PO4無(wú)法直接分解水制氫;但是當(dāng)AgNO3作為犧牲劑存在時(shí),Ag3PO4就表現(xiàn)出強(qiáng)的光氧化能力。同時(shí),Ye等還采用CASTEP程序計(jì)算了Ag3PO4的能帶和態(tài)密度,如圖3所示。Ag3PO4高度分散的價(jià)帶和導(dǎo)帶有益于光激發(fā)電子-空穴的遷移,這反過(guò)來(lái)也有可能抑制電子-空穴對(duì)的復(fù)合,從而引發(fā)高氧化活性。另外,在 Ag3PO4導(dǎo)帶底部主要由雜交的 Ag 5s5p以及少量的P 3s軌道組成,而價(jià)帶的頂部是Ag 4d和O 2p雜化軌道。Ag2O是一種窄帶隙半導(dǎo)體材料,添加P元素似乎可以調(diào)整Ag2O的能帶結(jié)構(gòu)和氧化還原能力,從而獲得高可見(jiàn)光催化性能。
圖2 Ag3PO4的可見(jiàn)光催化機(jī)理Fig.2 Schematic drawing for photocatalytic mechanism of Ag3PO4 under visible light
圖3 基于密度泛函計(jì)算的Ag3PO4能帶和態(tài)密度Fig.3 Energy-band and states density of Ag3PO4 calculated by density functional method
圖4 Ag3PO4/TiO2納米線陣列的光催化機(jī)理Fig.4 Schematic drawing of photocatalytic mechanism of Ag3PO4/TiO2 nanowire arrays
圖5 Ag3PO4/BiVO4 和 ZnFe2O4-ZnO-Ag3PO4的光催化機(jī)理Fig.5 Schematic drawings for photocatalytic mechanism of Ag3PO4/BiVO4 and ZnFe2O4-ZnO-Ag3PO4
異質(zhì)結(jié)構(gòu)是目前用于提升光催化性能的最主要的一種手段。形成異質(zhì)結(jié)構(gòu)的半導(dǎo)體物質(zhì)存在能帶電位差,會(huì)造成光生電子或空穴的轉(zhuǎn)移,從而促進(jìn)電荷分離,提高光催化活性。第1種情況是在兩種半導(dǎo)體物質(zhì)間只存在1種電荷發(fā)生單向流動(dòng),如Ag3PO4/TiO2體系光催化劑的電荷轉(zhuǎn)移過(guò)程大多是采用這種機(jī)制解釋。Jin等[52]在研究 Ag3PO4/TiO2納米線陣列的光催化機(jī)理時(shí),指出由于 Ag3PO4的價(jià)帶電位(2.9 eV)比TiO2(2.7 eV)更正,因此可見(jiàn)光激發(fā)Ag3PO4所產(chǎn)生的光生空穴會(huì)轉(zhuǎn)移至TiO2價(jià)帶,再與吸附H2O結(jié)合生成OH,光生電子則是遷移到Ag3PO4粒子表面,然后與吸附O2產(chǎn)生O2-。這樣電荷轉(zhuǎn)移過(guò)程促進(jìn)了電荷分離,從而高效降解甲基橙 MO,機(jī)理如圖4所示。Zhao等[53]、Yang等[54]、Xie等[55]也都采用了同樣的機(jī)理模型解釋了Ag3PO4/TiO2體系的異質(zhì)結(jié)光催化劑的提升機(jī)理。另外一種情況,形成異質(zhì)結(jié)構(gòu)的兩種或多種半導(dǎo)體的能帶電位呈交錯(cuò)式排布,可以促進(jìn)光生電子和空穴分離,從而抑制電荷復(fù)合。這是一種異質(zhì)結(jié)光催化劑的主流光催化機(jī)制,大多異質(zhì)結(jié)光催化劑是采用這種機(jī)制進(jìn)行解釋。如圖5(a)所示,Qi等[56]指出 Ag3PO4/BiVO4光催化劑在可見(jiàn)光照射下,光生電子從Ag3PO4向BiVO4的CB轉(zhuǎn)移,光生空穴由 BiVO4向 Ag3PO4的 VB 躍遷。Li等[57]研究了ZnFe2O4-ZnO-Ag3PO43種半導(dǎo)體形成的異質(zhì)結(jié)光催化劑[圖5(b)],并指出光生電子的流向。不同的異質(zhì)結(jié)構(gòu)光生電子和空穴的流向是不同的,這取決于形成異質(zhì)結(jié)構(gòu)的半導(dǎo)體物質(zhì)的能帶電位差,電子向正電勢(shì)方向流動(dòng),空穴向負(fù)電勢(shì)方向流動(dòng),這種電荷躍遷模式進(jìn)一步促進(jìn)了電荷分離,提升了光催化效果。另外,Ag3PO4/WO3[58]、Ag3PO4/ZnO[59]、Ag3PO4/ Ag2CO3[60]、Ag3PO4/Cr-SrTiO3[61]、Ag3PO4/Bi2WO6[62]、AgI/Ag3PO4[63]、Ag3PO4-Bi2MoO6[64]、SnSe2/Ag3PO4[65]等體系也采用這種電荷躍遷機(jī)制進(jìn)行了解釋。
