唐北沙 曾勝 李凱
.專論.
人類孟德?tīng)栠z傳性疾病基因組序列變異解析與臨床規(guī)范
唐北沙 曾勝 李凱
遺傳性疾病,先天性; 基因; 突變; 綜述
隨著二代基因測(cè)序(NGS)技術(shù)的不斷完善,其在臨床應(yīng)用和研究逐漸普及,越來(lái)越多的科研或醫(yī)療機(jī)構(gòu)開(kāi)始應(yīng)用該項(xiàng)技術(shù)[主要包括全基因組測(cè)序(WGS)、全外顯子測(cè)序(WES)、目標(biāo)區(qū)域捕獲測(cè)序]進(jìn)行人類孟德?tīng)栠z傳性疾病的分子診斷和遺傳學(xué)研究[1?4].臨床實(shí)踐中,基因組檢測(cè)流程需規(guī)范化、基因組序列變異判斷需標(biāo)準(zhǔn)化、測(cè)序技術(shù)需嚴(yán)格質(zhì)控、具體測(cè)序技術(shù)需合理選擇[5?7].人類基因組全外顯子組水平約包含25X103個(gè)變異(variants)[8],如何精準(zhǔn)檢測(cè)這些變異、篩選出致病性突變,是醫(yī)學(xué)遺傳學(xué)必須面對(duì)的問(wèn)題.鑒于此,美國(guó)醫(yī)學(xué)遺傳學(xué)和基因組學(xué)會(huì)(ACMG)、歐洲人類遺傳學(xué)會(huì)(ESHG)分別公布二代基因測(cè)序的臨床應(yīng)用指南[4,9?10].因此,根據(jù)我國(guó)實(shí)際情況制定人類孟德?tīng)栠z傳性疾病基因組序列變異解析與臨床規(guī)范勢(shì)在必行.本文僅針對(duì)人類基因組DNA序列,而線粒體DNA序列和表觀遺傳領(lǐng)域RNA序列、甲基化等不在本文闡述范圍.本文擬從臨床資料采集、遺傳因素判斷、二代基因測(cè)序選擇、質(zhì)控管理、序列變異檢測(cè)及公共數(shù)據(jù)庫(kù)過(guò)濾、序列變異生物信息學(xué)分析、遺傳學(xué)和功能學(xué)試驗(yàn)、序列變異解析原則、倫理學(xué)和遺傳咨詢方面進(jìn)行闡述.
翔實(shí)的臨床資料采集是進(jìn)行分子診斷和遺傳學(xué)研究的基礎(chǔ).完善的臨床資料可以有效降低臨床診斷和分子診斷的誤診率,有助于變異解析的后續(xù)分析[1,4],主要包括主訴、現(xiàn)病史、家族史、近親婚配史、體格檢查、實(shí)驗(yàn)室檢驗(yàn)、量表評(píng)價(jià)和影像學(xué)檢查等.
根據(jù)臨床資料判斷疾病是否系遺傳因素所致以及是否符合孟德?tīng)栠z傳規(guī)律,包括常染色體顯性遺傳(AD)、常染色體隱性遺傳(AR)和X連鎖遺傳(X?linked).隨著對(duì)某些疾病的深入認(rèn)識(shí),某些罕見(jiàn)疾病(Joubert綜合征等)和先天性疾病(先天性無(wú)痛癥等)也受到遺傳因素的影響,也可以選擇二代基因測(cè)序技術(shù)進(jìn)行分子診斷[10?11].
