王瑞云,劉笑瑜,王海崗,陸平,劉敏軒,陳凌,喬治軍
?
用高基元微衛(wèi)星標(biāo)記分析中國(guó)糜子遺傳多樣性
王瑞云1,2,劉笑瑜1,王海崗2,陸平3,劉敏軒3,陳凌2,喬治軍2
(1山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,山西太谷030801;2山西省農(nóng)業(yè)科學(xué)院農(nóng)作物品種資源研究所/農(nóng)業(yè)部黃土高原作物基因資源與種質(zhì)創(chuàng)制重點(diǎn)實(shí)驗(yàn)室/雜糧種質(zhì)資源發(fā)掘與遺傳改良山西省重點(diǎn)實(shí)驗(yàn)室,太原030031;3中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所,北京100081)
開(kāi)發(fā)高基元(4—6)堿基重復(fù)微衛(wèi)星標(biāo)記,分析種質(zhì)資源遺傳多樣性,為糜子遺傳和進(jìn)化研究提供理論基礎(chǔ)。用隸屬函數(shù)、主成分分析和聚類分析綜合評(píng)價(jià)糜子資源表型多樣性,用前期糜子轉(zhuǎn)錄組測(cè)序獲得高基元SSR引物對(duì)地理來(lái)源差異大的糜子材料進(jìn)行PCR擴(kuò)增檢測(cè)其多態(tài)性,用PowerMarker 3.25計(jì)算遺傳多樣性參數(shù),用PopGen 1.32計(jì)算Nei’s遺傳距離,用MEGA 5.0進(jìn)行聚類分析,用Structure 2.2鑒定遺傳類群。96份糜子資源株高和穗長(zhǎng)變異最豐富,多樣性指數(shù)分別為2.08和1.91。PCR擴(kuò)增發(fā)現(xiàn),占56.29%的85對(duì)引物具多態(tài)性,其中四、五和六堿基重復(fù)引物分別為71對(duì)(83.53%)、10對(duì)(11.76%)和4對(duì)(4.7%)。85個(gè)標(biāo)記擴(kuò)增產(chǎn)物大小分布為100—450 bp,PIC值平均為0.51,Rp值為1.00—5.75,平均為3.15。四、五和六堿基重復(fù)SSR的平均Rp值分別為3.15、2.8和4.0?;赗p值分析SSR的分布頻次,發(fā)現(xiàn)85個(gè)標(biāo)記分布區(qū)間為0—1、1—2、2—3、3—4、4—5和5—6,分別包含1(1.18%)、15(17.65%)、31(36.47%)、20(23.53%)、12(14.12%)和6(7.06%)個(gè)標(biāo)記,60%(51個(gè))的標(biāo)記分布在區(qū)間2—3和3—4。用85個(gè)SSR擴(kuò)增96份糜子資源,共檢測(cè)到232個(gè)等位變異,每個(gè)位點(diǎn)檢測(cè)到等位變異2—3個(gè),平均2.7294個(gè);62個(gè)位點(diǎn)產(chǎn)生3個(gè)變異,23個(gè)位點(diǎn)產(chǎn)生2個(gè)變異;多樣性指數(shù)為0.2842—1.0633,平均為0.7708;PIC值為0.0400—0.7281,平均為0.4723。不同生態(tài)區(qū)糜子種質(zhì)間的遺傳距離為0.0093—0.5052(平均為0.1798),遺傳一致度為0.6034—0.9907(平均為0.8485)?;赨PGMA將96個(gè)糜子基因型聚為4個(gè)群組,第一群組主要屬于北方春糜子區(qū);第二群主要屬于東北春糜子區(qū);第三群組主要屬于華北夏糜子區(qū);第四群組主要屬于黃土高原春夏糜子區(qū)。遺傳結(jié)構(gòu)分析將96份試材劃分為4個(gè)類群,分別代表黃土高原、華北、東北和北方基因庫(kù)。UPGMA聚類分析和遺傳結(jié)構(gòu)分析結(jié)果基本一致,均與地理起源相關(guān)。在糜子中構(gòu)建了85個(gè)四、五和六堿基重復(fù)微衛(wèi)星標(biāo)記,這些高基元SSR的引物分辨率(Rp)高,對(duì)不同基因型分辨能力強(qiáng),PCR擴(kuò)增多態(tài)性好;用其評(píng)估中國(guó)糜子資源的遺傳差異發(fā)現(xiàn),黃土高原春夏糜子區(qū)和北方春糜子區(qū)資源遺傳多樣性最豐富。
糜子;高基元SSR;遺傳多樣性;聚類分析;遺傳結(jié)構(gòu)
【研究意義】糜子(L.)又叫黍稷,為旱地農(nóng)業(yè)重要經(jīng)濟(jì)作物。糜子在亞洲中部和東部、印度、非洲、中東、東歐(俄羅斯和烏克蘭)和北美均有分布[1]。糜子脫殼后稱黃米,糯質(zhì)黃米可用于蒸糕、炸油糕、包粽子和釀酒,粳質(zhì)黃米多用于制作涼粉、煎餅、黃米酸飯和炒米[2]。糜子在歐美主要用于飼鳥和禽畜育肥。糜子作為C4植物,蒸騰速率低,在干旱、高溫等惡劣條件下快速成熟,是干旱、半干旱地區(qū)的穩(wěn)產(chǎn)作物。中國(guó)是糜子起源地,資源豐富,明確不同種質(zhì)的遺傳背景,準(zhǔn)確評(píng)估糜子遺傳多樣性,有利于糜子作物的合理開(kāi)發(fā)和高效利用?!厩叭搜芯窟M(jìn)展】分子標(biāo)記是評(píng)估作物遺傳差異和鑒定群體間親緣關(guān)系遠(yuǎn)近的有效手段。由于糜子是異源四倍體,基因組復(fù)雜,序列信息缺乏,分子標(biāo)記的開(kāi)發(fā)相對(duì)欠缺。1994—2006年相繼開(kāi)發(fā)的適用于糜子多樣性分析的分子標(biāo)記(RAPD、AFLP、RFLP、ISSR等)非常有限[3-6],尤其是變異豐富、多態(tài)性高、重復(fù)性好、檢測(cè)能力強(qiáng)[7]的SSR標(biāo)記更少。2008—2014年,HU等[8]和RAJPUT等[9]分別開(kāi)發(fā)了46個(gè)和254個(gè)來(lái)自小麥、水稻、燕麥和柳枝稷的糜子非特異性微衛(wèi)星標(biāo)記,然而種間差異的存在影響遺傳多樣性評(píng)估準(zhǔn)確性。2010年,CHO等[10]首次開(kāi)發(fā)了糜子特異性微衛(wèi)星標(biāo)記25個(gè),隨后利用上述標(biāo)記評(píng)估糜子遺傳資源差異的研究漸次進(jìn)行。2011年,HUNT等[11]利用其中16對(duì)引物分析了歐亞大陸的98份糜子資源,檢測(cè)到78個(gè)等位基因,每個(gè)位點(diǎn)檢測(cè)到等位變異為2—15個(gè)(平均4.9個(gè)),基因多樣性指數(shù)和多態(tài)性信息含量(polymorphism information content,PIC)分別為0.391和0.360;2015年,連帥等[12]利用5對(duì)SSR引物分析來(lái)源于5個(gè)糜子生態(tài)區(qū)的40份資源的多樣性,檢測(cè)到15個(gè)等位變異,平均為3個(gè),遺傳多樣性指數(shù)和PIC值分別為0.76和0.48;董俊麗等[13]利用其中19對(duì)引物檢測(cè)96份糜子種質(zhì),發(fā)現(xiàn)112個(gè)等位變異,基因多樣性指數(shù)和PIC值分別為0.4097和0.392。2016年,劉笑瑜等[14]選用其中6對(duì)SSR引物分析中國(guó)不同省份的40份糜子資源,發(fā)現(xiàn)20個(gè)等位變異,遺傳多樣性指數(shù)和PIC值分別為0.5426和0.3403;2017年,王瑞云等[15]用15對(duì)引物,評(píng)估不同生態(tài)區(qū)132份糜子的遺傳多樣性,共檢測(cè)到107個(gè)等位變異,每個(gè)位點(diǎn)鑒定到的2—14個(gè)(平均7個(gè)),基因多樣性指數(shù)和PIC值分別為0.5298和0.4864。近年來(lái),隨著高通量測(cè)序技術(shù)的廣泛運(yùn)用,全基因組SSR標(biāo)記批量挖掘取得長(zhǎng)足進(jìn)展。2016年,RAJPUT等[16]用100個(gè)SSR(80個(gè)來(lái)自柳枝稷、7個(gè)來(lái)自水稻、6個(gè)為糜子、5個(gè)來(lái)自小麥、2個(gè)來(lái)自燕麥)評(píng)估了歐亞和北美等25個(gè)國(guó)家的90份糜子資源,檢測(cè)到1 287個(gè)等位變異(長(zhǎng)度為40—1 500 bp),每個(gè)位點(diǎn)檢測(cè)到等位變異1—29個(gè)(平均4.9個(gè)),每份材料檢測(cè)到等位變異41—317。同年,LIU等[17]和連帥等[18]用糜子高通量測(cè)序開(kāi)發(fā)的130條SSR引物分析了280份國(guó)內(nèi)外的糜子栽培品種和野生資源?!颈狙芯壳腥朦c(diǎn)】糜子基因組序列未知,可供遺傳分析的SSR標(biāo)記數(shù)量有限,且以往研究所用標(biāo)記多為低基元(二、三核苷酸)序列重復(fù)?!緮M解決的關(guān)鍵問(wèn)題】基于RNA-Seq手段篩選到一批高基元(四、五、六核苷酸)序列重復(fù)SSR,并用以評(píng)估糜子遺傳多樣性,以期為糜子連鎖圖譜構(gòu)建及進(jìn)化研究提供更多分子檢測(cè)工具,批量篩選高基元微衛(wèi)星標(biāo)記,明確引物分辨率特征。
試驗(yàn)材料包括96份種質(zhì)資源,來(lái)源于國(guó)家資源庫(kù)的地方品種(有國(guó)家種質(zhì)資源庫(kù)統(tǒng)一編號(hào))76份、筆者實(shí)驗(yàn)室征集的地方品種(標(biāo)注為農(nóng)家種,無(wú)國(guó)家種質(zhì)資源庫(kù)統(tǒng)一編號(hào))18份和育成品種2份(附表1),分布于6個(gè)糜子生態(tài)栽培區(qū)(表1)。