圖6 Ag納米線/ Ag3PO4 項(xiàng)鏈狀異質(zhì)結(jié)的光誘導(dǎo)電荷分離及Ag納米線和Ag3PO4立方體間的電荷分布Fig.6 Schematic illustrations for photo-induced charge separation of Ag nanowire/Ag3PO4 cube necklace-like heterostructures and charge distribution between Ag3PO4 cube and Ag nanowire
肖特基機(jī)制主要用來(lái)解釋納米金屬或量子點(diǎn)與Ag3PO4復(fù)合光催化劑的光催化機(jī)理。2012年Bi等[8]針對(duì)Ag納米線/ Ag3PO4項(xiàng)鏈狀異質(zhì)結(jié)光催化劑提出了其可能的光催化機(jī)理,Ag納米線和Ag3PO4立方體復(fù)合后,形成肖特基勢(shì)壘,費(fèi)米能級(jí)趨向平衡,特別是納米 Ag具有適當(dāng)?shù)馁M(fèi)米能級(jí)[Ef(vs NHE)= 0.4 V],使其成為了優(yōu)良的電子收集器,促進(jìn)了Ag3PO4導(dǎo)帶的光生電子向Ag納米線的快速轉(zhuǎn)移。如圖6所示,光生電子從Ag納米線上輸出,空穴從 Ag3PO4立方體上輸出。這種光催化機(jī)制顯著加快了有機(jī)染料的光催化降解反應(yīng)速率。Yan等[51]詳細(xì)探討了M/Ag3PO4(M = Pt,Pd,Au)肖特基型異質(zhì)結(jié)的光催化機(jī)理。研究者首先通過(guò)電荷俘獲實(shí)驗(yàn),證明了空穴是M/Ag3PO4最主要的活性物種。同時(shí)由于 Ag3PO4的導(dǎo)帶電位為 0.45 eV,比 O2-(-0.33 eV)更正,這意味著光生電子Ag3PO4的導(dǎo)帶電子不能還原吸附O2成為O2-。另外,研究者還得出Pt、Pd、Au 3種貴金屬的費(fèi)米能級(jí)高于Ag3PO4,證明了Ag3PO4的導(dǎo)帶(CB)電子會(huì)傳遞給貴金屬粒子,再與吸附O2結(jié)合才能形成O2-。同時(shí)根據(jù)4種貴金屬的功函數(shù)值的高低順序Pt(5.65 eV)> Pd(5.12 eV)> Au(5.10 eV)> Ag(4.95 eV),得出同等條件下光催化活性的順序?yàn)?Pt/Ag3PO4>Pd/Ag3PO4> Au/Ag3PO4> Ag/Ag3PO4。Zhang 等[66]系統(tǒng)研究了碳量子點(diǎn)(CQDs)增強(qiáng) Ag3PO4、Ag/Ag3PO4的光催化活性和穩(wěn)定性的機(jī)制,光催化機(jī)理如圖7所示。首先不溶性CQDs層能有效減緩Ag3PO4和Ag/Ag3PO4的水溶解。其次,在光催化過(guò)程中,CQDs既可以作電子供體,也可以作電子受體,平衡了光生電子在CQDs和光催劑表面的濃度,緩解了Ag/Ag3PO4的光腐蝕。第三,由于量子點(diǎn)具有上轉(zhuǎn)化性能,吸收可見(jiàn)光后發(fā)出短波長(zhǎng)的光(300~530 nm),從而激發(fā)Ag3PO4形成電子-空穴對(duì),以有效地利用太陽(yáng)光的全譜,提高了光催化活性。
圖7 CQDs增強(qiáng)Ag3PO4光催化機(jī)制Fig.7 Schematic drawings for enhanced photocatalytic mechanism of Ag3PO4
Z-scheme 機(jī)制也是提升光催化性能的一種重要的機(jī)制。Chen 等[67]制備了Ag3PO4/Ag/SiC異質(zhì)結(jié)材料,并詳細(xì)描述了其 Z-scheme 光催化機(jī)制,如圖8(a)所示。在可見(jiàn)光照射下,Ag3PO4和SiC都受到了激發(fā),分別在導(dǎo)帶和價(jià)帶產(chǎn)生光生電子和空穴。由于Ag3PO4CB電位比金屬Ag的費(fèi)米能級(jí)更負(fù),因此在 Ag3PO4導(dǎo)帶最低能級(jí)(CBM)上的電子很容易流入金屬銀(電子轉(zhuǎn)移Ⅰ:Ag3PO4CBM → Ag)。同時(shí),由于Ag的費(fèi)米能級(jí)比SiC的價(jià)帶電位更負(fù),SiC價(jià)帶的空穴也容易流入金屬Ag(空穴轉(zhuǎn)移Ⅱ:SiC VBM → Ag),流入金屬銀的空穴和電子會(huì)發(fā)生復(fù)合,因此促進(jìn)了 Ag3PO4和SiC的電荷分離。另外Ag3PO4的價(jià)帶空穴顯示出了很強(qiáng)的氧化能力,SiC導(dǎo)帶電子顯示出強(qiáng)烈的還原能力。
