任長(zhǎng)江 趙 勇 龔家國(guó) 王建華 李海紅 顧金普
(1.中國(guó)水利水電科學(xué)研究院水資源研究所,北京 100038; 2.南昌工程學(xué)院水利與生態(tài)工程學(xué)院,南昌 330099)
媯水河流域土壤斥水性分布與影響因素研究
任長(zhǎng)江1,2趙 勇1龔家國(guó)1王建華1李海紅1顧金普1
(1.中國(guó)水利水電科學(xué)研究院水資源研究所,北京 100038; 2.南昌工程學(xué)院水利與生態(tài)工程學(xué)院,南昌 330099)
為了研究我國(guó)北方土石山區(qū)流域土壤斥水性影響因素及其分布規(guī)律,以媯水河流域?yàn)槔_(kāi)展了野外調(diào)查和室內(nèi)研究。對(duì)流域內(nèi)9種植被類型共385個(gè)土壤樣本的滴水穿透時(shí)間(Water drop penetration time,WDPT)與土壤有機(jī)質(zhì)含量、pH值、質(zhì)量分形維數(shù)、土壤顆粒比表面積進(jìn)行統(tǒng)計(jì)分析。研究表明:WDPT由大到小依次為有林地、灌木林、疏林地、果園、高覆蓋度草地、旱地、中覆蓋度草地、低覆蓋度草地、灘地。有林地和灌木林為強(qiáng)烈斥水性,疏林地和果園為輕微斥水性,高覆蓋度草地?zé)o斥水性,旱地、中覆蓋度草地、低覆蓋度草地和灘地為親水性;土壤斥水性在流域的空間分布上表現(xiàn)為西北部、東北部和東南部山區(qū)斥水性較大,中部盆地斥水性較??;在垂向分布上表現(xiàn)為表層最大、中層次之、深層最??;WDPT與土壤有機(jī)質(zhì)含量呈正相關(guān)性,與pH值、質(zhì)量分形維數(shù)、土壤顆粒比表面積呈負(fù)相關(guān)性;土壤pH值和有機(jī)質(zhì)含量是斥水性的主要影響因素,質(zhì)量分形維數(shù)、土壤顆粒比表面積是次要因素。
媯水河流域; 土壤斥水性; 空間分布; 回歸分析
土壤斥水性(Soil water repellency,SWR)是指水分不能或很難濕潤(rùn)土壤顆粒表面的物理現(xiàn)象[1],SWR對(duì)生態(tài)水文過(guò)程產(chǎn)生重要影響,包括抑制水分入滲[2],促進(jìn)地表徑流和侵蝕[3],抑制種子萌發(fā)和植物生長(zhǎng)[4],增加地表土壤的團(tuán)聚穩(wěn)定性[5]進(jìn)而影響到土壤碳的儲(chǔ)存[6]等。土壤斥水性不僅在我國(guó)新疆[7]、內(nèi)蒙古[8]等干旱地區(qū),陜西[9]、山東[10]等半干旱地區(qū)也普遍存在,而且在西藏[11]、云南[12]等濕潤(rùn)地區(qū)也有分布。
土壤斥水性不僅受季節(jié)[13]、耕作制度[14]、灌溉方式[15]、土壤結(jié)構(gòu)和質(zhì)地[16]、水質(zhì)[17]等多種因素影響,而且還受植被類型的影響。李金濤等[12]對(duì)熱帶雨林和橡膠林,孫棋棋等[10]對(duì)棕壤桃園,楊昊天等[8]對(duì)沙漠生態(tài)系統(tǒng),牛健植等[11]對(duì)針葉林生態(tài)系統(tǒng),張培培等[9]對(duì)黃土高原丘陵區(qū)等土壤斥水性分布規(guī)律及影響因素進(jìn)行了研究。以上研究大多針對(duì)單一植被類型或者某一特定土壤,鮮有從流域角度對(duì)斥水性規(guī)律展開(kāi)研究。單一植被條件下土壤斥水性的研究,能夠較好揭示斥水性與土壤理化性質(zhì)響應(yīng)關(guān)系,但難以反映植被類型對(duì)斥水性的影響。在同一區(qū)域植被類型與土壤質(zhì)地對(duì)土壤斥水性的影響,哪一個(gè)是主要因素,目前國(guó)內(nèi)研究較少。本文以流域?yàn)檠芯繉?duì)象,針對(duì)山區(qū)林地(有林地、疏林地)、山前過(guò)渡帶(灌木林和果園),山腳高、中、低覆蓋度草地、旱地和灘地等多種植被類型條件下的土壤斥水性展開(kāi)研究,為深入研究土壤斥水性與山區(qū)水文過(guò)程響應(yīng)關(guān)系提供理論依據(jù)。