表1 糜子資源生態(tài)區(qū)分布
96份糜子資源分別于2015年5月12日和2016年5月14日種植在山西農(nóng)業(yè)大學(xué)農(nóng)作站,分5行點(diǎn)播,每行10株,株距5 cm,行距8 cm,小區(qū)間距50 cm。參照王星玉等[19]的方法,成熟期測(cè)量表型性狀(株高、穗長(zhǎng)、分蘗數(shù)、主莖節(jié)數(shù)、千粒重、葉長(zhǎng)、葉寬)。
取15—20 d糜子幼苗(1株)葉片約0.3 g,用改良CTAB法[20]提取基因組DNA。利用1%瓊脂糖凝膠電泳檢測(cè)DNA質(zhì)量,用紫外微量核酸儀(NanoDropND-1000,Eppendorf)測(cè)定DNA純度和濃度。
用地理來(lái)源差異顯著的8份糜子材料對(duì)前期抗旱和抗鹽相關(guān)轉(zhuǎn)錄組測(cè)序獲得的151個(gè)高基元SSR引物進(jìn)行初步篩選(附表2和附表3)。85個(gè)標(biāo)記可以擴(kuò)增出清晰度高且重復(fù)性好的多態(tài)性片段(附表4,由上海生工生物工程技術(shù)服務(wù)有限公司合成),用于評(píng)估96份糜子資源遺傳多樣性。
PCR反應(yīng)體系(20 μL)包括10×buffer(Mg2+含量25 mmol·L-1)2 μL、10 mmol·L-1dNTP 1.8 μL,5 U·L-1Taq聚合酶0.4 μL、1 mmol·L-1前后引物各0.6 μL、ddH2O 13.6 μL和30 ng·μL-1DNA模板1 μL。PCR擴(kuò)增在LifeEco基因擴(kuò)增儀(TC-96/G/H(b)c,杭州博日科技有限公司)上進(jìn)行,程序?yàn)?4℃5 min;94℃45 s,不同Tm退火50 s,72℃1 min,38個(gè)循環(huán);72℃10 min。用8%聚丙烯酰胺凝膠電泳檢測(cè)PCR擴(kuò)增產(chǎn)物,硝酸銀染色顯影。等位變異長(zhǎng)度用50 bp DNA Marker(北京莊盟國(guó)際生物基因科技有限公司)比對(duì)條帶。
用SAS軟件對(duì)各性狀進(jìn)行主成分和相關(guān)性分析。利用模糊隸屬函數(shù)法計(jì)算各性狀的隸屬函數(shù)值以進(jìn)行綜合評(píng)價(jià)及Shannon-wiener遺傳多樣性指數(shù)評(píng)價(jià),方法參考董俊麗等[13]。
凝膠條帶表示標(biāo)記(>50 bp)大小,相鄰條帶大小相差25 bp。SSR標(biāo)記如果在至少2份材料擴(kuò)增出不同的DNA條帶,則具有多態(tài)性。DNA條帶代表等位變異,相同條帶表示相同等位變異。引物分辨率(resolving power,Rp)計(jì)算按照Prevost等[21]方法,Rp = ∑,其中,1-(2×︱0.5 -︱),為某個(gè)等位基因信息量,為某個(gè)等位基因在6份材料中出現(xiàn)的頻率。用PowerMarker 3.25[22]計(jì)算每對(duì)引物的多樣性參數(shù),包括等位基因數(shù)(Na)、等位基因頻率、基因多樣性指數(shù)(H)、多態(tài)性信息含量指數(shù)(PIC)等。用PopGen1.32[23]進(jìn)行群體間聚類分析。用MEGA 5.0[24]構(gòu)建Neighbour-Joining聚類圖。用Structure 2.2[25]分析群體遺傳結(jié)構(gòu)。
對(duì)96份糜子資源的7個(gè)表型性狀進(jìn)行了表型多樣性分析(表2),7項(xiàng)指標(biāo)變異系數(shù)為18.21%—42.19%,分蘗數(shù)最大,主莖節(jié)數(shù)和株高次之,葉長(zhǎng)最小,說(shuō)明糜子不同種質(zhì)分蘗數(shù)相差較大。糜子7項(xiàng)指標(biāo)遺傳多樣性指數(shù)為1.78—2.08,株高最大,說(shuō)明株高變異豐富。
表2 糜子表型性狀多樣性分析
對(duì)96份糜子資源的表型性狀進(jìn)行相關(guān)性分析(表3)。21對(duì)相關(guān)性中,13對(duì)(61.9%)呈正相關(guān),8對(duì)呈負(fù)相關(guān),7對(duì)(33.3%)極顯著相關(guān),1對(duì)(千粒重和分蘗數(shù))顯著相關(guān)。其中,株高與主莖節(jié)數(shù)相關(guān)系數(shù)最大(0.601),其次為葉長(zhǎng)與葉寬(0.561),說(shuō)明株高越高,主莖節(jié)數(shù)越多,葉長(zhǎng)越長(zhǎng),葉寬也越大。分蘗數(shù)和主莖節(jié)數(shù)極顯著負(fù)相關(guān)(-0.216),說(shuō)明主莖節(jié)數(shù)越少,分蘗數(shù)越多。
對(duì)96份糜子資源進(jìn)行主成分分析(表4)。結(jié)果表明,前5個(gè)主成分累積貢獻(xiàn)率為91.51%,包含表型特征多數(shù)信息,可用以綜合分析糜子資源。其中,第一主成分貢獻(xiàn)率33.29%,株高載荷值最大,第一主成分值大的資源,株高較高。第二主成分和第五主成分均為分蘗數(shù)載荷值最大,累積貢獻(xiàn)率29.36%,說(shuō)明第二和第五主成分值大的資源分蘗數(shù)多;同時(shí)第五主成分穗長(zhǎng)和千粒重均為負(fù)值,且絕對(duì)值較大,育種中選擇第五主成分小的種質(zhì),分蘗數(shù)少,穗長(zhǎng)和千粒重大。第三主成分千粒重、株高和穗長(zhǎng)載荷值均較大,為產(chǎn)量相關(guān)性狀,在育種中可選擇第三主成分值大的種質(zhì)。第四主成分千粒重、葉長(zhǎng)和葉寬貢獻(xiàn)率均較大,株高、穗長(zhǎng)為負(fù)值,絕對(duì)值較大,說(shuō)明第四主成分值高的種質(zhì),千粒重大、葉片長(zhǎng)而寬,但植株低、穗短,可用于矮桿、高產(chǎn)育種的選育。
分析糜子資源表型性狀隸屬值分布(圖1)。株高主要集中在4—9級(jí),占材料的84.38%;穗長(zhǎng)主要集中在5—8級(jí),占材料的77.08%;分蘗數(shù)主要集中在2—4級(jí),占材料的84.38%;主莖節(jié)數(shù)主要集中在3—8級(jí),占材料的82.29%;千粒重主要集中在5、6、8和10級(jí),占材料的68.75%,葉長(zhǎng)主要集中在6—10級(jí),占材料的80.12%,葉寬主要集中在4—8級(jí),占材料的76.04%。綜合評(píng)價(jià)各試驗(yàn)材料隸屬函數(shù)平均值,發(fā)現(xiàn)甘肅省的榆中黃糜(00002787)的值最高(0.738),綜合評(píng)價(jià)最好;山西孝義黃糜子值最低(0.231),綜合評(píng)價(jià)最低。
表3 糜子表型性狀間的相關(guān)性分析
*和** 分別表示在0.05和0.01水平差異顯著
* and ** indicate significant difference at the probability level of 0.05 and 0.01, respectively
表4 表型性狀5個(gè)主成分的特征向量、主成分特征值、貢獻(xiàn)率及累積貢獻(xiàn)率
山西農(nóng)業(yè)大學(xué)農(nóng)學(xué)院糜子分子育種課題組前期基于RNA-Seq篩選到151對(duì)高基元SSR引物,用這些引物擴(kuò)增6份糜子材料。發(fā)現(xiàn)25對(duì)擴(kuò)增不出DNA條帶,126對(duì)(83.4%)有擴(kuò)增條帶。126對(duì)引物中,41對(duì)擴(kuò)增的條帶呈單態(tài)性,85對(duì)(附表4)呈多態(tài)性,占151對(duì)引物的56.3%。其中四、五和六堿基重復(fù)引物分別為71對(duì)(83.5%)、10對(duì)(11.8%)和4對(duì)(4.7%)。
圖1 糜子資源表型性狀隸屬值分布
引物分辨率(Rp值)是衡量引物對(duì)不同基因型辨別能力的指標(biāo)。85對(duì)高基元SSR的引物特征(等位基因大小和Rp值)見(jiàn)附表5和圖2。從附表5可以看出,85個(gè)SSR的等位基因?yàn)?00—450 bp;85個(gè)SSR的Rp值為1.00—5.75(平均3.15),標(biāo)記RYW42的Rp值最小,標(biāo)記RYW47的Rp值最大;四、五和六堿基重復(fù)SSR的平均Rp值分別為3.15、2.8和4.0,六堿基重復(fù)SSR數(shù)量最少(4個(gè)),但Rp值較高,可能與其重復(fù)單元差異較大有關(guān)?;赗p值分析85個(gè)SSR的分布頻次(圖2),發(fā)現(xiàn)頻次分布區(qū)間為0—1、1—2、2—3、3—4、4—5和5—6,分別包含1(1.18%)、15(17.65%)、31(36.47%)、20(23.53%)、12(14.12%)和6(7.06%)個(gè)標(biāo)記,60%(51個(gè))的標(biāo)記分布在區(qū)間2—3和3—4。
圖2 85個(gè)糜子多態(tài)性SSR標(biāo)記的Rp值