圖8 Ag3PO4/Ag/SiC、Ag3PO4Ag/WO3-x和Ag3PO4/Ag/g-C3N4 Z-機(jī)制光催化機(jī)理Fig. 8 Proposed mechanism for Z-scheme charge-carrier transfer process in Ag3PO4/Ag/SiC, Ag3PO4/Ag/WO3-x and Ag3PO4/Ag/g-C3N4 composite
Bu 等[68]針對(duì) Ag3PO4/Ag/WO3-x體系解釋了 Z機(jī)制對(duì)光催化降解性能的提升,機(jī)理如圖8(b)所示。光激發(fā)后,所產(chǎn)生的WO3-x光生電子和Ag3PO4的光生空穴,在電位差的作用下,都會(huì)迅速轉(zhuǎn)移到金屬Ag表面。導(dǎo)致具有較弱還原性的光生電子和弱氧化性的空穴被湮沒(méi)。因此,具有更強(qiáng)還原性的光生電子和更強(qiáng)氧化性的光生空穴,分別留在了Ag3PO4的導(dǎo)帶和WO3-x的價(jià)帶,這些光生電子和空穴將參與有機(jī)染料的氧化還原反應(yīng),這種電子轉(zhuǎn)移過(guò)程促進(jìn)了光催化降解能力的提升。
對(duì)于Z-scheme機(jī)制,在分解水制氫制氧領(lǐng)域也得了應(yīng)用。Yang等[69]合成了Ag3PO4/g-C3N4復(fù)相材料,并通過(guò)生成的Ag納米顆粒形成了Z-機(jī)制,機(jī)理模型如圖8(c)所示。Ag納米顆粒在復(fù)合材料中作為Ag3PO4和g-C3N4交聯(lián)橋,Ag3PO4導(dǎo)帶的電子和g-C3N4價(jià)帶的空穴會(huì)在Ag納米顆粒處重新復(fù)合,從而促進(jìn)了電荷分離。留在 Ag3PO4價(jià)帶處的空穴,可以有效地氧化水,而留在g-C3N4的導(dǎo)帶處的電子可以減少硝酸銀的用量,從而提高了該材料的分解水的能力。
另外其他研究者也通過(guò) Ag3PO4/MoS2[37]、Ag3PO4/HAP[70]、Ag3PO4/SnSe2[71]、Ag3PO4/Ag/BiVO4[72]、Ag3PO4/ZnFe2O4[73]、Ag3PO4/Ag/ZnS[74]、Ag3PO4/Ag2MoO4[75]等體系進(jìn)一步闡述了 Z-機(jī)制對(duì)光催化性能的促進(jìn)作用。
綜上所述,通過(guò) Ag3PO4的納米化產(chǎn)生量子效應(yīng),通過(guò)控制微觀形貌增大與反應(yīng)物的接觸面積或者獲得高活性晶面,采用多種半導(dǎo)體與 Ag3PO4形成異質(zhì)結(jié)構(gòu)減緩電子-空穴對(duì)的復(fù)合,均使得Ag3PO4光催化性能獲得提升。其中與Ag3PO4形成異質(zhì)結(jié)構(gòu)是目前提升其光催化性能的最主流,也是最有效的一種研究方法,并針對(duì)典型的光催化增強(qiáng)機(jī)制進(jìn)行了系統(tǒng)的分析討論。
然而 Ag3PO4基光催化劑的研究仍然處于研究的初期階段,實(shí)現(xiàn)其實(shí)用化,還需要從以下幾個(gè)方面深入研究。
(1)化學(xué)不穩(wěn)定性仍是制約 Ag3PO4基光催化劑發(fā)展的最大問(wèn)題,盡管該問(wèn)題通過(guò)目前的研究得到一定的緩解,還需要通過(guò)表面改性,形成異質(zhì)結(jié)構(gòu)等方法抑制光腐蝕作用,進(jìn)一步提升其光化學(xué)穩(wěn)定性,才有可能獲得實(shí)際應(yīng)用。
(2)由于 Ag3PO4中的銀含量高,直接應(yīng)用成本很高。對(duì)于該問(wèn)題,主要是進(jìn)一步提升 Ag3PO4基光催化劑的性能,從而減少使用量,另外通過(guò)合適的廉價(jià)半導(dǎo)體物質(zhì)形成復(fù)合光催化劑,從而降低催化劑中的Ag3PO4含量。