確定遺傳因素在疾病發(fā)病中發(fā)揮主要作用后,制定合理的二代基因測(cè)序方案、選擇適宜的檢測(cè)疾病遺傳結(jié)構(gòu)變異(genetic architecture)的二代基因測(cè)序技術(shù)和數(shù)據(jù)分析方法,是提高分子診斷率的先決條件.基因組序列變異包括以下5種形式[12?13]:單核苷酸變異(SNV)、插入/缺失變異、拷貝數(shù)變異(CNV)、短串聯(lián)重復(fù)序列(STR)和結(jié)構(gòu)變異(SV);以及以下4個(gè)部位:基因組外顯子區(qū)(exonic regions)、基因組基因間區(qū)(intergenic regions)、基因組內(nèi)含子區(qū)(intronic regions)及基因組啟動(dòng)子區(qū)(promoter regions)和非翻譯區(qū)(UTR).在選擇二代基因測(cè)序技術(shù)時(shí),應(yīng)考慮每種測(cè)序技術(shù)的特點(diǎn)和局限性:發(fā)生于基因組外顯子區(qū)的單核苷酸變異、插入/缺失變異,可以選擇全外顯子測(cè)序;發(fā)生于全基因組的單核苷酸變異、插入/缺失變異、拷貝數(shù)變異可以選擇全基因組測(cè)序;發(fā)生于全基因組的短串聯(lián)重復(fù)變異,既不能選擇全外顯子測(cè)序也不能選擇全基因組測(cè)序[14?15].隨著基因檢測(cè)技術(shù)的發(fā)展,三代基因測(cè)序技術(shù)逐漸廣泛應(yīng)用,有望實(shí)現(xiàn)全基因組短串聯(lián)重復(fù)變異和復(fù)雜結(jié)構(gòu)變異的檢測(cè)[16?18].
在基因檢測(cè)方案和數(shù)據(jù)分析方法合理的情況下,對(duì)整套基因檢測(cè)流程進(jìn)行嚴(yán)格質(zhì)控是進(jìn)行變異解析后續(xù)分析的有力保證[6].首先,應(yīng)確保檢測(cè)樣本的DNA質(zhì)量并準(zhǔn)確標(biāo)記;其次,應(yīng)保證檢測(cè)樣本的建庫(kù)質(zhì)量;再次,應(yīng)采用合格的目標(biāo)區(qū)域捕獲測(cè)序試劑和設(shè)備,并嚴(yán)格按照操作流程進(jìn)行,以避免人為操作造成的失誤[19];最后,應(yīng)選擇正規(guī)的檢測(cè)機(jī)構(gòu)和實(shí)驗(yàn)室.數(shù)據(jù)分析包括以下步驟:(1)對(duì)基因檢測(cè)所獲得的原始數(shù)據(jù)(raw data)進(jìn)行基本質(zhì)檢,如測(cè)序質(zhì)量檢測(cè)軟件FastQC、評(píng)價(jià)測(cè)序準(zhǔn)確性的堿基質(zhì)量值(Q30代表質(zhì)量值為30時(shí)錯(cuò)誤識(shí)別率為0.1%)、鳥(niǎo)嘌呤?胞嘧啶(GC)含量、數(shù)據(jù)產(chǎn)量等,再通過(guò)剔除接頭和低質(zhì)量數(shù)據(jù)將原始數(shù)據(jù)轉(zhuǎn)換為有效數(shù)據(jù).(2)采用讀長(zhǎng)(reads)比對(duì)率、測(cè)序平均覆蓋深度、測(cè)序深度分布、目標(biāo)區(qū)域覆蓋率(如基因組外顯子區(qū)測(cè)序深度>10X的百分比等)評(píng)價(jià)數(shù)據(jù)質(zhì)量.(3)采用比對(duì)軟件(如BWA軟件,https://sourceforge.net/projects/bio-bwa/files/)進(jìn)行比對(duì),并通過(guò)一種或多種檢測(cè)軟件對(duì)序列變異進(jìn)行檢測(cè)和注釋.(4)通過(guò)比對(duì)檢測(cè)樣本單核苷酸變異與單核苷酸多態(tài)性(SNP)數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.nih.gov/projects/SNP/)中單核苷酸變異比值以及轉(zhuǎn)換/顛換比值等評(píng)價(jià)變異提取過(guò)程的生物信息學(xué)分析質(zhì)量[19?20].