用85對(duì)SSR引物擴(kuò)增96份試材,分析糜子資源遺傳多樣性(附表6)。從附表6可以看出,85個(gè)標(biāo)記在96份試材中共檢出232個(gè)等位變異,每個(gè)位點(diǎn)檢測(cè)到等位變異2—3個(gè),平均為2.7294個(gè);62個(gè)位點(diǎn)產(chǎn)生3個(gè)變異,23個(gè)SSR位點(diǎn)產(chǎn)生和2個(gè)變異。85個(gè)位點(diǎn)多樣性指數(shù)為0.2842(RYW75)—1.0633(RYW37),平均為0.7708。85個(gè)位點(diǎn)PIC值為0.1133(RYW46)—0.7281(RYW8),平均為0.4723。
分析不同生態(tài)區(qū)糜子資源的遺傳多樣性(表5),結(jié)果發(fā)現(xiàn),北方春糜子區(qū)PIC值、多樣性指數(shù)及觀測(cè)等位基因數(shù)等遺傳多樣性衡量指標(biāo)最高,黃土高原春夏糜子區(qū)次之,南方秋冬糜子區(qū)均最低,說(shuō)明北方春糜子區(qū)和黃土高原春夏糜子區(qū)遺傳多樣性比較豐富。
利用PopGen 1.32計(jì)算不同生態(tài)區(qū)糜子種質(zhì)間的遺傳相似性(表6)。結(jié)果表明,遺傳距離為0.0093—0.5052(平均0.1798)。遺傳一致度為0.6034—0.9907(平均0.8485)。南方秋冬糜子區(qū)與西北春夏糜子區(qū)遺傳距離最大,遺傳一致度最低,這與2個(gè)生態(tài)區(qū)地理分布較遠(yuǎn)、氣候環(huán)境差別大、親緣關(guān)系較遠(yuǎn)有關(guān);北方春糜子區(qū)和黃土高原春夏糜子區(qū)遺傳距離最小,遺傳一致度最高,這與2個(gè)生態(tài)區(qū)相鄰、氣候差異小、親緣關(guān)系較近有關(guān)。說(shuō)明遺傳距離越大,親緣關(guān)系越遠(yuǎn),遺傳相似性越低。
表5 不同生態(tài)區(qū)糜子的遺傳多樣性分析
表6 不同生態(tài)區(qū)糜子資源的遺傳距離與遺傳一致度
Nei氏遺傳一致度(對(duì)角線以上)和遺傳距離(對(duì)角線以下)Nei’s genetic identity (above diagonal) and genetic distance (below diagonal)
基于UPGMA對(duì)不同生態(tài)區(qū)糜子進(jìn)行聚類(圖3),發(fā)現(xiàn)6個(gè)生態(tài)區(qū)資源在遺傳距離0.1827處劃分為4個(gè)類群(類群Ⅰ、Ⅱ、Ⅲ和Ⅳ)。類群Ⅰ將南方秋冬糜子區(qū)歸為一類,試材來(lái)自海南。類群Ⅱ?qū)⑽鞅贝合拿幼訁^(qū)歸為一類,試材來(lái)自新疆。類群Ⅲ將北方春糜子區(qū)和黃土高原春夏糜子區(qū)歸為一類,試材來(lái)自青海、甘肅、內(nèi)蒙古、山西、陜西和寧夏。類群Ⅳ將東北春糜子區(qū)和華北夏糜子區(qū)歸為一類,試材來(lái)自黑龍江、吉林、遼寧、河北、山東、江蘇和河南。
基于UPGMA對(duì)96個(gè)糜子基因型進(jìn)行聚類(圖4),發(fā)現(xiàn)96份試材歸為4個(gè)群組,第一群組30份,包括山西2份、陜西3份、寧夏4份、內(nèi)蒙古3份、青海7份,甘肅9份、新疆2份,大部分基因型屬于北方春糜子區(qū)和黃土高原春夏糜子區(qū);第二群組20份,其中內(nèi)蒙古3份、山西6份、黑龍江5份、吉林3份及陜西、遼寧和江蘇各1份,主要屬于東北春糜子區(qū);第三群組11份,包括河北9份、山東2份,屬于華北夏糜子區(qū);第四群組35份,包括青海6份、甘肅1份、內(nèi)蒙古4份、山西12份、陜西4份、寧夏6份、海南和河南各1份,主要屬于黃土高原春夏糜子區(qū)和北方春糜子區(qū)。各群組分布與地理來(lái)源基本相符。
圖3 基于遺傳距離的不同生態(tài)區(qū)糜子資源聚類圖
圖4 基于遺傳距離的96份糜子種質(zhì)資源聚類圖
對(duì)96份試材進(jìn)行基于模型的群體結(jié)構(gòu)分析(圖5)。從圖5可以看出,等位變異頻率特征數(shù)(遺傳群體數(shù))在=2、=4和=9處峰值明顯,基于=4和=9峰值基本相同,且越大且值越小模擬結(jié)果越可靠,僅對(duì)=2和=4進(jìn)行分析,分別將試材劃分為2和4個(gè)群組(圖6)。由圖6可知,=2時(shí),劃分為2個(gè)類群,類群Ⅰ為紅色(60份),主要來(lái)自于北方春糜子區(qū)和黃土高原春夏糜子區(qū);類群Ⅱ?yàn)榫G色(36份),主要來(lái)自于北方春糜子區(qū)和黃土高原春夏糜子區(qū);=4時(shí),劃分為4個(gè)類群,類群Ⅰ為紅色(19份),代表黃土高原基因庫(kù),多樣性指數(shù)和PIC值均最高;類群Ⅱ?yàn)榫G色(22份),代表東北和華北基因庫(kù);類群Ⅲ為藍(lán)色(20份),代表黃土高原基因庫(kù)和北方基因庫(kù);類群Ⅳ為黃色(35份),代表黃土高原基因庫(kù)和北方基因庫(kù)。
Delta K根據(jù)Evanno等[26]的方法計(jì)算得到,針對(duì)基因庫(kù)數(shù)目(K)建模
橫坐標(biāo)的數(shù)字代表糜子材料序號(hào) Numbers in the horizontal axis represent serial number of accession
=2紅色類群分化為紅、綠、藍(lán)和黃色(=4),14份山西糜子中1份(7.14%)為紅色,藍(lán)色和黃色分別為10份(71.43%)和3份(21.43%)。10份青海糜子中1份(10%)屬于藍(lán)色,9份(90%)屬于黃色。
=2綠色類群半數(shù)以上材料沒(méi)分化,其余分化為紅色和藍(lán)色(=4),6份山西材料為紅色,8份河北材料中,綠色和紅色分別為7份(87.5%)和1份(12.5%)。
分析=2和=4遺傳結(jié)構(gòu)圖各分類群的遺傳多樣性參數(shù)(表7),結(jié)果發(fā)現(xiàn),=2時(shí),紅色類群和綠色類群分別占62.5%和37.5%;就多樣性指數(shù)和PIC值而言,綠色類群(分別為0.7726和0.4845)高于紅色類群(分別為0.7499和0.4379)。綠色類群資源主要來(lái)自于河北、寧夏和山西,地區(qū)間相距較遠(yuǎn),氣候條件差異大,資源間遺傳多樣性豐富;紅色類群糜子主要來(lái)自于山西、甘肅和內(nèi)蒙古,這些地區(qū)彼此接壤,氣候相似,資源間親緣關(guān)系近,遺傳一致性程度高。=4時(shí),黃色類群資源最多(53.03%);紅色類群的PIC值和多樣性指數(shù)均為最大(分別為0.4868和0.7627)。
基于SSR引物初步篩選,983個(gè)種間SSR中,209個(gè)(38%)擴(kuò)增不出條帶[9];本研究用PCR擴(kuò)增151個(gè)標(biāo)記,發(fā)現(xiàn)25個(gè)(16.56%)無(wú)結(jié)果,這些SSR可能受到基序插入、缺失、點(diǎn)突變、側(cè)翼重復(fù)缺失等因素影響,引起DNA電泳條帶不出現(xiàn)[27]。
用983個(gè)水稻等種間SSR擴(kuò)增118份糜子資源,46個(gè)標(biāo)記(4.7%)擴(kuò)增出多態(tài)性片段[8]。用548個(gè)柳枝稷SSR擴(kuò)增8份糜子材料,254個(gè)標(biāo)記(46.4%)擴(kuò)增片段具多態(tài)性[9]。本研究用151個(gè)SSR擴(kuò)增6份糜子材料,85個(gè)標(biāo)記(56.3%)擴(kuò)增出多態(tài)性片段,明顯高于上述研究結(jié)果,這可能與引物來(lái)自糜子基因組有關(guān),糜子特異性標(biāo)記篩選效果優(yōu)于種間標(biāo)記。
表7 遺傳結(jié)構(gòu)圖中各分類群的多樣性統(tǒng)計(jì)
轉(zhuǎn)錄組測(cè)序是開(kāi)發(fā)SSR標(biāo)記的有效手段,用糜子高通量測(cè)序獲得的500對(duì)SSR引物擴(kuò)增8份糜子材料,162個(gè)標(biāo)記(32.4%)擴(kuò)增出多態(tài)性片段[17],低于本研究結(jié)果,可能與本研究引物為高基元有關(guān)。本研究首次利用RNA-Seq開(kāi)發(fā)了一批高基元糜子微衛(wèi)星引物,為糜子育種提供了有效分子檢測(cè)工具。
Rp值(引物分辨率)反映SSR多態(tài)性,直接關(guān)聯(lián)標(biāo)記信息[21],Rp值越高,遺傳多樣性越豐富。以往研究發(fā)現(xiàn)254和100個(gè)糜子非特異性SSR(6個(gè)為糜子細(xì)菌人工染色體克隆除外)的Rp值分別為2.71和5.43[9,16],與本研究結(jié)果(3.15)基本一致;同時(shí)發(fā)現(xiàn),糜子分子標(biāo)記的Rp值和苧麻[28]的研究結(jié)果(3.22)類似,低于密花石斛(6.15)、檉麻(6.59)和穿心蓮(10.8)[29-31]。Rp值與糜子種特異性/非特異性引物的相關(guān)性大小有待于進(jìn)一步研究。本研究首次構(gòu)建的一批高基元SSR,不僅豐富了糜子作物DNA標(biāo)記,而且也為糜子連鎖圖譜構(gòu)建和基因組功能研究提供了理論依據(jù)。