(3)目前的光催化機(jī)理研究還不夠成熟,大多是通過(guò)結(jié)構(gòu)、性能測(cè)試,結(jié)合經(jīng)驗(yàn)進(jìn)行推測(cè),這樣建立起來(lái)的機(jī)理模型只能初步解釋光催化行為。要對(duì)光催化劑的研究開(kāi)發(fā)起到指導(dǎo)作用,還必須融合材料學(xué)、固體物理、光學(xué)、熱力學(xué)、動(dòng)力學(xué)等多學(xué)科的基本理論和研究方法,進(jìn)行更深入的量化研究。
(4)Ag3PO4基光催化材料的研究大多以降解有機(jī)染料為主,在處理有機(jī)質(zhì)、重金屬以及分解水制氫等領(lǐng)域的應(yīng)用研究并不多,因此其應(yīng)用領(lǐng)域也有待進(jìn)一步擴(kuò)展。
如何處置環(huán)境污染和應(yīng)對(duì)能源短缺已經(jīng)成為當(dāng)今社會(huì)的重點(diǎn)問(wèn)題。Ag3PO4基可見(jiàn)光催化材料憑借其優(yōu)良的可見(jiàn)光催化性能有望成為解決這些問(wèn)題的新型材料,在環(huán)境治理和新能源等領(lǐng)域中發(fā)揮重要的作用。
[1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[2] THIND S S, ROZIC K, AMANO F,et al. Fabrication and photoelectronchemical study of WO3-based bifunctional electrodes for environmental applications[J]. Applied Catalysis B Environmental,2015, 176/177: 464-471.
[3] TASASO A, NGAOTRAKANWIWAT P. Synthesis of nano-WO3particles with polyethylene glycol for chromic film[J]. Energy Procedia, 2015, 79: 704-709.
[4] GENG Y, ZHANG P, LI N,et al. Synthesis of Co doped BiVO4with enhanced visible-light photocatalytic activities[J]. Journal of Alloys& Compounds, 2015, 651: 744-748.
[5] PINGMUANG K, NATTESTAD A, KANGWANSUPAMONKON W,et al. Phase-controlled microwave synthesis of pure monoclinic BiVO4nanoparticles for photocatalytic dye degradation[J]. Applied Materials Today, 2015, 1(2): 67-73.
[6] YI Z, YE J, KIKUGAWA N,et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J].Nature Materials, 2010, 9(7): 559.
[7] HU H, JIAO Z, YU H,et al. Facile synthesis of tetrahedral Ag3PO4submicro-crystals with enhanced photocatalytic properties[J]. Journal of Materials Chemistry A, 2012, 1(7): 2387-2390.
[8] BI Y, HU H, OUYANG S,et al. Selective growth of Ag3PO4submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photocatalytic applications[J]. Journal of Materials Chemistry, 2012, 22(30): 14847-14850.
[9] GUO J, OUYANG S, ZHOU H,et al. Ag3PO4/In(OH)3composite photocatalysts with adjustable surface-electric property for efficient photodegradation of organic dyes under simulated solar-light irradiation[J]. Journal of Physical Chemistry C, 2013, 117(34):17716-17724.