研究區(qū)域位于距北京市74 km的延懷盆地東部延慶區(qū),地處北緯40°19′~40°38′、東經(jīng)115°44′~116°21′。東與懷柔相鄰,南與昌平相鄰,西面和北面與河北省懷來(lái)、赤城接壤,是一個(gè)北東南三面環(huán)山,西臨官?gòu)d水庫(kù)的小盆地。發(fā)源于延慶縣城東北13 km的媯水河橫貫延慶盆地,流域面積1 073.6 km2,海拔394~1 978 m。年平均氣溫8℃,光照充足,雨熱同季,晝夜溫差大,屬于蒙古高原到華北平原的過(guò)渡地帶。境內(nèi)林木資源豐富,有林地面積12萬(wàn)hm2,林木覆蓋率達(dá)到60%。
2.1 采樣方案
根據(jù)2016年7月媯水河流域衛(wèi)星遙感資料,通過(guò)GIS軟件獲取媯水河流域主要植被類型信息,選取疏林地、有林地、灌木林、果園、旱地、高覆蓋度、中覆蓋度、低覆蓋度草地、灘地9種主要植被類型作為采樣對(duì)象,采樣區(qū)域如圖1所示。采樣日期為2016年7月中旬,在水平方向上按照對(duì)角線取樣法布點(diǎn),采樣間距2.5 m,取樣點(diǎn)25個(gè),取表層0~10 cm土壤裝入密封袋。在垂直方向上按照邊長(zhǎng)5 m的等邊三角布點(diǎn),分別將3個(gè)點(diǎn)的表層(10 cm)、中層(20 cm)、深層(30 cm)的土壤混合作為其在垂直方向上的樣本,有效樣本總計(jì)385個(gè)。
圖1 采樣點(diǎn)布設(shè)方案Fig.1 Layout schemes of sampling sites
2.2 測(cè)量方法
由于溫度對(duì)土壤潛在斥水性有影響[18],對(duì)土壤樣本的不同處理方法,斥水性測(cè)量結(jié)果也不相同,因此對(duì)土壤樣本分2種處理:將采集的樣本放在恒溫干燥箱65℃下加熱12 h;將采集的樣本室內(nèi)自然風(fēng)干2 d。為了避免土壤容重以及結(jié)構(gòu)[19]對(duì)斥水性的影響,將處理好的土壤過(guò)2 mm篩子,按照1.4 g/cm3容重填入直徑5 cm、高3 cm的鋁盒,然后采用WDPT法對(duì)其進(jìn)行測(cè)定。滴定溶液為純凈水,滴定管采用標(biāo)準(zhǔn)滴定管(0.48 mL/滴),滴頭距離土面1 cm,每一樣本滴定7次,取其平均值作為樣本滴水穿透時(shí)間。按照斥水性分類標(biāo)準(zhǔn)[20]對(duì)測(cè)量結(jié)果進(jìn)行分類,斥水性按入滲時(shí)間可分為:親水性(0~1 s)、無(wú)斥水性(1~5 s)、輕微斥水性(5~60 s)、強(qiáng)烈斥水性(60~600 s)、嚴(yán)重斥水性(600~3 600 s)、極度斥水性(>3 600 s)。以土壤有機(jī)質(zhì)含量、pH值、質(zhì)量分形維數(shù)、土壤顆粒比表面積為觀測(cè)指標(biāo),土壤pH值測(cè)定按照5∶1水土比配置土壤溶液,然后采用電位法進(jìn)行測(cè)量;土壤有機(jī)質(zhì)含量采用重鉻酸鉀—硫酸氧化法進(jìn)行測(cè)量;土壤比表面積采用激光粒度儀濕法[21]測(cè)量;對(duì)于土壤質(zhì)量分形維數(shù)的測(cè)量,首先根據(jù)馬爾文2000型激光粒度儀獲得土壤粒徑分布,然后根據(jù)TYLER等[22]方法計(jì)算,本文土壤粒徑測(cè)定尺度為0.002 mm。各植被類型下土壤樣本有機(jī)質(zhì)含量(OC)、總氮含量(TN)、總磷含量(TP)、電導(dǎo)率(ED)、土壤容重(SBD)等土壤理化性質(zhì)以及各植被面積如表1所示。
表1 土壤理化性質(zhì)及各植被面積Tab.1 Soil physical-chemical properties and vegetation area
3.1 斥水性空間分布
土壤樣本2種不同處理方法所測(cè)得表層滴水穿透時(shí)間WDPT最大值、最小值、平均值如表2所示,WDPT在垂直方向上的平均值如表3所示,對(duì)室內(nèi)風(fēng)干條件下的土壤WDPT采用GIS軟件繪制斥水性空間分布圖,WDPT在全流域分布如圖2所示。
表2 不同植被類型土壤滴水穿透時(shí)間Tab.2 WDPT for different vegetational types