高基元SSR多態(tài)性低于低基元多態(tài)性,小麥中已有報(bào)道[32],糜子中也檢測(cè)到類似結(jié)果。用低基元微衛(wèi)星標(biāo)記分析糜子遺傳多樣性,192、132和118份資源的PIC值分別為0.4855[18]、0.5298[15]和0.793[8],本研究高基元SSR檢測(cè)結(jié)果為0.4723,明顯低于上述結(jié)果。
迄今,糜子中可用的高級(jí)基元SSR極少,僅包括1個(gè)糜子種特異性SSR[10,13]和3個(gè)種間SSR[9]。其中,糜子特異性標(biāo)記EF117731由CHO等[10]開(kāi)發(fā),為四堿基重復(fù)“(AGTC)4”。CHO等[10]用該標(biāo)記檢測(cè)50份糜子材料,發(fā)現(xiàn)期望雜合度為0.04,PIC值為0.04;董俊麗等[13]用該標(biāo)記檢測(cè)評(píng)估96份糜子的遺傳差異,發(fā)現(xiàn)基因多樣性指數(shù)為0.2112,PIC值為0.2035;與上述研究類似,本研究也篩選到一個(gè)四堿基重復(fù)引物“(AGTT)6”,遺傳多樣性分析發(fā)現(xiàn)期望雜合度(0.4575)、基因多樣性指數(shù)(0.6500)和PIC值(0.3226)均高于上述研究結(jié)果,這可能與本研究所選試材地理來(lái)源差異大、資源豐富有關(guān)。
用RAPD標(biāo)記分析5個(gè)黍?qū)僦参镞z傳多樣性,發(fā)現(xiàn)糜子多態(tài)性高,且劃分類群與地理來(lái)源一致[3]。用RFLP標(biāo)記比較12份栽培和野生糜子資源,發(fā)現(xiàn)UPGMA聚類結(jié)果與地理來(lái)源無(wú)關(guān)[5]。上述相互沖突的結(jié)果可能與材料來(lái)源及檢測(cè)標(biāo)記不同有關(guān)。本研究用85個(gè)高基元SSR擴(kuò)增96份試材,發(fā)現(xiàn)多樣性指數(shù)(0.7708)和PIC值(0.4723)均高于RAPD和低基元SSR的標(biāo)記鑒定結(jié)果(最高分別為0.725和0.3920)[3,10-15,17-18],這可能與本研究試材來(lái)源廣泛(6個(gè)生態(tài)區(qū))、多樣性豐富有關(guān),也可能與高基元引物有關(guān)。
基于遺傳結(jié)構(gòu)歐亞大陸糜子資源劃分群組與地理來(lái)源相符[11],基于遺傳距離美國(guó)糜子資源劃分群組與地理來(lái)源、系譜發(fā)生及農(nóng)藝特征相符[16],基于遺傳結(jié)構(gòu)和遺傳距離中國(guó)糜子資源聚類群組與地理來(lái)源相關(guān)[13,15]。本研究基于UPGMA將6個(gè)生態(tài)區(qū)及96個(gè)基因型均劃分為4個(gè)主要類群,分別屬于北方、黃土高原、東北和華北糜子區(qū);遺傳結(jié)構(gòu)分析將96個(gè)基因型劃歸4個(gè)主要的基因庫(kù):北方、黃土高原、東北和華北基因庫(kù)。遺傳距離和遺傳結(jié)構(gòu)聚類結(jié)果基本一致,均與地理起源相關(guān),表明不同生態(tài)區(qū)內(nèi)遺傳變異廣泛,糜子不同群體間遺傳關(guān)系復(fù)雜[17]。本研究西北基因庫(kù)和南方基因庫(kù)資源選材偏少、青藏高原基因庫(kù)資源缺乏,未來(lái)研究需豐富材料來(lái)源,有利于準(zhǔn)確評(píng)價(jià)中國(guó)糜子資源的遺傳多樣性。
在糜子中開(kāi)發(fā)了85個(gè)四、五和六堿基重復(fù)微衛(wèi)星標(biāo)記,分析這些SSR的引物分辨率(Rp),發(fā)現(xiàn)信息量大、多態(tài)性高。運(yùn)用該高基元分子檢測(cè)系統(tǒng)評(píng)估中國(guó)糜子資源的遺傳差異,發(fā)現(xiàn)聚類群組與地理起源相關(guān),其中北方春糜子區(qū)和黃土高原春夏糜子區(qū)遺傳多樣性最豐富。
[1] MOTUZAITE-MATUZEVICIUTE G, STAFF R A, HUNT H V, LIU X Y, JONES M K. The early chronology of broomcorn millet() in Europe., 2013, 87: 1073-1085.
[2] 柴巖, 馮佰利, 王宏巖. 中國(guó)黃米食品. 楊凌: 西北農(nóng)林科技大學(xué)出版社, 2012.
CHAI Y, FENG B L, WANG H Y.. Yangling: Northwest A&F University Press, 2012. (in Chinese)
[3] M’RIBU H K, HILU K W. Detection of interspecific and intraspecific variation inmillets through random amplified polymorphic DNA., 1994, 88: 412-416.
[4] LáGLER R, GYULAI G, HUMPHREYS M, SZABóZ, HORVáTH L, BITTSáNSZKY A, KISS J, HOLLY L, HESZKY L. Morphological and molecular analysis of common millet () cultivars compared to a DNA sample from the 15th century (Hungary)., 2005, 146: 77-85.
[5] KARAM D, WESTRA P, NISSEN S J, WARD S M, FIGUEIREDO J E F. Genetic diversity among proso millet () biotypes assessed by AFLP technique., 2004, 22: 167-174.
[6] KARAM D, WESTRA P, NISSEN S J, WARD S M, FIGUEIREDO J E F. Assessment of silver-stained AFLP markers for studying DNA polymorphism in proso millet (L.)., 2006, 29: 609-615.
[7] VAN INGHELANDT D, MELCHINGER A E, LEBRETON C, STICH B. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers., 2010, 120: 1289-1299.
[8] HU X Y, WANG J F, LU P, ZHANG H S. Assessment of genetic diversity in broomcorn millet (L) using SSR markers., 2009, 36(8): 491-500.
[9] RAJPUT S G, TAMMY P H, DIPAK K S. Development and characterization of SSR markers in proso millet based on switchgrass genomics., 2014, 5(1): 175-186.
[10] CHO Y I, CHUNG J W, LEE G A, MA K H, DIXIT A, GWAG J G, PARK Y J. Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet (L.)., 2010, 32: 267-273.
[11] HUNT H V, CAMPANA M G, LAWES M C, PARK Y J, BOWER M A, HOWE C J, JONES M K. Genetic diversity and phylogeography of broomcorn millet (L) across Eurasia., 2011, 22: 4756-4771.
[12] 連帥, 王瑞云, 馬躍敏, 劉笑瑜, 季煦. 不同生態(tài)區(qū)糜子種質(zhì)資源的遺傳多樣性分析. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 35(3): 225-231.
LIAN S, WANG R Y, MA Y M, LIU X Y, JI X. Genetic diversity of broomcorn millet (L.) germplasms of different ecotype zone of China., 2015, 35(3): 225-231. (in Chinese)
[13] 董俊麗, 王海崗, 陳凌, 王君杰, 曹曉寧, 王綸, 喬治軍. 糜子骨干種質(zhì)遺傳多樣性和遺傳結(jié)構(gòu)分析. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(16): 3121-3131.
DONG J L, WANG H G, CHEN L, WANG J J, CAO X N, WANG L, QIAO Z J. Analysis of genetic diversity and structure of proso millet core germplasm., 2015, 48(16): 3121-3131. (in Chinese)
[14] 劉笑瑜, 王瑞云, 劉敏軒, 邱巖巖, 季煦, 連帥, 喬治軍, 王綸, 王海崗. 利用SSR標(biāo)記分析40份糜子資源的遺傳多樣性. 分子植物育種, 2016, 14(6): 1631-1636.