二代基因測(cè)序技術(shù)的生物信息學(xué)分析軟件主要用于數(shù)據(jù)質(zhì)控、參考基因組比對(duì)、變異檢測(cè)、變異注釋等.應(yīng)注意不同生物信息學(xué)分析軟件各有優(yōu)缺點(diǎn)[4]:若檢測(cè)結(jié)果中無(wú)足夠候選變異,應(yīng)進(jìn)一步增加候選變異,可考慮采用不同序列變異檢測(cè)軟件,如GATK(https://software.broadinstitute.org/gatk/)、SAMtools(http://www.htslib.org/)、SOAPsnp(http://soap.genomics.org.cn/soapsnp.html)等,或更新變異注釋軟件,如更新ANNOVAR軟件版本(http://www.openbioinformatics.org/annovar/annova_download_form.php)重新提取變異.對(duì)于人類孟德?tīng)栠z傳性疾病,考慮其發(fā)病率低,進(jìn)行公共數(shù)據(jù)庫(kù)過(guò)濾時(shí)多以少數(shù)等位基因頻率(MAF)<0.1%作為顯性遺傳性疾病限定值[14],但可能導(dǎo)致假陰性結(jié)果[21?22].隨著精準(zhǔn)醫(yī)療(PM)的開(kāi)展,臨床信息完整并可長(zhǎng)期隨訪的人群隊(duì)列基因組數(shù)據(jù)將不斷產(chǎn)生,可以有效解決現(xiàn)有數(shù)據(jù)庫(kù)臨床信息不足的問(wèn)題.
不同生物信息學(xué)分析軟件預(yù)測(cè)致病性突變的方法各不相同,主要包括GERP++(http://mendel.stanford.edu/sidowlab/downloads/gerp/index.html)、PhyloP(http://compgen.bscb.cornell.edu/phast/)、SIFT(http://sift.jcvi.org)、PolyPhen?2(http://genetics.bwh.harvard.edu/pph2)、Mutation Taster(http://www.mutationtaster.org)、CADD(http://cadd.gs.washington.edu)等,其中,GERP++、PhyloP和SIFT軟件用于評(píng)價(jià)序列變異的保守性,PolyPhen?2軟件用于評(píng)價(jià)氨基酸和蛋白質(zhì)結(jié)構(gòu)改變,Mutation Taster和CADD軟件用于評(píng)價(jià)變異功能[23].值得注意的是,預(yù)測(cè)致病性變異位點(diǎn)時(shí),應(yīng)避免僅采用一種預(yù)測(cè)方法的結(jié)果,亦應(yīng)避免將多種預(yù)測(cè)方法的每種結(jié)果作為獨(dú)立支持證據(jù)而累加.
二代基因測(cè)序技術(shù)檢出的變異可能存在假陽(yáng)性結(jié)果,應(yīng)采用Sanger測(cè)序驗(yàn)證.同時(shí),對(duì)篩選出的候選變異位點(diǎn),應(yīng)在家系其他成員中進(jìn)行共分離驗(yàn)證.對(duì)于已知致病基因的新發(fā)變異(novel variants),可采用功能學(xué)試驗(yàn)補(bǔ)充遺傳學(xué)和生物信息學(xué)分析.功能學(xué)試驗(yàn)是否合理主要取決于所選取的功能模型是否適用于該疾病.可以根據(jù)具體情況進(jìn)行自身組織和(或)細(xì)胞的功能學(xué)試驗(yàn),或者建立體內(nèi)或體外模型進(jìn)行功能學(xué)試驗(yàn)[10].