表3 不同植被類型土壤斥水時(shí)間垂直方向分布Tab.3 Distribution of WDPT for different vegetational types in vertical direction s
由表2可知,對(duì)于有林地、灌木林、疏林地、果園和高覆蓋度草地,2種處理方法所得土壤斥水性差異較大,加熱后的土壤樣本只有有林地和灌木林表現(xiàn)出輕微斥水性,其他植被類型無(wú)斥水性或親水性,加熱后的土壤WDPT較自然風(fēng)干條件下的WDPT小。對(duì)于旱地、中覆蓋度草地、低覆蓋度草地和灘地,2種處理方法所得WDPT相差較小,這表明溫度對(duì)具有潛在斥水性的土壤有影響,而對(duì)于親水性土壤影響不大。溫度對(duì)斥水性影響是由于,一方面溫度會(huì)影響土壤顆粒表面親水功能團(tuán)的排列方向[23],面向土壤顆粒表面定向排列的親水基在受熱情況下雜亂地排列,致使親水基和憎水基均勻分布,導(dǎo)致土壤斥水性消失;另一方面溫度影響土壤含水率分布,而土壤斥水性對(duì)含水率的響應(yīng)關(guān)系呈單峰曲線[24],當(dāng)土壤含水率在零到峰值含水率之間,土壤斥水性隨著含水率的增大呈增加趨勢(shì),在峰值含水率時(shí)土壤斥水性達(dá)到最大值[25]。本研究室內(nèi)自然風(fēng)干的土壤具有較高的含水率(6%~12%),而65℃加熱12 h后的土壤含水率較低(0~2%),因而在零到峰值含水率(10%~20%)加熱處理后的土壤具有較小的斥水性。
圖2 土壤斥水性空間分布示意圖Fig.2 Spatial distribution map of soil water repellency
由表2也可以看出,土壤斥水性整體上表現(xiàn)為植被冠層越高斥水性越大的規(guī)律。這是由于有林地、灌木林、疏木林等區(qū)域?qū)儆?0~50 a自然林,土壤較為肥沃,土壤腐殖質(zhì)分解所形成有機(jī)質(zhì)含量較高,因而其斥水性越大[26],而旱地、草地等植被由于季節(jié)性翻耕、收割秸稈以及使用化學(xué)肥料,導(dǎo)致腐殖質(zhì)在土壤中的量及形態(tài)發(fā)生變化[27],處于媯水河兩岸的灘地,周邊植被所形成的腐殖質(zhì)易被河水淋洗,因而其腐殖質(zhì)含量也較少,相應(yīng)的土壤斥水性也越小。由表3可知,有林地、灌木林、疏林地、果園等植被類型的土壤WDPT在垂直方向表現(xiàn)出表層最大、中層次之、深層最小,而其它類型的植被則沒(méi)有明顯的變化規(guī)律。
由圖2可以看出斥水性在空間上表現(xiàn)為:流域西北部、東北部和東南部山區(qū)的有林地和灌木林具有強(qiáng)烈的斥水性(69~327 s之間),南部山前的疏木林和果園具有輕微的斥水性(9.1~17.6 s之間),山前及山谷高、中覆蓋度草地WDPT平均值在3.78 s左右,中部盆地旱地及中、低覆蓋度草地為主的區(qū)域WDPT平均值在0.69~0.80 s之間,媯水河兩岸最小, WDPT在0.664 s左右,白色區(qū)域?yàn)槌擎?zhèn)居民建設(shè)用地,未對(duì)其測(cè)量。
3.2 斥水性影響因素分析
將具有斥水性的4種植被(有林地、灌木林、疏木林、果園)土樣的WDPT與影響因素采用冪函數(shù)進(jìn)行擬合,WDPT與土壤有機(jī)質(zhì)含量、pH值、質(zhì)量分形維數(shù)、土壤顆粒比表面積關(guān)系如圖3~6所示。
圖3 WDPT與有機(jī)質(zhì)含量關(guān)系Fig.3 Relationships between WDPT and soil organic content
由圖3可知,有機(jī)質(zhì)含量與WDPT呈正相關(guān)性,這是因?yàn)橥寥莱馑耘c有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)呈冪函數(shù)關(guān)系[28],同種類型的土壤有機(jī)質(zhì)含量越高土壤的斥水性物質(zhì)越多,因而斥水性也越大。由圖4可知,土壤pH值與WDPT呈負(fù)相關(guān)性,這是由于:①土壤pH值與有機(jī)質(zhì)含量呈顯著負(fù)相關(guān)性[29],土壤pH值越大有機(jī)質(zhì)含量越少,因而斥水性越小。