LIU X Y, WANG R Y, LIU M X, QIU Y Y, JI X, LIAN S, QIAO Z J, WANG L, WANG H Z. Genetic diversities among 40 parts of broomcorn millet revealed by SSR markers., 2016, 14(6): 1631-1636. (in Chinese)
[15] 王瑞云, 季煦, 陸平, 劉敏軒, 許月, 王綸, 王海崗, 喬治軍. 利用熒光SSR分析中國(guó)糜子遺傳多樣性. 作物學(xué)報(bào), 2017, 43(4): 530-548.
Wang R Y, Ji X, Lu P, Liu M X, XU Y, Wang L, Wang H G, Qiao Z J. Analysis of genetic diversity in common millet () using fluorescent SSR in China., 2017, 43(4): 530-548. (in Chinese)
[16] RAJPUT S G, SANTRA D K. Evaluation of genetic diversity of proso millet () germplasm available in the USA using SSR markers., 2016, 56: 1-9.
[17] LIU M X, XU Y, HE J H, ZHANG S, WANG Y Y, LU P. Genetic diversity and population structure of broomcorn millet (L.) cultivars and landraces in China based on microsatellite markers., 2016, 17(3): E370.
[18] 連帥, 陸平, 喬治軍, 張琦, 張茜, 劉敏軒, 王瑞云. 利用SSR分子標(biāo)記研究國(guó)內(nèi)外黍稷地方品種和野生資源的遺傳多樣性. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(17): 3264-3275.
LIAN S, Lu P, QIAO Z J, ZHANG Q, ZHANG Q, LIU M X, WANG R Y. Genetic diversity in broomcorn millet (L.) from China and abroad by using SSR markers., 2016, 49(17): 3264-3275. (in Chinese)
[19] 王星玉, 王綸. 黍稷種質(zhì)資源描述規(guī)范與數(shù)據(jù)標(biāo)準(zhǔn). 北京: 中國(guó)農(nóng)業(yè)出版社, 2006.
WANG X Y, WANG L.L.. Beijing: China Agriculture Press, 2006. (in Chinese)
[20] EDWARDS K, JOHNSTONE C, THOMPSON C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis.1991, 19: 1349.
[21] PREVOST A, WILKINSON M J. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars., 1999, 98(1): 107-112.
[22] LIU K, MUSE S V. PowerMarker: integrated analysis environment for genetic marker data., 2005, 21: 2128-2129.
[23] YEH F C, BOYLE T J. Population genetic analysis of co-dominant and dominant markers and quantitative traits., 1997, 129: 157.
[24] TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods., 2011, 665: 2731-2739.
[25] FALUSH D, STEPHENS M, PRITCHARD J K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies., 2003, 164: 1567-1587.
[26] Evanno G, Regnaut S, Goudet J. Detecting the number of cluster of individuals using the software structure: a simulation study., 2005, 14: 2611-2620.
[27] YU J, LA ROTA M, KANTETY R, SORRELLS M. EST derived SSR markers for comparative mapping in wheat and rice., 2004, 271(6): 742-751.
[28] SATYA P, KARAN M, JANA S, MITRA S, SHARMA A, KARMAKAR P G, RAY D P. Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (L. Gaudich.), a premium textile fiber producing species., 2015, 3: 62-70.
[29] SATYA P, BANERJEE R, KARAN M, MUKHOPADHYAY E, CHAUDHARY B, BERA A, MARUTHI R T, SARKAR S K. Insight into genetic relation and diversity of cultivated and semi-domesticated under-utilizedspecies gained using start codon targeted (SCoT) markers., 2016, 66: 24-32.
[30] BHATTACHARYA P, KUMARIA S, KUMAR S, TANDON P. Start Codon Targeted (SCoT) marker reveals genetic diversity ofLindl., an endangered medicinal orchid species., 2013, 529: 21-26.
[31] TIWARI G, SINGH R, SINGH N, CHOUDHURY D R, PALIWAL R, KUMAR A, GUPTA V. Study of arbitrarily amplified (RAPD and ISSR) and gene targeted (SCoT and CBDP) markers for genetic diversity and population structure in Kalmegh [(Burm. f.) Nees]., 2016, 86: 1-11.
[32] DREISIGACKER S, ZHANG P, WARBURTON M L, VAN GINKEL M, HOISINGTON D, BOHN M, MELCHINGER A E. SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments., 2004, 44(2): 381-388.
(責(zé)任編輯 李莉,岳梅)
附表1 96份糜子試材明細(xì)表
Table S1 The detail of 96 accessions of common millet material in this experiment
編號(hào)Serial number統(tǒng)一編號(hào)Unicode名稱Name原產(chǎn)地Origin來(lái)源Accession donor備注Remark 100006653金黍Jinshu海南省瓊海市Qionghai, HainanICS, CAAS地方品種Landrace 200007435黑硬糜Heiyingmi青海省樂(lè)都縣Ledu, QinghaiICS, CAAS地方品種Landrace 300007445褐紅糜Hehongmi青海省樂(lè)都縣Ledu, QinghaiICS, CAAS地方品種Landrace 400007463白皮糜Baipimi青海省平安縣Ping’an, QinghaiICS, CAAS地方品種Landrace 500007469灰麻糜Huimami青海省循化縣Xunhua, QinghaiICS, CAAS地方品種Landrace 600007478白圪塔糜Baigedami青海省湟中縣Huangzhong, QinghaiICS, CAAS地方品種Landrace 700007491二白糜Erbaimi青海省湟中縣Huangzhong, QinghaiICS, CAAS地方品種Landrace 800007503褐紅糜Hehongmi青海省西寧市Xining, QinghaiICS, CAAS地方品種Landrace 900007468灰糜子Huimizi青海省循化縣Xunhua, QinghaiICS, CAAS地方品種Landrace 1000007473灰糜子Huimizi青海省循化縣Xunhua, QinghaiICS, CAAS地方品種Landrace 1100007450白鴿子蛋Baigezidan青海省民和縣Minhe, QinghaiICS, CAAS地方品種Landrace 1200007504白老糜Bailaomi青海省西寧市Xining, QinghaiICS, CAAS地方品種Landrace 1300007471青掃帚糜Qingsaozhoumi青海省循化縣Xunhua, QinghaiICS, CAAS地方品種Landrace 1400007443黃硬糜Huangyingmi青海省樂(lè)都縣Ledu, QinghaiICS, CAAS地方品種Landrace 1500002783榆中小黃糜Yuzhongxiaohuangmi甘肅省榆中縣Yuzhong, GansuICS, CAAS地方品種Landrace 1600000711靖遠(yuǎn)中堡青糜Jingyuanzhongpuqingmi甘肅省靖遠(yuǎn)縣Jingyuan, GansuICS, CAAS地方品種Landrace 17紅糜子Hongmizi甘肅省靖遠(yuǎn)縣Jingyuan, Gansu永新鄉(xiāng)臥中村Wozhong, Yongxin農(nóng)家種Accession from farmer 1800002787榆中黃糜Yuzhonghuangmi甘肅省榆中縣Yuzhong, GansuICS, CAAS地方品種Landrace 1900007320金積小黃糜Jinjixiaohuangmi甘肅省GansuICS, CAAS地方品種Landrace 2000007333黃糜子Huangmizi甘肅省GansuICS, CAAS地方品種Landrace 2100002776皋蘭雞蛋青Gaolanjidanqing甘肅省皋蘭縣Gaolan, GansuICS, CAAS地方品種Landrace 2200002780白銀五硯黃糜Baiyinwuguanhuangmi甘肅省蘭州市Lanzhou, GansuICS, CAAS地方品種Landrace 2300000718華池紅軟糜子Huachihongruanmizi甘肅省華池縣Huachi, GansuICS, CAAS地方品種Landrace 2400002695永昌糜子Yongchangmizi甘肅省永昌縣Yongchang, GansuICS, CAAS地方品種Landrace 2500000750白糜子Baimizi新疆沙灣縣Shawan, XinjiangICS, CAAS地方品種Landrace 2600007345疏勒附糜Shulefumi新疆沙灣縣Shawan, XinjiangICS, CAAS地方品種Landrace 