[10] GUO J, ZHOU H, OUYANG S,et al. An Ag3PO4/nitridized Sr2Nb2O7composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation[J]. Nanoscale, 2014, 6(13): 7303-7311.
[11] BI Y, HU H, JIAO Z,et al. Two-dimensional dendritic Ag3PO4nanostructures and their photocatalytic properties[J]. Physical Chemistry Chemical Physics, 2012, 14(42): 14486-14488.
[12] VU T A, DAO C D, HOANG T T T,et al. Highly photocatalytic activity of novel nano-sized Ag3PO4, for Rhodamine B degradation under visible light irradiation[J]. Materials Letters, 2013, 92(1):57-60.
[13] WU A, TIAN C, WEI C,et al. Morphology-controlled synthesis of Ag3PO4, nano/microcrystals and their antibacterial properties[J].Materials Research Bulletin, 2013, 48(9): 3043-3048.
[14] XU Y S, ZHANG W D. Morphology-controlled synthesis of Ag3PO4microcrystals for high performance photocatalysis[J]. Crystengcomm,2013, 15(27): 5407-5411.
[15] WANG J, TENG F, CHEN M,et al. Facile synthesis of novel Ag3PO4tetrapods and the {110} facets-dominated photocatalytic activity[J].Crystengcomm, 2012, 15(1): 39-42.
[16] ZHENG B, WANG X, LIU C,et al. High-efficiently visible light-responsive photocatalysts: Ag3PO4tetrahedral microcrystals with exposed {111} facets of high surface energy[J]. Journal of Materials Chemistry A, 2013, 1(40): 12635-12640.
[17] KUMAR S, SURENDAR T, SHANKER V. Template-free and eco-friendly synthesis of hierarchical Ag3PO4microcrystals with sharp corners and edges for enhanced photocatalytic activity under visible light[J]. Materials Letters, 2014, 123(5): 172-175.
[18] YAO W, ZHANG B, HUANG C,et al. Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2visible light photocatalyst for the degradation of methylene blue and Rhodamine B solutions[J].Journal of Materials Chemistry, 2012, 22(9): 4050-4055.
[19] SAUD P S, PANT B, TWARI A P,et al. Effective photocatalytic efficacy of hydrothermally synthesized silver phosphate decorated titanium dioxide nanocomposite fibers[J]. Journal of Colloid &Interface Science, 2015, 465: 225.
[20] TENG W, LI X, ZHAO Q,et al. Fabrication of Ag/Ag3PO4/TiO2heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation[J]. Journal of Materials Chemistry A, 2013, 1(32): 9060-9068.
[21] TAHERI M E, PETALA A, FRONTISTIS Z,et al. Fast photocatalytic degradation of bisphenol A by Ag3PO4/TiO2, composites under solar radiation[J]. Catalysis Today, 2017, 280(1): 99-107.
[22] HONG X T, ZHOU Y M, YE Z L,et al. Enhanced hydrophilicity and antibacterial activity of PVDF ultrafiltration membrane using Ag3PO4/TiO2nanocomposite againstE. coli[J]. Desalination and Water Treatment, 2017, 75: 26-33.
[23] YANG Z M, HUANG G F, HUANG W Q,et al. Novel Ag3PO4/CeO2composite with high efficiency and stability for photocatalytic applications[J]. Journal of Materials Chemistry A, 2013, 2(6):1750-1756.
[24] DING F, ZHANG S, LUO X,et al. Fabrication of Ag3PO4/α-Bi2O3composites with enhanced photocatalytic properties under visible light[J]. RSC Advances, 2015, 5(117): 96685-96694.
[25] ZHANG L, ZHANG H, HUI H,et al. Ag3PO4/SnO2semiconductor nanocomposites with enhanced photocatalytic activity and stability[J].New Journal of Chemistry, 2012, 36(8): 1541-1544.
[26] ZUO Y, ZHU L, YANG X,et al. ZnO nanorod arrays on cubic Ag3PO4microcrystals with enhanced photocatalytic property[J].Materials Letters, 2015, 159: 325-328.
[27] WANG C, WU M, YAN M,et al. Enhanced visible-light photocatalytic activity and the mechanism study of WO3nanosheets coupled with Ag3PO4nanocrystals[J]. Ceramics International, 2015,41(5):6784-6792.
[28] CHANG Y, YU K, ZHANG C,et al. Three-dimensionally ordered macroporous WO3supported Ag3PO4with enhanced photocatalytic activity and durability[J]. Applied Catalysis B Environmental, 2015,176/177: 363-373.