②在一定范圍內(nèi)pH值越大水分?jǐn)U散率越大,水分在土壤中擴(kuò)散越快,相應(yīng)的斥水性也越小[30]。③土壤pH值與胡敏酸含量呈顯著負(fù)相關(guān)關(guān)系,pH值越大疏水性的胡敏酸含量越少,相應(yīng)的其斥水性也越小[31],圖4中各類型土壤pH值在7.5~9.2之間,9種植被的平均pH值分別為8.22、8.08、8.53、8.49、8.56、7.49、8.46、8.54,8.11,研究區(qū)總體上偏堿性。研究區(qū)土壤pH值差異較大,一是研究區(qū)土地利用類型較多,不同植被類型土壤成土母質(zhì)不同;二是研究區(qū)土壤質(zhì)地均質(zhì)性較差,土壤理化性質(zhì)空間變異性較大。由圖5可知,土壤質(zhì)量分形維數(shù)與WDPT呈負(fù)相關(guān)性,這是由于質(zhì)量分形維數(shù)越大,土壤中小于0.002 mm粒徑的土壤顆粒占比越大,對(duì)土壤水分具有較強(qiáng)吸附力的小粒徑顆粒也越多[32],因而土壤斥水性相對(duì)越小。由圖6可知,土壤顆粒比表面積與WDPT呈負(fù)相關(guān)性,這是因?yàn)橥寥李w粒比表面積越大,土壤對(duì)水分的吸附能力越大[33],相對(duì)的土壤斥水性也越大。
圖4 WDPT與pH值關(guān)系Fig.4 Relationships between WDPT and pH value of soil
圖5 WDPT與質(zhì)量分形維數(shù)關(guān)系Fig.5 Relationships between WDPT and mass fractal dimension
圖6 WDPT與土壤顆粒比表面積關(guān)系Fig.6 Relationships between WDPT and specific surface area
對(duì)于具有斥水性的4種植被類型(有林地、灌木林、疏林地、果園),假定WDPT與土壤有機(jī)質(zhì)含量、pH值、質(zhì)量分形維數(shù)、土壤顆粒比表面積符合多元關(guān)系式,為
T=Kωαξβψγζλ
(1)
式中T——滴水穿透時(shí)間,s
ω——有機(jī)質(zhì)含量,mg/kg
ξ——pH值
K——模型系數(shù)
ψ——質(zhì)量分形維數(shù)
ζ——土壤顆粒比表面積
α、β、γ、λ——各影響因素指數(shù)
對(duì)式(1)兩邊取對(duì)數(shù)可得線性方程,為
lgT=lgK+αlgω+βlgξ+γlgψ+λlgζ
(2)
對(duì)式(2)進(jìn)行多元回歸分析,模型參數(shù)和參數(shù)t檢驗(yàn)如表4所示。由表4可知,對(duì)于具有斥水性的4種植被類型,土壤有機(jī)質(zhì)含量的指數(shù)α均為正數(shù),其值越大土壤斥水性越大;土壤pH值、質(zhì)量分形維數(shù)、土壤顆粒比表面積參數(shù)的指數(shù)β、γ、λ均為負(fù)數(shù),說(shuō)明土壤有機(jī)質(zhì)含量與土壤斥水性呈正相關(guān)性,pH值、質(zhì)量分形維數(shù)、土壤顆粒比表面積與土壤斥水性呈負(fù)相關(guān)性,其值越大土壤斥水性越小。由t檢驗(yàn)可知,對(duì)于有林地與灌木林均有|β|>|α|>|λ|>|γ|,說(shuō)明影響其斥水性程度的因素由大到小依次為pH值、有機(jī)質(zhì)含量、土壤顆粒比表面積、質(zhì)量分形維數(shù);對(duì)于疏林地|β|>|γ|>|α|>|λ|,影響其斥水性程度的因素由大到小依次為pH值、質(zhì)量分形維數(shù)、有機(jī)質(zhì)含量、土壤顆粒比表面積;對(duì)于果園|β|>|α|>|λ|>|γ|,影響其斥水性程度的因素由大到小依次為pH值、有機(jī)質(zhì)含量、土壤顆粒比表面積、質(zhì)量分形維數(shù)。
表4 模型參數(shù)回歸分析Tab.4 Regression analysis of model parameters
(1) 9種植被類型的WDPT由大到小依次為有林地、灌木林、疏林地、果園、高覆蓋度草地、旱地、中覆蓋度草地、低覆蓋度草地、灘地,植被冠層越高斥水性越大。