人類孟德?tīng)栠z傳性疾病序列變異解析原則主要包括:(1)按照5級(jí)分類原則進(jìn)行變異解析,根據(jù)基因組序列變異類型、數(shù)據(jù)庫(kù)信息等將序列變異分為5級(jí),即致病性(pathogenic)、可能致病性(likely pathogenic)、意義不明(uncertain significance)、可能良性(likely benign)和良性(benign).(2)按照4級(jí)分類或3級(jí)分類原則進(jìn)行變異解析,根據(jù)序列變異類型、數(shù)據(jù)庫(kù)信息等將致病性突變證據(jù)分為4級(jí),即非常強(qiáng)、強(qiáng)、中度和支持(表1)[4,24];將良性突變證據(jù)分
為3級(jí),即獨(dú)立、強(qiáng)和支持(表2)[4,24].(3)按照序列變異致病性或良性證據(jù)累加作用原則進(jìn)行變異解析,通過(guò)致病性或良性證據(jù)累加作用以判斷序列變異是致病性、可能致病性、可能良性或良性,若不符合上述標(biāo)準(zhǔn)或致病性證據(jù)與良性證據(jù)相互矛盾,則判斷為意義不明(表3)[4].值得注意的是,首先變異解析的5級(jí)分類原則本質(zhì)上是致病性概率的判斷,"可能(likely)"用于具有90%以上確定的可能致病性或可能良性;其次,旨在鑒定疾病新候選致病基因的情況并不適用于該序列變異解析原則;再次,由于大樣本人群變異數(shù)據(jù)庫(kù)的發(fā)展導(dǎo)致變異證據(jù)改變,以前不確定分類的變異可能需要進(jìn)行再分析;最后,在變異證據(jù)分層存在差異時(shí)應(yīng)請(qǐng)?jiān)摷膊☆I(lǐng)域?qū)<疫M(jìn)行判斷.
表1 序列變異致病性證據(jù)分層[4,24]Table 1. Criteria for classifying pathogenic variants[4,24]
表2 序列變異良性證據(jù)分層[4,24]Table 2. Criteria for classifying benign variants[4,24]
迄今臨床實(shí)踐中全外顯子組測(cè)序明確診斷率不足30%[2,20,25],假陰性率仍較高;亦有一些倫理學(xué)和遺傳學(xué)問(wèn)題尚未解決,例如,是否應(yīng)告知攜帶者、檢測(cè)結(jié)果解析出家庭中出現(xiàn)非血緣關(guān)系、變異可能不完全外顯、評(píng)價(jià)正常人群或無(wú)癥狀個(gè)體或者解釋與檢測(cè)初衷無(wú)關(guān)的偶然發(fā)現(xiàn)、檢測(cè)出致病性突變但缺乏有效治療藥物等[26];以及患者檢出2種或以上致病基因,如何精準(zhǔn)解讀臨床表型與基因型之間的關(guān)系[27],上述問(wèn)題的解決,應(yīng)建立在合理的倫理學(xué)和遺傳咨詢基礎(chǔ)上[28].此外,還應(yīng)考慮檢測(cè)結(jié)果解析錯(cuò)誤可能對(duì)患者及其家屬的重要影響,如預(yù)防性乳腺切除術(shù)、心臟除顫器植入術(shù)和產(chǎn)前診斷決策,建議參考體格檢查、實(shí)驗(yàn)室檢查、影像學(xué)檢查和電生理學(xué)檢查等輔助檢查結(jié)果,以提供合理檢測(cè)報(bào)告、開(kāi)展遺傳咨詢和進(jìn)行健康管理[1,4,29].
二代基因測(cè)序技術(shù)在人類孟德?tīng)栠z傳性疾病分子診斷和遺傳學(xué)研究中的應(yīng)用,仍有許多亟待解決的問(wèn)題.尤其是目前的序列變異解析并非完美,所報(bào)道的變異分類并非100%確定,變異分類基于臨床數(shù)據(jù)和經(jīng)驗(yàn),隨著基因組學(xué)數(shù)據(jù)的不斷增加,在現(xiàn)有指南基礎(chǔ)上,通過(guò)不同領(lǐng)域?qū)<夜餐瑓f(xié)作以建立更加精準(zhǔn)的"基因?疾病"解讀指南是未來(lái)發(fā)展方向.隨著二代基因測(cè)序技術(shù)的發(fā)展和數(shù)據(jù)分析軟件的完善,檢測(cè)變異和分析變異能力必將逐步提高.同時(shí),隨著精準(zhǔn)醫(yī)療計(jì)劃的開(kāi)展,也將為二代基因測(cè)序技術(shù)積累更多翔實(shí)、可靠的臨床信息和基因組學(xué)數(shù)據(jù),為該項(xiàng)技術(shù)更好地應(yīng)用于人類孟德?tīng)栠z傳性疾病分子診斷、預(yù)防干預(yù)、藥物治療和藥物研發(fā)提供有力保證.