[29] CHEN J, LIU X P, YANG X D,et al. A novel Ag3PO4/CuO nanocomposite with enhanced photocatalytic performance[J].Materials Letters, 2017, 188: 300-303.
[30] ZHANG C, WU Q, KE X,et al. Elaboration and characterization of nanoplate structured α-Fe2O3films by Ag3PO4[J]. Solar Energy, 2016,135: 274-283.
[31] TANG C, LIU E, WAN J,et al. Co3O4nanoparticles decorated Ag3PO4tetrapods as an efficient visible-light-driven heterojunction photocatalyst[J]. Applied Catalysis B Environmental, 2016, 181:707-715.
[32] BI Y, OUYANG S, CAO J,et al. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4(X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities[J]. Physical Chemistry Chemical Physics, 2011, 13(21): 10071-10075.
[33] AMORNPITOKSUK P, SUWANBOON S. Photocatalytic decolorization of methylene blue dye by Ag3PO4-AgX (X = Cl-, Br-,and I-) under visible light[J]. Advanced Powder Technology, 2014,25(3): 1026-1030.
[34] KATSUMATA H, HAYASHI T, TANIGUCHI M,et al. Highly efficient visible-light driven AgBr/Ag3PO4hybrid photocatalysts with enhanced photocatalytic activity[J]. Materials Science in Semiconductor Processing, 2014, 25(18): 68-75.
[35] SHINGER M I, IDRIS A M, DEVARAMANI S,et al.In situfabrication of graphene-based Ag3PO4@AgBr composite with enhanced photocatalytic activity under simulated sunlight[J]. Journal of Environmental Chemical Engineering, 2017, 5(2): 1526-1535.
[36] AMORNPITOKSUK P, SUWANBOON S. Comparative study of the photocatalytic decolorization of Rhodamine B dye by AgI-Ag3PO4,prepared from co-precipitation and ion-exchange methods[J]. Journal of Alloys & Compounds, 2017, 720: 582-588.
[37] ZHU C, ZHANG L, JIANG B,et al. Fabrication of Z-scheme Ag3PO4/MoS2composites with enhanced photocatalytic activity and stability for organic pollutant degradation[J]. Applied Surface Science,2016, 377: 99-108.
[38] PENG W C, WANG X, LI X Y. The synergetic effect of MoS2and graphene on Ag3PO4for its ultra-enhanced photocatalytic activity in phenol degradation under visible light[J]. Nanoscale, 2014, 6(14):8311-8317.
[39] YU H, YU Y, LIU J,et al. Space-confined growth of Ag3PO4nanoparticles within WS2sheets: Ag3PO4/WS2composites as visible-light-driven photocatalysts for decomposing dyes[J]. Journal of Materials Chemistry A, 2015, 3(38): 19439- 19444.
[40] TIAN J, YAN T, QIAO Z,et al. Anion-exchange synthesis of Ag2S/Ag3PO4, core/shell composites with enhanced visible and NIR light photocatalytic performance and the photocatalytic mechanisms[J]. Applied Catalysis B Environmental, 2017, 209:566-578.
[41] LIU L, LIU J, SUN D D. Graphene oxide enwrapped Ag3PO4composite: towards a highly efficient and stable visible-light-induced photocatalyst for water purification[J]. Catalysis Science &Technology, 2012, 2(12): 2525-2532.
[42] YANG X, QIN J, JIANG Y,et al. Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria[J]. RSC Advances, 2014, 4(36):18627-18636.
[43] PANIGRAHY B, SRIVASTAVA S. Minuscule weight percent of graphene oxide and reduced graphene oxide modified Ag3PO4: new insight into improved photocatalytic activity[J]. New Journal of Chemistry, 2016, 40(4): 3370-3384.
[44] KUMAR S, SURENDAR T, BARUAH A,et al. Synthesis of a novel and stable g-C3N4-Ag3PO4hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation[J].Journal of Materials Chemistry A, 2013, 1(17): 5333-5340.
[45] ZHANG F J, XIE F Z, ZHU S F,et al. A novel photofunctional g-C3N4/Ag3PO4bulk heterojunction for decolorization of Rh.B[J].Chemical Engineering Journal, 2013, 228(12): 435-441.
[46] SUN M, ZENG Q, ZHAO X,et al. Fabrication of novel g-C3N4nanocrystals decorated Ag3PO4hybrids: enhanced charge separation and excellent visible-light driven photocatalytic activity.[J]. Journal of Hazardous Materials, 2017, 339: 9-21.