(2) WDPT空間上表現(xiàn)為流域西北部、東北部和東南部山區(qū)斥水性較大,中部盆地斥水性較小,垂直方向上整體表現(xiàn)為表層最大、中層次之、深層最小。
(3)土壤有機(jī)質(zhì)含量與斥水性呈正相關(guān)性,土壤pH值、質(zhì)量分形維數(shù)、顆粒比表面積與斥水性呈負(fù)相關(guān)性。土壤有機(jī)質(zhì)含量和pH值是斥水性的主要影響因素,質(zhì)量分形維數(shù)和顆粒比表面積是影響斥水性的次要因素。
1 RITSEMA C J, DEKKER L W, HENDRICKX J M H, et al.Preferential flow mechanism in a water repellent sandy soil [J].Water Resources Research, 1993, 29(7): 2183-2194.
2 WANG Z, WU Q J, WU L, et al.Effects of soil water repellency on infiltration rate and flow instability [J].Journal of Hydrology, 2003,231(41): 265-276.
3 RITSEMA C J, DEKKER L W.Distribution flow: a general process in the top layer of water repellent soils [J].Water Resources Research, 1995, 31(5): 1187-1200.
4 MOORE D, KOSTKA S, BOERTH T, et al.The impact of soil water repellency on hydrological properties of soil, the plant growing environment[C]∥Irrigation Efficiency and Water Consumption, 2010.
5 DEKKER L W, RITSEMA C J.How water moves in a water repellent sandy soil.I.potential and actual water repellency [J].Water Resources Research, 1994, 30(9): 2507-2517.
6 MATAIX-SOLERA J, DOERR S H.Hydrophobicity and aggregate stability in calcareous top soils from fire-affected pine forests in southeastern Spain [J].Geoderma, 2004, 118(1): 77-88.
7 邵志一,李毅.瑪納斯河流域土壤水分及斥水性空間變異性研究[J].西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,2016,44(2): 207-213.
SHAO Zhiyi, LI Yi.Spatial variability in soil moisture and water repellency in Manasi River basin [J].Journal of Northwest A&F University: Nat.Sci.Ed., 2016, 44(2): 207-213.(in Chinese)
8 楊昊天,劉立超,高艷紅,等.騰格里沙漠沙丘固定后土壤的斥水性特征研究[J].中國(guó)沙漠,2012,32(3): 674-682.
YANG Haotian, LIU Lichao, GAO Yanhong,et al.Characteristic of soil water repellency in stabilized sand dunes in the Tengger desert [J].Journal of Desert Research, 2012, 32(3): 674-682.(in Chinese)
9 張培培,趙允格,王媛,等.黃土高原丘陵區(qū)生物結(jié)皮土壤的斥水性[J].應(yīng)用生態(tài)學(xué)報(bào),2014,25(3): 657-663.