表3 根據(jù)致病性或良性證據(jù)分層進(jìn)行序列變異解析的規(guī)則[4]Table 3. Rules for combining criteria to classify sequence variants[4]
[1]BieseckerLG,Green RC.Diagnostic clinicalgenome and exome sequencing.N Engl J Med,2014,371:1170.
[2]Lee H,Deignan JL,Dorrani N,Strom SP,Kantarci S,Quintero?Rivera F,Das K,Toy T,Harry B,Yourshaw M,Fox M,Fogel BL,Martinez?Agosto JA,Wong DA,Chang VY,Shieh PB,Palmer CG,Dipple KM,Grody WW,Vilain E,Nelson SF.Clinical exome sequencing for genetic identification of rare Mendelian disorders.JAMA,2014,312:1880?1887.
[3]Wang JL,Yang X,Xia K,Hu ZM,Weng L,Jin X,Jiang H,Zhang P,Shen L,Guo JF,Li N,Li YR,Lei LF,Zhou J,Du J,Zhou YF,Pan Q,Wang J,Wang J,Li RQ,Tang BS.TGM6 identified as a novel causative gene of spinocerebellar ataxias using exome sequencing.Brain,2010,133(Pt 12):3510?3518.
[4]Richards S,Aziz N,Bale S,Bick D,Das S,Gastier?Foster J,Grody WW,HegdeM,Lyon E,Spector E,Voelkerding K,Rehm HL;ACMG Laboratory Quality Assurance Committee.Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of MedicalGenetics and Genomics and the Association for Molecular Pathology.Genet Med,2015,17:405?424.
[5]Frebourg,T.The challenge for the next generation of medical geneticists.Hum Mutat,2014,35:909?911.
[6]Altman RB,Prabhu S,Sidow A,Zook JM,Goldfeder R,Litwack D,Ashley E,AsimenosG,Bustamante CD,Donigan K,Giacomini KM,Johansen E,Khuri N,Lee E,Liang XS,Salit M,Serang O,Tezak Z,Wall DP,Mansfield E,Kass?Hout T.A research roadmap for next?generation sequencing informatics.Sci Transl Med,2016,8:335.
[7]Endrullat C,Glokler J,Franke P,Frohme M.Standardization and quality management in next?generation sequencing.Appl Transl Genom,2016,10:2?9.
[8]Singleton AB.Exome sequencing:a transformative technology.Lancet Neurol,2011,10:942?946.
[9]Matthijs G,Souche E,Alders M,Corveleyn A,Eck S,Feenstra I,Race V,Sistermans E,Sturm M,Weiss M,Yntema H,Bakker E,Scheffer H,Bauer P;EuroGentest,European Society of Human Genetics.Guidelines for diagnostic next?generation sequencing.Eur J Hum Genet,2016,24:2?5.
[10]MacArthurDG,Manolio TA,Dimmock DP,Rehm HL,Shendure J,Abecasis GR,Adams DR,Altman RB,Antonarakis SE,Ashley EA,Barrett JC,Biesecker LG,Conrad DF,Cooper GM,Cox NJ,Daly MJ,Gerstein MB,Goldstein DB,Hirschhorn JN,Leal SM,Pennacchio LA,Stamatoyannopoulos JA,Sunyaev SR,Valle D,Voight BF,Winckler W,Gunter C.Guidelines for investigating causality of sequence variants in human disease.Nature,2014,508:469?476.