2700000635達(dá)旗黃桿大白黍Daqihuanggandabaimi內(nèi)蒙古伊盟達(dá)旗Yimengdaqi, Inner MongoliaICS, CAAS地方品種Landrace 2800002487伊盟大黃糜Yimengdahuangmi內(nèi)蒙古伊盟達(dá)旗Yimengdaqi, Inner MongoliaICS, CAAS地方品種Landrace 2900002250臨河黃糜子Linhehuangmizi內(nèi)蒙古巴盟臨河Linhe, Bameng, Inner MongoliaICS, CAAS地方品種Landrace 30伊糜5號(hào)Yimi 5內(nèi)蒙古伊盟達(dá)旗Yimengdaqi, Inner MongoliaICSAR, SAAS育成品種Bred variety 3100004268小紅黍Xiaohongshu內(nèi)蒙古Inner MongoliaICS, CAAS地方品種Landrace 3200007224東勝野糜Dongshengyemi內(nèi)蒙古伊盟東勝Dongsheng, Yimeng, Inner MongoliaICS, CAAS地方品種Landrace 3300007225異交野糜內(nèi)蒙古伊盟東勝Dongsheng, Yimeng, Inner MongoliaICS, CAAS地方品種Landrace 3400007238大紅糜子Yijiaoyemi內(nèi)蒙古巴盟Bameng, Inner MongoliaICS, CAAS地方品種Landrace 3500007275糜子Mizi內(nèi)蒙古Inner MongoliaICS, CAAS地方品種Landrace 36黃糜子Huangmizi內(nèi)蒙古固陽(yáng)縣Guyang, Inner Mongolia固陽(yáng)縣Guyang農(nóng)家種Accession from farmer 續(xù)附表1 Continued table S1 編號(hào)Serial number統(tǒng)一編號(hào)Unicode名稱Name原產(chǎn)地Origin來(lái)源Accession donor備注Remark 3700000956大青黍Daqingshu山西靈丘縣Lingqiu, ShanxiICS, CAAS地方品種Landrace 38紅黍子Hongshuzi山西省陽(yáng)泉市平定縣Pingding, Yangquan, Shanxi冠山鎮(zhèn)南坳村Nan’ao, Guanshan農(nóng)家種Accession from farmer 39黍子Shuzi山西省陽(yáng)泉市平定縣Pingding, Yangquan, Shanxi冠山鎮(zhèn)西溝村Xigou, Guanshan農(nóng)家種Accession from farmer 40黍子Shuzi山西省陽(yáng)泉市平定縣Pingding, Yangquan, Shanxi張莊鎮(zhèn)寧艾村Ning’ai, Zhangzhuang農(nóng)家種Accession from farmer 41白糜子Baimizi山西省臨汾市鄉(xiāng)寧縣Xiangning, Linfen, Shanxi昌寧鎮(zhèn)韓村Han, Changning農(nóng)家種Accession from farmer 42白糜子Baimizi山西省長(zhǎng)治市長(zhǎng)子縣Zhangzi, Changzhi, Shanxi色頭鎮(zhèn)色頭村Setou, Setou農(nóng)家種Accession from farmer 4300000992大白黍Dabaishu山西省大同市左云縣Zuoyun, Datong, ShanxiICS, CAAS地方品種Landrace 44白糜子Baimizi山西省陽(yáng)泉市平定縣Pingding, Yangquan, Shanxi冠山鎮(zhèn)衛(wèi)垴村Weinao, Guanshan農(nóng)家種Accession from farmer 4500000985紫羅帶Ziluodai山西省大同市Datong, ShanxiICS, CAAS地方品種Landrace 46青黍子Qingshuzi山西省呂梁市汾陽(yáng)市Fenyang, Lüliang, Shanxi楊家莊鎮(zhèn)南偏城村Nanpiancheng, Yangjiazhuang農(nóng)家種Accession from farmer 47黃糜子Huangmizi山西省孝義市Xiaoyi, Shanxi下堡鎮(zhèn)Xiapu農(nóng)家種Accession from farmer 48黃糜子Huangmizi山西省呂梁市Lüliang, Shanxi柱濮鎮(zhèn)Zhupu農(nóng)家種Accession from farmer 49白糜子Baimizi山西省太原市陽(yáng)曲縣Yangqu, Taiyuan, Shanxi泥屯鎮(zhèn)東青善村Dongqingshan, Nitun農(nóng)家種Accession from farmer 50紅糜子Hongmizi山西省陽(yáng)泉市盂縣Yuxian, Yangquan, Shanxi北下莊鄉(xiāng)Beixiazhuang農(nóng)家種Accession from farmer 51黃黍子Huangshuzi山西省忻州市偏關(guān)縣Pianguan, Xinzhou, Shanxi窯頭鄉(xiāng)寺埝堡村Sinianpu, Yaotou農(nóng)家種Accession from farmer 5200001514黃硬黍Huangyingshu山西省臨汾市翼城縣Yicheng, Linfen, ShanxiICS, CAAS地方品種Landrace 53雁黍7號(hào)Yanshu 7山西省大同市Datong, ShanxiICSAR, SAAS育成品種Bred variety 54大紅黍Dahongshu山西省忻州市定襄縣Dingxiang, Xinzhou, Shanxi師家崗村Shijiagang地方品種Landrace 55黍子Shuzi山西省晉中市榆社縣Yushe, Jinzhong, Shanxi榆社縣Yushe農(nóng)家種Accession from farmer 56紅糜子Hongmizi山西省陽(yáng)泉市平定縣Pingding, Yangquan, Shanxi冠山鎮(zhèn)甘井村Ganjing, Guanshan農(nóng)家種Accession from farmer 5700005272黃糜子Huangmizi陜西省定邊縣Dingbian, ShaanxiICS, CAAS地方品種Landrace 5800005423紫穗糜Zisuimi陜西省延安市Yan’an, ShaanxiICS, CAAS地方品種Landrace 59紅糜子Hongmizi陜西省榆林市Yulin, Shaanxi榆林市Yulin農(nóng)家種Accession from farmer 6000001635二瓦灰Erwahui陜西省榆林市Yulin, ShaanxiICS, CAAS地方品種Landrace 6100004821糯糜子(黍)Nuomizi (Shu)陜西省ShaanxiICS, CAAS地方品種Landrace 6200004824糯糜(黍)Nuomi (Shu)陜西省ShaanxiICS, CAAS地方品種Landrace 6300003806長(zhǎng)糜Changmi陜西省志丹縣Zhidan, ShaanxiICS, CAAS地方品種Landrace 64紅黍子Hongshuzi陜西省渭南市合陽(yáng)縣Heyang, Weinan, Shaanxi路井鎮(zhèn)高原寨村Gaoyuanzhai, Lujing農(nóng)家種Accession from farmer 續(xù)附表1 Continued table S1 編號(hào)Serial number統(tǒng)一編號(hào)Unicode名稱Name原產(chǎn)地Origin來(lái)源Accession donor備注Remark 6500002620古城紅糜子Guchenghongmizi寧夏固原市Guyuan, NingxiaICS, CAAS地方品種Landrace 6600002518平羅紫稈Pingluozigan寧夏平羅縣Pingluo, NingxiaICS, CAAS地方品種Landrace 6700006781鼓鼓頭-2 Gugutou-2寧夏固原市Guyuan, NingxiaICS, CAAS地方品種Landrace 680000678360天小黑糜60-dayXiaoheimi寧夏固原市Guyuan, NingxiaICS, CAAS地方品種Landrace 6900006790涇源小青Jingyuanxiaoqing寧夏固原市涇源縣Jingyuan, Guyuan, NingxiaICS, CAAS地方品種Landrace 7000007287中衛(wèi)大黃Zhongweidahuang寧夏NingxiaICS, CAAS地方品種Landrace 7100007306五太保灰糜Wutaibaohuimi寧夏NingxiaICS, CAAS地方品種Landrace 7200007308九十天糜90-day mi寧夏NingxiaICS, CAAS地方品種Landrace 7300007309黃糜Huangmi寧夏NingxiaICS, CAAS地方品種Landrace 7400007297賀蘭大紅Helandahong寧夏NingxiaICS, CAAS地方品種Landrace 7500000081黃糜子Huangmizi黑龍江省富錦市Fujin, HeilongjiangICS, CAAS地方品種Landrace 7600000100白糜子Baimizi黑龍江省樺川縣Huachuan, Heilongjiang ICS, CAAS地方品種Landrace 7700000012白糜子Baimizi黑龍江省德都縣Dedu, HeilongjiangICS, CAAS地方品種Landrace 7800000143黑糜子Heimizi黑龍江省密山市Mishan, HeilongjiangICS, CAAS地方品種Landrace 7900000177紅糜子Hongmizi黑龍江省寧安市Ning’an, HeilongjiangICS, CAAS地方品種Landrace 8000000411白糜子Baimizi吉林省吉安市Ji’an, JilinICS, CAAS地方品種Landrace 8100002044紅糜子Hongmizi吉林省延吉市Yanji, JilinICS, CAAS地方品種Landrace 8200002045糜子Mizi吉林省延吉市Yanji, JilinICS, CAAS地方品種Landrace 8300000413昌圖紅糜子Changtuhongmizi遼寧省昌圖縣Changtu, LiaoningICS, CAAS地方品種Landrace 84白糜子Baimizi河北省辛集市Xinji, Hebei舊城鎮(zhèn)耿莊村Gengzhuang, Jiucheng農(nóng)家種Accession from farmer 85黑黍子Heishuzi河北省石家莊市贊皇縣Zanhuang, Shijiazhuang, Hebei嶂石巖鄉(xiāng)三六溝村Sanliugou, Zhangshiyan農(nóng)家種Accession from farmer 8600000763黍子Shuzi河北省寬城縣Kuancheng, HebeiICS, CAAS地方品種Landrace 8700007076紅糜子Hongmizi河北省寬城縣Kuancheng, HebeiICS, CAAS地方品種Landrace 8800007096黍子(糜)Shuzi (mi)河北省寬城縣Kuancheng, HebeiICS, CAAS地方品種Landrace 8900007100小黃糜子X(jué)iaohuangmizi河北省赤城縣Chixheng, HebeiICS, CAAS地方品種Landrace 9000007118糜子Mizi河北省阜平縣Fuping, HebeiICS, CAAS地方品種Landrace 9100007198陳莊白黍Chenzhuangbaishu河北省完縣Wanxian, HebeiICS, CAAS地方品種Landrace 9200007214褐粒黍Helishu河北省南宮市Nabgong, HebeiICS, CAAS地方品種Landrace 9300007343白糜Baimi山東ShandongICS, CAAS地方品種Landrace 9400004409黑黍子Heishuzi山東ShandongICS, CAAS地方品種Landrace 9500004202貍黍子Lishuzi江蘇淮陰Huaiyin, JiangsuICS, CAAS地方品種Landrace 96紅黍子Hongshuzi河南省安陽(yáng)市Anyang, HenanICS, CAAS地方品種Landrace