ZHANG Peipei, ZHAO Yunge, WANG Yuan, et al.Impact of biological soil crusts on soil water repellence in the hilly Loess Plateau region,China[J].Chinese Journal of Applied Ecology, 2014, 25(3): 657-663.(in Chinese)
10 孫棋棋,劉前進(jìn),于興修,等.沂蒙山區(qū)桃園棕壤斥水性對(duì)理化性質(zhì)的空間響應(yīng)[J].土壤學(xué)報(bào), 2014,51(3): 648-655.
SUN Qiqi, LIU Qianjin, YU Xingxiu, et al.Spatial response of water repellency to physicochemical properties in peach (Prunuspersica) orchard brown soil in Yimeng Mountains [J].Acta Pedologica Sinica, 2014, 51(3):648-655.(in Chinese)
11 牛健植,余新曉,趙玉濤,等.貢嘎山暗針葉林生態(tài)系統(tǒng)土壤斥水性分析[J].中國(guó)科技論文在線, 2010, 18(3):1912-1918.
NIU Jianzhi, YU Xinxiao, ZHAO Yutao, et al.Water repellency in soils in the dark coniferous forest ecosystem of Gongga Mountain[J].Science Paper Online,2010,18(3):1912-1918.(in Chinese)
12 李金濤,劉文杰,盧洪健.西雙版納熱帶雨林和橡膠林土壤斥水性比較[J].云南大學(xué)學(xué)報(bào):自然科學(xué)版, 2010,32(增刊1): 391-398.
LI Jintao, LIU Wenjie,LU Hongjian.Comparison of water repellency in the tropical rainforest and rubber plantation in Xishuangbanna, SW China[J].Journal of Yunnan University:Nat.Sci.Ed., 2010,32(Supp.1): 391-398.(in Chinese)
13 李子忠,吳延磊,龔元石,等.內(nèi)蒙古草原土壤斥水性的季節(jié)變化[J].干旱地區(qū)農(nóng)業(yè)研究, 2010,28(2): 208-213.
LI Zizhong, WU Yanlei, GONG Yuanshi, et al.Seasonal change of soil water repellency in Inner Mongolia grassland [J].Agricultural Research in the Arid Areas, 2010, 28(2): 208-213.(in Chinese)
14 楊邦杰.斥水土壤中的水熱運(yùn)動(dòng)規(guī)律與數(shù)值模型[J].土壤學(xué)報(bào), 1996,33(4): 351-359.
YANG Bangjie.Hydrothermal movement rule and numerical model in water repellent soil [J].Acta Pedologica Sinica, 1996,33(4): 351-359.(in Chinese)
15 巨娟麗,李毅,宋紅陽(yáng),等.CaCl2溶液灌溉對(duì)土壤水鹽與斥水性分布的影響[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2014,45(10):159-166.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20141025&journal_id=jcsam.DOI: 10.6041/j.issn.1000-1298.2014.10.025.
JU Juanli,LI Yi,SONG Hongyang, et al.Effects of CaCl2solution irrigation on distributions of soil water, salt and water repellence[J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2014,45(10):159-166.(in Chinese)
16 畢利東,馬春平,陳丹,等.土壤斥水性在土壤團(tuán)聚體內(nèi)的空間分異研究[J].三峽大學(xué)學(xué)報(bào):自然科學(xué)版,2014,36(6): 54-57.
BI Lidong, MA Chunping, CHEN Dan, et al.Spatial variation of soil water repellency in soil aggregate [J].Journal of China Three Gorges University: Natural Sciences Edition,2014,36(6): 54-57.(in Chinese)
17 商艷玲,李毅,朱德蘭.再生水灌溉對(duì)土壤斥水性的影響[J].農(nóng)業(yè)工程學(xué)報(bào), 2012,28(21): 89-97.
SHANG Yanling, LI Yi, ZHU Delan.Effects of reclaimed water irrigation on soil water repellency [J].Transactions of the CSAE, 2012, 28(21): 89-97.(in Chinese)
18 陳俊英,張智韜,吳普特,等.烘干溫度和時(shí)間對(duì)潛在土壤斥水性的影響研究[J].節(jié)水灌溉, 2012(4): 11-14.