[11]McKusick VA.Mendelian inheritance in man and its online version,OMIM.Am J Hum Genet,2007,80:588?604.
[12]Scherer SW,Lee C,Birney E,Altshuler DM,Eichler EE,Carter NP,Hurles ME,Feuk L.Challenges and standards in integrating surveys of structural variation.Nat Genet,2007,39:S7?15.
[13]den Dunnen JT,Dalgleish R,Maglott DR,Hart RK,Greenblatt MS,McGowan?Jordan J,Roux AF,Smith T,Antonarakis SE,Taschner PE.HGVS recommendations for the description of sequence variants:2016 update.Hum Mutat,2016,37:564?569.
[14]Bamshad MJ,Ng SB,Bigham AW,Tabor HK,Emond MJ,Nickerson DA,Shendure J.Exome sequencing as a tool for Mendelian disease gene discovery.Nat Rev Genet,2011,12:745?755.
[15]van Dijk EL,Auger H,Jaszczyszyn Y,Thermes C.Ten years of next?generation sequencing technology.Trends Genet,2014,30:418?426.
[16]Hiatt JB,Pritchard CC,Salipante SJ,O'Roak BJ,Shendure J.Single molecule molecular inversion probes for targeted,high?accuracy detection of low?frequency variation.Genome Res,2013,23:843?854.
[17]Huddleston J,Ranade S,Malig M,Antonacci F,Chaisson M,Hon L,Sudmant PH,Graves TA,Alkan C,Dennis MY,Wilson RK,Turner SW,Korlach J,Eichler EE.Reconstructing complex regions of genomes using long?read sequencing technology.Genome Res,2014,24:688?696.
[18]Seo JS,Rhie A,Kim J,Lee S,Sohn MH,Kim CU,Hastie A,Cao H,Yun JY,Kim J,Kuk J,Park GH,Kim J,Ryu H,Kim J,Roh M,Baek J,Hunkapiller MW,Korlach J,Shin JY,Kim C.De novo assembly and phasing of a Korean human genome.Nature,2016,538:243?247.
[19]Kiezun A,Garimella K,Do R,Stitziel NO,Neale BM,McLaren PJ,Gupta N,Sklar P,Sullivan PF,Moran JL,Hultman CM,Lichtenstein P,Magnusson P,Lehner T,Shugart YY,Price AL,de Bakker PI,Purcell SM,Sunyaev SR.Exome sequencing and the genetic basis of complex traits.Nat Genet,2012,44:623?630.
[20]Yang Y,Muzny DM,Reid JG,Bainbridge MN,Willis A,Ward PA,Braxton A,Beuten J,Xia F,Niu Z,Hardison M,Person R,Bekheirnia MR,Leduc MS,Kirby A,Pham P,Scull J,Wang M,Ding Y,Plon SE,Lupski JR,Beaudet AL,Gibbs RA,Eng CM.Clinical whole?exome sequencing for the diagnosis of Mendelian disorders.N Engl J Med,2013,369:1502?1511.
[21]Koboldt DC,Steinberg KM,Larson DE,Wilson RK,Mardis ER.The next?generation sequencing revolution and its impact on genomics.Cell,2013,155:27?38.
[22]Chen R,Shi L,Hakenberg J,Naughton B,Sklar P,Zhang J,Zhou H,Tian L,Prakash O,Lemire M,Sleiman P,Cheng WY,Chen W,Shah H,Shen Y,Fromer M,Omberg L,Deardorff MA,Zackai E,Bobe JR,Levin E,Hudson TJ,Groop L,Wang J,Hakonarson H,Wojcicki A,Diaz GA,Edelmann L,Schadt EE,Friend SH.Analysis of 589 306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nat Biotechnol,2016,34:531?538.
[23]KircherM,Witten DM,Jain P,O'RoakBJ,CooperGM,Shendure J.A general framework for estimating the relative pathogenicity of human genetic variants.Nat Genet,2014,46:310?315.