ICS、CAAS:中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所;ICSAR、SAAS:山西省農(nóng)業(yè)科學(xué)院高寒區(qū)作物研究所
ICS, CAAS: Institute of Crop Science, Chinese Academy of Agricultural Sciences; ICSAR, SAAS: Institute of Crop Science in Alpine Region, Shanxi Academy of Agricultural Sciences
附表2 篩選抗鹽相關(guān)引物的糜子材料
Table S2 SSR primers based on salt resistance RNA-Seq for primary screen
編號(hào)Serial number統(tǒng)一編號(hào)Unicode名稱Name來(lái)源Origin 100000956大青黍Daqingshu山西省靈丘縣Lingqiu, Shandong 200000100白糜子Baimizi黑龍江省樺川縣Huashuan, Heilongjiang 300002518平羅紫稈Pingluozigan青海省平羅縣Pingluo, Qinghai 400004189散尾兒Sanweier江蘇省Jiangsu 500006653金黍Jinshu海南省瓊??hQionghai, Hainan 600007345疏勒附糜Shulefumi新疆沙灣縣Shawan, Xinjing
附表3 篩選抗旱相關(guān)引物的糜子材料
Table S3 SSR primers based on drought resistance RNA-Seq for primary screen
編號(hào)Serial number統(tǒng)一編號(hào)Unicode名稱Name來(lái)源Origin 100000104鵝頭Etou黑龍江省樺川縣Huachuan, Heilongjiang 200006653金黍Jinshu海南省瓊海市Qionghai, Hainan 300007287中衛(wèi)大黃Zhongweidahuang寧夏Ningxia 400007343白糜Baimi山東省Shandong 500007435黑硬糜Heiyingmi青海省樂(lè)都縣Ledu, Qinghai 600007358大黃糜Dahuangmi山西省Shanxi
附表4 85個(gè)SSR引物特性
Table S4 Characteristics of 85 SSR primers
標(biāo)記Marker正向引物F-Sequence反向引物R-Sequence重復(fù)基序Repeated motif 序列Sequence (5′-3′)退火溫度Tm (℃)序列Sequence (5′-3′)退火溫度Tm (℃) RYW1TAACGCTTCACCTTCAGACC55.25′ TGAGATGGAGTTGGCTGATG56.2(TCATCT)6 RYW2TTAGGGCTCTCCTGCATCC57.45′ CAGCGAGTTCACCGTCAAG57(CGAAGC)5 RYW3GGAGGCGTGACAATAAAAC52.85′ GGCGTGAGGTGTTGTTTTT55.7(CTGCAA)5 RYW4AATCCACAACGCACACGAC56.95′ ATTTGCTCCTCTCGTCGGT56.9(GTGCCG)5 RYW5GACGATGCTCTTGACCTTGT54.75′ CACCGTGAAATGTCTCTGCT55.6(CCTTT)5 RYW6AGCCGATTTGCTGTGGAGT57.85′ CTGCCTCCGATGAGTTGGT56.4(ACACC)5 RYW7TCCACTCATCCATTGCTCGT58.45′ GATGGATTCAAAGGGACGCT58.9(CGCGC)5 RYW8GGGTCAGAGAATACACAGCG55.3GTAGGGAAGGAGAAGTGGGT56(AATAG)5 RYW9GGACCCTTCCCTCACAGATT57.6TCCAGTTGCTCTTGCCGTT58.9(CTAG)6 RYW10TGGATTGGGTGGTGGTAT53AAGGACGGCAGCACAAAT56(CGAG)5 RYW11TGCTCGTCTTCTCGCTTCG59.7AGTAGTCCTCCACCGCCATCT60.1(GGTA)5 RYW12ACCATCCCAGCACAAACCA58.9TGCCTGAAGGAGAAGAGCG58.6(AGCT)5 RYW13CTCCTGCTCTGCTTCGTTT55.3CTTCCAGCAGACCTTCACTC54.4(CGGC)5 RYW14CGCACAACGACCACAAGAG57.8ATACACCAGAGGAGCACGC55.5(GGCC)5 RYW15ACCGTGAAAAGAAATGCTG53.4GTCCTGGATGTCGTCAACT51.9(ACAA)5 RYW16ATCTCCTCCGCCTTCTAACCC61.4TGGCAATGGTCGTACAAACT56.3(GAGC)5 RYW17TCAGCTACTTCGAACGGC54.2GGATCATGCGATACATTTGG56.1(TTTC)5 RYW18CTCCCTCTTTGTCCTCGTT53.8GCTGCCTCTTCGCTATCTT54.8(AGTT)6 RYW19GAATGATAGGTCCGCAAGG55.3CAGCCTTTGTTCAGTTGTCTC54.9(TTAT)5 續(xù)附表4 Continued table S4 標(biāo)記Marker正向引物F-Sequence反向引物R-Sequence重復(fù)基序Repeated motif 序列Sequence (5′-3′)退火溫度Tm (℃)序列Sequence (5′-3′)退火溫度Tm (℃) RYW20ACCTCTTGCCGCACACTAC55.6TTCTACATCCCCGAACCAC55.2(TTGG)6 RYW21CCCTCCTACTGCTCCCTTT55.8ATTACTCGTTCTCGCCTCG55.3(CGGA)6 RYW22AAGCCAACACATTTGAGGT52.4CGTGATAACTGAATACGAGCC55.3(GGAA)5(GCA)5 RYW23AGGAACAGCAGAGAGAGGG53.7CAGAACACCACGAAACACC53.6(GGAA)5 RYW24TTTCTTCGGCTCGTGTGAC56.5CGTCGCTCTTGTTCACTCC56(TGGA)5 RYW25AATCGCTCCACCGCTAATC57.7GACATCCCGAAACCCTAACC58.3(ATAC)5 RYW26TAAGGGTGGCGTTGGATAG56AACCCAACAGGTCCTCCAT56.1(AGGA)6 RYW27GCTGCTGGTTTCATTTTCC55.5CCAAGATTGATTCGGTTCG56.1(GGAA)5 RYW28CCAAGGCTGAGCAGAAAGAT57ACAAGGTGAAACCCGAAGC57.3(AGGC)5 RYW29CTTGATTTCTCACGCACCG57.1TGTCCAGCAGTAGTCGTTCCT57.2(GCAG)5 RYW30TAGCCTTCTTTGCCACCACT57.5GCCCGTGATGATATTCGAC55.7(TTTC)5 RYW31ACCCAGAGTCCAGAGAAGC53.4GATGTCCTCCTCCTTCTCC52.6(AGCG)5 RYW32CAGGTTATGGGAGGACGAG55GGTGCTACGGTTACAGGGT54.7(ATCTT)5 RYW33CGATTCTACACCGACGAGG56.1TGTAGGGTTCCATTCATCTCC56.4(CCATC)5 RYW34TCCCCCGATTAGGAAAGAT56.1CTGGTGAGGTGATGAAGCC55.4(CGATT)5 RYW35ATTAGCATCCCCCTCCAC54.1ATCCGCTTTCCCAACCAC57.7(CGTGC)5(GGA)6 RYW36TATTGTCCTTCCGCTCCC55.4ATGACTACTCTCCCCCCCT54.6(GGCTT)5 RYW37CATTCCGTTCCTTGTCTTCC56.9CAGTCTCACTCCTGCGATGT55.3(GCGAT)5 RYW38TCCCTGAAGGAGAAGAGCG57.5CACCATCCCAGCACAAACC58.9(AGCT)5 RYW39GTTGGGCGAGGTCAATCTG58.3TAGGGAGCCGAAGCAGAAG58(TCCT)5 RYW40TGCTCTTCGGCTCTTCTCC57.7ATCAGCTCATCGTGACCCC57.5(CAGC)6 RYW41GCAAACACTTGGCGGATAG56.5TGGAATGCCCAGGAGAAAT57.5(GATG)6 RYW42AGACACCCTGGGCAACATC57.4CTGGACTGGGCTTCGTTCT57.3(GGCT)5 RYW43GGAGATGCTTGCTTGGTTG56.2CAGGAATCGCAAGGAACAG56.2(GGAG)5 RYW44TAAAGCAGGTCGGCAAGAG56.4TCGGGTTTCTCCAGCATAAT57.3(CAAT)5 RYW45TCGCTGCTCAACATCAACC57.3TGGATCGGGCTATGTTGC57.1(TGGC)5 RYW46TAGCGGATTCACGAACGAG56.9AGACGCTAAAAAGCCCGAC57.3(CCTC)6 RYW47TTGTTTTTGCTGCTGCCTC57.2TGCTGGACTTCTTTTTGCC56.1(GCCT)5 RYW48TTTCTGAACTCACGCCACC56.3GGCAGCAACTAACCGTGTG57.1(GAAG)5 RYW49GCTAAATCCGCTGATGAGGT57TGTATGTTGCTCCAGCCTTG56.9(TATC)6 RYW50CAAGGCAGATAGGGCAAGT55.1TCGTCTGCTGCTGGTTTGT57(GGAG)5 RYW51TATCGCCGCACCTTACAAC57TGAGCCTGCTTCCATCTTG56.6(CTGC)5 RYW52AGTAGTCCTCCACCGCCAT56.5CTCTTCCTCGTTCTCGGCT56.8(TACC)5 RYW53ATGCCTCCGATGTAGATGC55.4GCCGCCTTCTCTTCATTCT56.8(GAGG)5 RYW54GCACTTGCTCCTGCTTCTC55.5GACCTTGCCGATGTTGTTG56.7(CCTC)5 RYW55CTGGTGGTGGTAGTTAGCG53.7TTATGCCACCCACCGTAGC59.1(TAGC)5 RYW56TCGTTTTCTTCCCTGCTTG56.1TTCGGCAGAACCTGTCGT56.6(AGAA)5 RYW57GGATTGCGGCTAAGTGTTG56.5CCCGCCTTTTTTTTACTACC56.6(TGTA)5 RYW58AGCCAGACCGAGAGTTTCC56.4AGCCACCTCACCTATGTTCC56.3(TTCT)5 續(xù)附表4 Continued table S4 標(biāo)記Marker正向引物F-Sequence反向引物R-Sequence重復(fù)基序Repeated motif 序列Sequence (5′-3′)退火溫度Tm (℃)序列Sequence (5′-3′)退火溫度Tm (℃) RYW59CAGCAAAGCAACCTTCACC56.3TCGGAGAGAGGGTGAGAGAT55.7(GGCA)5 