CHEN Junying, ZHANG Zhitao, WU Pute, et al.Study on the effect of drying temperature and time on poten-tial soil water repellency [J].Water Saving Irrigation, 2012(4): 11-14.(in Chinese)
19 楊松,吳珺華,董紅艷,等.砂土和黏土的顆粒差異對(duì)土壤斥水性的影響[J].土壤學(xué)報(bào),2016,53(2): 421-426.
YANG Song, WU Junhua, DONG Hongyan, et al.Soil water repellency of sands and clay as affected by particle size[J].Acta Pedologica Sinica,2016,53(2):421-426.(in Chinese)
20 RITSEMA C J, DEKKER L W.Soil water repellency: occurrence, consequences, and amelioration [J].Journal of Physics A Mathematical & Theoretical, 2003, 45(6): 2140-2154.
21 楊道媛,馬成良,孫宏魏,等.馬爾文激光粒度分析儀粒度檢測(cè)方法及其優(yōu)化研究[J].中國(guó)粉體技術(shù),2002,8(5): 27-30.
YANG Daoyuan, MA Chengliang, SUN Hongwei, et al.Study on the particle size test method and its optimization for Malvern laser particle size analyzer [J].China Powder Science and Technology, 2002, 8(5): 27-30.(in Chinese)
22 TYLER S W, WHEATCRAFT S W.Fractal scaling of soil particle-size distributions: analysis and limitations [J].Soil Science Society of America Journal, 1992, 56(2): 362-369.
23 曹曉斌,吳廣寧,付龍海,等.溫度對(duì)土壤電阻率影響的研究[J].電工技術(shù)學(xué)報(bào), 2007, 22(9): 1-6.
CAO Xiaobin,WU Guangning, FU Longhai, et al.Study of the temperature impact on soil resistivity [J].Transactions of China Electrotechnical Society, 2007, 22(9): 1-6.(in Chinese)
24 陳俊英,張智韜,楊飛,等.土壤的斥水性和含水量變化關(guān)系的數(shù)學(xué)模型[J].灌溉排水學(xué)報(bào), 2009,28(6): 35-38.
CHEN Junying, ZHANG Zhitao, YANG Fei, et al.Modeling water repellency and water content of a sand soil [J].Journal of Irrigation and Drainage, 2009, 28(6): 35-38.(in Chinese)
25 陳俊英,吳普特,張智韜,等.土壤斥水性對(duì)含水率的響應(yīng)模型研究[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2012,43(1): 63-67.http:∥www.j-csam.org/ch/reader/create_pdf.aspx?file_no=20120113&flag=1&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2012.01.013.
CHEN Junying, WU Pute, ZHANG Zhitao, et al.Response models for soil water repellency and soil moisture[J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 63-67.(in Chinese)
26 井大煒,王明友,張紅,等, 蚯蚓糞配施尿素對(duì)豇豆根系特征與根際土腐殖質(zhì)的影響[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017,48(1):212-219.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20170128&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2017.01.028.
JING Dawei, WANG Mingyou, ZHANG Hong, et al.Effects of vermicompost coapplied with urea on root characteristics and humus in rhizosphere soil of cowpea [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2017,48(1): 212-219.(in Chinese)
27 徐丹,劉昌華,蔡太義,等.農(nóng)田土壤有機(jī)質(zhì)和全氮三維空間分布特征研究[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2015,46(12): 157-163.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20151222&journal_id=jcsam.DOI: 10.6041/j.issn.1000-1298.2015.12.022.
XU Dan, LIU Changhua, CAI Taiyi, et al.3D spatial distribution characteristics of soil organic matter and total nitrogen in farmland [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 157-163.(in Chinese)
28 陳俊英,吳普特,張智韜,等.土壤斥水性與有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)的變化關(guān)系研究[J].灌溉排水學(xué)報(bào), 2012,31(3): 96-98.
CHEN Junying, WU Pute, ZHANG Zhitao, et al.The relationship between WDPT and soil organic matter [J].Journal of Irrigation and Drainage, 2012,31(3): 96-98.(in Chinese)
29 戴萬(wàn)宏,黃耀,武麗,等.中國(guó)地帶性土壤有機(jī)質(zhì)含量與酸堿度的關(guān)系[J].土壤學(xué)報(bào), 2009, 46(5):851-860.