[47] YU H, JIAO Z, HU H,et al. Fabrication of Ag3PO4-PAN composite nanofibers for photocatalytic applications[J]. CrystEngComm, 2013,15(24): 4802-4805
[48] LIU L, DING L, LIU Y G,et al. A stable Ag3PO4@PANI core@shell hybrid: enrichment photocatalytic degradation with π-π conjugation[J]. Applied Catalysis B Environmental, 2017, 201:92-104.
[49] HU H, JIAO Z, TENG W,et al. Enhanced photocatalytic activity of Ag/Ag3PO4coaxial hetero-nanowires[J]. Journal of Materials Chemistry A, 2013, 1(36): 10612-10616.
[50] WU Q, DIAO P, SUN J,et al. Draining the photoinduced electrons away from an anode: the preparation of Ag/Ag3PO4composite nanoplate photoanodes for highly efficient water splitting[J]. Journal of Materials Chemistry A, 2015, 3(37): 18991-18999.
[51] YAN T, ZHANG H, LIU Y,et al. Fabrication of robust M/Ag3PO4(M =Pt, Pd, Au) Schottky-type heterostructures for improved visible-light photocatalysis[J]. RSC Advances, 2014, 4(70): 37220-37230.
[52] JIN B, ZHOU X, LUO J,et al. Fabrication and characterization of high efficiency and stable Ag3PO4/TiO2nanowire array heterostructure photoelectrodes for the degradation of methyl orange under visible light irradiation[J]. RSC Advances, 2015, 5(59):48118-48123.
[53] ZHAO F M, PAN L, WANG S,et al. Ag3PO4/TiO2composite for efficient photodegradation of organic pollutants under visible light[J].Applied Surface Science, 2014, 317: 833-838.
[54] YANG L, DUAN W, JIANG H,et al. Mesoporous TiO2@Ag3PO4photocatalyst with high adsorbility and enhanced photocatalytic activity under visible light[J]. Materials Research Bulletin, 2015, 70:129-136.
[55] XIE J, YANG Y, HE H,et al. Facile synthesis of hierarchical Ag3PO4/TiO2nanofiber heterostructures with highly enhanced visible light photocatalytic properties[J]. Applied Surface Science, 2015, 355:921-929.
[56] QI X, GU M, ZHU X,et al. Controlled synthesis of Ag3PO4/BiVO4composites with enhanced visible-light photocatalytic performance for the degradation of RhB and 2, 4-DCP[J]. Materials Research Bulletin, 2016, 80: 215-222.
[57] LI J, LIU Z, ZHU Z. Enhanced photocatalytic activity in ZnFe2O4-ZnO-Ag3PO4hollow nanospheres through the cascadal electron transfer with magnetical separation[J]. Journal of Alloys &Compounds, 2015, 636: 229-233.
[58] ZHANG J, YU K, YU Y,et al. Highly effective and stable Ag3PO4/WO3photocatalysts for visible light degradation of organic dyes[J]. Journal of Molecular Catalysis A Chemical, 2014, 391(1):12-18.
[59] LIU W, XU C, FU X. Ag3PO4/ZnO: an efficient visible-lightsensitized composite with its application in photocatalytic degradation of Rhodamine B[J]. Materials Research Bulletin, 2013, 48(1):106-113.
[60] FA W, WANG P, YUE B,et al. Ag3PO4/Ag2CO3p-n heterojunction composites with enhanced photocatalytic activity under visible light[J]. Chinese Journal of Catalysis, 2015, 36(12): 2186-2193.
[61] GUO J, OUYANG S, LI P,et al. A new heterojunction Ag3PO4/Cr-SrTiO3photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation[J]. Applied Catalysis B Environmental, 2013, 134/135: 286-292.
[62] FU G, XU G, CHEN S,et al. Ag3PO4/Bi2WO6, hierarchical heterostructures with enhanced visible light photocatalytic activity for the degradation of phenol[J]. Catalysis Communications, 2013,40(19): 120-124.
[63] YAN J, WANG C, XU H,et al. AgI/Ag3PO4heterojunction composites with enhanced photocatalytic activity under visible light irradiation[J]. Applied Surface Science, 2013, 287(12): 178-186.
[64] DU X, WAN J, JIA J,et al. Photocatalystic degradation of RhB over highly visible-light-active Ag3PO4-Bi2MoO6, heterojunction using H2O2, electron capturer[J]. Materials & Design, 2017, 119:113-123.