[24]Amendola LM,Jarvik GP,Leo MC,McLaughlin HM,Akkari Y,Amaral MD,Berg JS,Biswas S,Bowling KM,Conlin LK,Cooper GM,Dorschner MO,Dulik MC,Ghazani AA,Ghosh R,Green RC,HartR,Horton C,Johnston JJ,Lebo MS,Milosavljevic A,Ou J,Pak CM,Patel RY,Punj S,Richards CS,Salama J,Strande NT,Yang Y,Plon SE,Biesecker LG,Rehm HL.Performance ofACMG ?AMP variant?interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium.Am J Hum Genet,2016,99:247.
[25]Yang Y,Muzny DM,Xia F,Niu Z,Person R,Ding Y,Ward P,Braxton A,Wang M,Buhay C,Veeraraghavan N,Hawes A,Chiang T,Leduc M,Beuten J,Zhang J,He W,Scull J,Willis A,Landsverk M,Craigen WJ,Bekheirnia MR,Stray?Pedersen A,Liu P,Wen S,Alcaraz W,Cui H,Walkiewicz M,Reid J,Bainbridge M,Patel A,Boerwinkle E,Beaudet AL,Lupski JR,Plon SE,GibbsRA,EngCM.Molecularfindingsamong patients referred for clinical whole?exome sequencing.JAMA,2014,312:1870?1879.
[26]Green RC,Berg JS,Grody WW,Kalia SS,Korf BR,Martin CL,McGuire AL,Nussbaum RL,O'Daniel JM,Ormond KE,Rehm HL,Watson MS,Williams MS,Biesecker LG;American College of Medical Genetics and Genomics.ACMG recommendations forreporting ofincidentalfindings in clinicalexome and genome sequencing.Genet Med,2013,15:565?574.
[27]Posey JE,Harel T,Liu P,Rosenfeld JA,James RA,Coban Akdemir ZH,Walkiewicz M,Bi W,Xiao R,Ding Y,Xia F,Beaudet AL,Muzny DM,Gibbs RA,Boerwinkle E,Eng CM,Sutton VR,Shaw CA,Plon SE,Yang Y,Lupski JR.Resolution of disease phenotypes resulting from multilocus genomic variation.N Engl J Med,2017,376:21?31.
[28]Biesecker LG.Exome sequencing makes medical genomics a reality.Nat Genet,2010,42:13?14.
[29]Rehm HL,Bale SJ,Bayrak?Toydemir P,Berg JS,Brown KK,Deignan JL,Friez MJ,Funke BH,Hegde MR,Lyon E;Working Group ofthe American College ofMedicalGenetics and GenomicsLaboratory Quality Assurance Commitee.ACMG clinical laboratory standards for next?generation sequencing.Genet Med,2013,15:733?747.
Genetic diseases,inborn; Genes; Mutation; Review
Clinical standards and interpretation of gene sequence variants in human Mendelian disorders
TANG Bei?sha1,2,ZENG Sheng1,LI Kai11Department of Neurology,Xiangya Hospital,2State Key Laboratory of Medical Genetics,National Clinical Research Center for Geriatric Diseases,Central South University,Changsha 410008,Hu'nan,China
TANG Bei?sha(Email:bstang7398@163.com)
This study was supported by Key Project of the National Natural Science Foundation of China(No.81130021).
10.3969/j.issn.1672?6731.2017.07.001
國(guó)家自然科學(xué)基金重點(diǎn)資助項(xiàng)目(項(xiàng)目編號(hào):81130021)
410008長(zhǎng)沙,中南大學(xué)湘雅醫(yī)院神經(jīng)內(nèi)科(唐北沙、曾勝、李凱),醫(yī)學(xué)遺傳學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室 國(guó)家老年疾病臨床醫(yī)學(xué)研究中心(唐北沙)
唐北沙(Email:bstang7398@163.com)
2017?07?01)