DAI Wanhong, HUANG Yao, WU Li, et al.Relationships between soil organic matter content (SOM) and pH in top-soil of zonal soils in China [J].Acta Pedologica Sinica, 2009, 46(5):851-860.(in Chinese)
30 龔恩磊,王輝,胡傳旺,等.酸性溶液對(duì)紅壤水分入滲特征影響及其模擬研究[J].水土保持學(xué)報(bào), 2015,29(1): 48-51.
GONG Enlei, WANG Hui, HU Chuanwang, et al.Simulation and influence of acid solutions on the hydraulic characteristics of red soil [J].Journal of Soil and Water Conservation, 2015, 29(1): 48-51.(in Chinese)
31 李自剛,岳曉禹,李長(zhǎng)濱,等.基于變量選擇的堆肥胡敏酸含量近紅外光譜分析[J/OL].農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017,48(2):300-304.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=20170240&journal_id=jcsam.DOI: 10.6041/j.issn.1000-1298.2017.02.040.
LI Zigang, YUE Xiaoyu, LI Changbin, et al.Near infrared spectral modeling analysis based on variable selection of compost hemic acid content [J/OL].Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 300-304.(in Chinese)
32 曾憲勤,劉和平,路炳軍,等.北京山區(qū)土壤粒徑分布分形維數(shù)特征[J].山地學(xué)報(bào), 2008,26(1): 65-70.
ZENG Xianqin, LIU Heping, LU Bingjun, et al.Fractal dimension of soil particle size distribution characteristic in the Beijing mountains [J].Journal of Mountain Science, 2008, 26(1): 65-70.(in Chinese)
33 DIEHL D.Cheminform abstract: soil water repellency: dynamics of heterogeneous surfaces [J].Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 432(38): 8-18.
SpatialDistributionandEffectFactorsofSoilWaterRepellencyinGuishuiRiverBasin
REN Changjiang1,2ZHAO Yong1GONG Jiaguo1WANG Jianhua1LI Haihong1GU Jinpu1
(1.DepermentofWaterResources,ChinaInstituteofWaterResourcesandHydropowerResearch,Beijing100038,China2.CollegeofWaterConservancyandEcologicalEngineering,NanchangInstituteofEngineering,Nanchang330099,China)
In order to research the distribution rule and influence factors of soil water repellency of rocky mountain area of northern China, the Guishui River Basin was taken as an example, the field investigation and lab analysis was carried out.Totally 385 soil samples of 9 different vegetation types were collected and the change rule between water drop penetration time (WDPT) with the factors of soil organic content, pH value, and mass fractal dimension and soil particle specific surface area was analyzed by the system.The research results showed that the order of soil water repellency degree was forest lands, shrubbery, open forest land, orchard, high coverage grassland, dryland, medium and low coverage grass land and beach land.The WDPT in northwest, northeast and southeast mountains of the basin was bigger, and in central basin was smaller in spatial distribution, meanwhile, the WDPT in soil surface was the most, intermediate was the second, and deep layers was the least in vertical direction.The WDPT had a positive correlation with the organic content, and it had an inverse correlation with pH value, mass fractal dimension and specific surface area.The pH value was the main influencing factor of WDPT for forest lands, shrubbery, orchard and high coverage grassland.The organic content was the major influence factor of WDPT for dryland, medium and low coverage grass land.For open forest land, the specific surface area was the principal influence factor of WDPT, and the mass fractal dimension was the major influence factor of WDPT for beach land.
Guishui River Basin; soil water repellency; spatial distribution; regression analysis
10.6041/j.issn.1000-1298.2017.10.029
S152.7
A
1000-1298(2017)10-0237-08
2017-04-24
2017-08-09
流域水循環(huán)模擬與調(diào)控國(guó)家重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(2015ZY01、2016ZY01)、國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFC0401407)和國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(2015CB452701)
任長(zhǎng)江(1984—),男,博士后,南昌工程學(xué)院講師,主要從事水文水資源研究,E-mail: 971932670@qq.com
趙勇(1977—),男,教授級(jí)高級(jí)工程師,主要從事水文水資源領(lǐng)域研究,E-mail: zhaoyong@iwhr.com