[65] TAN P, CHEN X, WU L,et al. Hierarchical flower-like SnSe2,supported Ag3PO4, nanoparticles: towards visible light driven photocatalyst with enhanced performance[J]. Applied Catalysis B Environmental, 2017, 202: 326-334.
[66] ZHANG H, HUANG H, MING H,et al. Carbon quantum dots/Ag3PO4complex photocatalysts with enhanced photocatalytic activity and stability under visible light[J]. Journal of Materials Chemistry, 2012, 22(21): 10501-10506.
[67] CHEN Z, BING F, LIU Q,et al. Novel Z-scheme visible-light-driven Ag3PO4/Ag/SiC photocatalysts with enhanced photocatalytic activity[J]. Journal of Materials Chemistry A, 2015, 3(8): 4652-4658.
[68] BU Y, CHEN Z, SUN C. Highly efficient Z-scheme Ag3PO4/Ag/WO3-xphotocatalyst for its enhanced photocatalytic performance[J]. Applied Catalysis B Environmental, 2015, 179:363-371.
[69] YANG X, CHEN Z, XU J,et al. Tuning the morphology of g-C3N4for improvement of Z-scheme photocatalytic water oxidation[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15285.
[70] CHAI Y, DING J, WANG L,et al. Enormous enhancement in photocatalytic performance of Ag3PO4/HAp composite: a Z-scheme mechanism insight[J]. Applied Catalysis B Environmental, 2015, 179:29-36.
[71] TAN P, CHEN X, WU L,et al. Hierarchical flower-like SnSe2supported Ag3PO4nanoparticles: towards visible light driven photocatalyst with enhanced performance[J]. Applied Catalysis B Environmental, 2017, 202: 326-334.
[72] CHEN F, YANG Q, LI X,et al. Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4(040) Z-scheme photocatalyst:an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation[J]. Applied Catalysis B Environmental, 2017,200: 330-342.
[73] CHEN X, DAI Y, GAO J,et al. Synthesis of micro-nano Ag3PO4/ZnFe2O4with different organic additives and its enhanced photocatalytic activity under visible light irradiation[J]. Materials Science in Semiconductor Processing, 2016, 41: 335-342.
[74] WEI N, CUI H, WANG M,et al. Highly efficient photocatalytic activity of Ag3PO4/Ag/ZnS(en)0.5photocatalysts through Z-scheme photocatalytic mechanism[J]. RSC Advances, 2017, 7:18392-18399.
[75] TANG H, FU Y, CHANG S,et al. Construction of Ag3PO4/Ag2MoO4Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants[J]. Chinese Journal of Catalysis,2017, 38(2): 337-347.
date:2017-05-04.
SHEN Yi, tsshenyi@sina.com
supported by the National Natural Science Foundation of China(51772099, 51572069).
Progress on photocatalytic performance improvement and enhancement mechanisms of silver phosphate
LI Fengfeng1, CAI Yongfeng1, ZHANG Mingxi1,2, CHANG Shiyan1, SHEN Yi1, LI Zhihong3
(1College of Material Science and Engineering,Key Laboratory of Inorganic Nonmetallic Materials Hebei Province,Key Laboratory of Environment Functional Materials of Tangshan City,North China University of Science and Technology,Tangshan063210,Hebei,China;2Light Alloy Research Institute,Central South University,Changsha410012,Hunan,China;3College of Material Science and Engineering,Tianjin University,Tianjin300072,China)
Due to its excellent visible light photocatalytic performance, Ag3PO4has wide application prospective in many fields, such as organic pollutant degradation, water decomposition and CO2reduction. However, there is still a great gap between photocatalytic performance of Ag3PO4and requirement for practical applications, besides its unstable chemical properties. A plenty of work has been contributed to performance improvement of Ag3PO4.This review was focused on photocatalytic performance improvement and enhancement mechanism of Ag3PO4by means of nanonization, morphology control, and structure heterogenization. So far, the most popular approach had been development of Ag3PO4heterostructure, which heterostructures with metal oxides, sulfides, halides, organic semiconductors, and metals effectively improved photocatalytic performance. Future development trend of Ag3PO4photocatalysts were also prospected.
silver phosphate; catalysis; degradation; environment; performance improvement; enhancement mechanism
TB 332
A
0438—1157(2017)11—4005—11
10.11949/j.issn.0438-1157.20170551
2017-05-04收到初稿,2017-08-07收到修改稿。
聯(lián)系人:沈毅。
李鋒鋒(1981—),男,博士,講師。
國(guó)家自然科學(xué)基金項(xiàng)目(51772099,51572069)。