RYW60GGGAGATGCTTGCTTGGTT57.4GCTTTCTTTCCTTAGCCGAT56.1(GGAA)6 RYW61ACTGCTGCTTGCTCCTTGT55.5ACATCCCGAAACCCTAACC56.2(ATAC)5 RYW62GTTTAGAGAGCAGGAGGCG55AGCCCTGTCCACCCTAATC56.1(GCTC)5 RYW63TTTCTCTGCCACCATTTTC53.1CTGGTGCCTTTGCGATTAT56.1(GAGT)5 RYW64CCAGCGACTGACGAAACTT55.8AACATCAGGAACCACACGC55.9(ACCG)6 RYW65TAGCGTCGTCAAGAAGCACT56ACAGAGGTGACGAAACGATG55.4(GCCG)5 RYW66AGGATGTTGGCGGTGTTC55.8TTGGTGTGGGAGTATGCG55.1(GGTT)5 RYW67GAAGGAAACGCACCAGAGT54.7TTGGGTTTGTGCTTGGAGT55.9(TGCG)5 RYW68AGAGAACAATCCACACCGC55.2ATGTGGAGGTGGCATTCTG55.8(AGGG)5 RYW69AGCCGTTGGAAGAGGATT54.2GCTTGCTTTTTTGAGGGG55.7(GGAA)5 RYW70AGGTTAGGGATTGGGGGAT57.2CCTTTTTTTCCAGTCTCACA52.7(CGAG)5 RYW71CATCAACTTCATCTGCCCC55.6TGCTCTTGTGGTCGTTGTG55.3(GGCC)5 RYW72GGCACCTCCATTCATTCAC55.3CCAGATTTTCAAACCCCAT54.6(ACGC)5 RYW73TTATTTTGAATGCTCCCCC55.2TGGTCAGTCTTGAAGTCGC53.5(ACAA)5 RYW74AACGGATGTTCAGAAGCAG53TGGTTCCCAGCACCTAAAT55.2(GCAG)5 RYW75GTTCTCGTAACTGAAGGCG53.1GCCAGTAGGCTCTCTGAACA55.1(TTAT)5 RYW76TCCCTGTTTTTCTTCTCCG55.1GAATCTTCACGGAATCAGG52.2(GGAT)5 RYW77CAGCAAGCAGACAGAGCAG54.6ACAAAGCAGAGAGGGGAAG54(ATAC)5 RYW78ATGGTTGGATGTCTCTCGC55GCGTGAGCCTTTTTCTTTT55(ATCG)5 RYW79TCAGCAGACAACCCAAAAG53.9CGATTGTTGAGGGAAGTGA53.5(ATCA)5 RYW80ACCCAGAGTCCAGAGAAGC53.4GATGTCCTCCTCCTTCTCC52.6(AGCG)5 RYW81TCAGATTTTACAGCCGCAT54TCTTGGTTCTTCCCACTTG52.8(GTTT)6 RYW82TGCTGGTTGCTGGTAGGT53.9GTGCCGAAGAAGATGGTG53.7(AGCG)5 RYW83TTGTAGAGCAGGAAGGAGAT51.4TAGACGAAGGACACGAAAC50.3(GAAA)5 RYW84AACCCACCCATCCATTCCT58.5TAAGTCGTCGTCGGCAGAGT58.2(GAGC)5 RYW85GATGGATGGATTGCGTTTC55.7AACGGATTGTCTCCATTGC55.3(TCAC)5
附表5 85個(gè)糜子SSR標(biāo)記的特性
Table S5 Characteristics of 85 common millet SSR markers with polymorphism
引物名稱Marker name觀察等位基因大小Observed allele size in common millet (bp)分辨率(Rp值)Resolving power (Rp) value RYW1100; 300; 4503.5 RYW2100; 150; 200; 250; 4503 RYW3100; 150; 350; 4004.25 RYW4100; 150; 200; 2505.25 RYW5300; 350 2.75 RYW6100; 150; 400; 450 3.75 RYW7150; 200; 3004 RYW8350; 4002.25 續(xù)附表5 Continued table S5 引物名稱Marker name觀察等位基因大小Observed allele size in common millet (bp)分辨率(Rp值)Resolving power (Rp) value RYW9150; 350; 4004.5 RYW10150; 250; 4004.5 RYW11150; 350; 4003.5 RYW12150; 200; 2504.5 RYW13100; 200; 250; 3505.25 RYW14400; 4503 RYW15100; 150; 2003 RYW16100; 150; 250; 300; 3504.5 RYW17150; 300; 3504.25 RYW18100; 350; 4003.5 RYW19100; 150 3 RYW20150; 350; 4003.5 RYW21150; 200; 300; 3505.5 RYW22100; 200; 300; 4005.5 RYW23100; 150; 200; 400; 4504.5 RYW24100; 150 3 RYW25100; 150; 4004.5 RYW261001.5 RYW27250; 4002.25 RYW28100; 200; 3003.75 RYW29100; 200; 3503.75 RYW30100; 200; 3504 RYW31100; 200; 300; 4005.5 RYW32100; 150; 200; 4002.75 RYW33150; 250; 350; 400; 4502.75 RYW34150; 250; 3501.5 RYW35100; 150; 200; 3503 RYW36100; 200; 350; 4502 RYW37150; 200; 250; 3003.25 RYW38200; 300; 3502.25 RYW39100; 150; 350; 4002.5 RYW40150; 350; 4002 RYW41150; 300; 4004 RYW42100; 250 1 RYW43250; 350; 4503.75 RYW44100; 1501.75 RYW45100; 2502.25 RYW46100; 150; 2503.25 RYW47100; 200; 300; 4005.75 RYW48100; 250; 4003.75 續(xù)附表5 Continued table S5 引物名稱Marker name觀察等位基因大小Observed allele size in common millet (bp)分辨率(Rp值)Resolving power (Rp) value RYW49200; 2503 RYW502001.5 RYW51100; 200; 4504 RYW52100; 250; 3002.5 RYW53100; 150; 250; 3002.75 RYW54150; 200; 3501.5 RYW55150; 250; 350; 400; 4503.25 RYW56200; 350; 4004.25 RYW57200; 300; 3503 RYW58100; 150; 200; 3503 RYW59150; 250; 3501.5 RYW60150; 250; 3502.25 RYW61250; 300; 3501.5 RYW62200; 250; 350; 4004.25 RYW63100; 150; 2002.5 RYW64100; 250; 4002.25 RYW65150; 250; 350; 400; 4502.5 RYW66150; 200; 250; 3002 RYW67100; 250; 3003 RYW682001.5 RYW69100; 2002.25 RYW70150; 3001.25 RYW71100; 150; 250; 4503.25 RYW72100; 200; 3502 RYW73100; 150; 3502.5 RYW74200; 3502.25 RYW75100; 150; 4002 RYW76100; 150; 350; 4002.75 RYW77100; 150; 200; 4003.5 RYW78100; 150; 200; 3503 RYW79100; 150; 4503 RYW80100; 300; 350; 4004 RYW81100; 250; 3503.25 RYW82200; 300; 3504.25 RYW83100; 150; 250; 3505 RYW84250; 4502 RYW85150; 200; 3502.75 平均Mean3.15
附表6 85對(duì)引物檢測(cè)的遺傳參數(shù)
Table S6 Genetic parameters of the 85 polymorphic SSR markers used in the study
位點(diǎn)Locus觀測(cè)等位基因Na有效等位基因Ne多樣性指數(shù)I觀測(cè)雜合度Ho期望雜合度HeNei’s期望雜合度Nei多態(tài)性信息含量PIC RYW132.12570.87810.55210.52960.43020.6318 RYW231.96230.77790.61460.49040.46730.4824 RYW331.93310.72930.53120.48270.44590.5882 RYW432.21860.88670.65620.54930.44490.5751 RYW532.32290.93080.66670.56950.55570.5616 RYW632.16260.84360.64580.53760.43350.5612 RYW731.87090.77170.43750.46550.39060.6343 RYW832.60231.01170.43750.61570.57190.7281 RYW932.02550.76570.60420.50630.47530.5744 RYW1031.95670.74770.48960.48890.41220.5665 RYW1132.05260.80980.59380.51280.49860.5690 RYW1232.54690.99980.51040.60740.55930.6393 RYW1332.12060.82630.65620.52840.51530.6185 RYW1421.84320.65000.70830.45750.44720.3278 RYW1521.99910.69290.97920.49980.49980.0400 RYW1632.00430.73450.59380.50110.48050.5650 RYW1731.98560.72970.51040.49640.47970.6176 RYW1821.84320.65000.70830.45750.36530.3226 RYW1931.91460.69420.57290.47770.46820.5311 RYW2021.99460.69180.71880.49860.40380.4527 RYW2121.98620.68970.79170.49650.48600.3548 RYW2221.54630.53830.37500.35330.35370.4328 RYW2321.98940.69050.65620.49730.49320.4926 RYW2421.89140.66420.55210.47130.38050.5727 RYW2522.00000.69310.68750.50000.43970.5052 RYW2621.93210.67550.75000.48240.48350.3504 RYW2721.81110.64010.46880.44790.35870.5371 RYW2831.68840.66980.43750.40770.41330.6196 RYW2931.66280.72170.34380.39860.40440.5866 RYW3032.37920.95540.39580.57970.48060.6522 RYW3132.47510.97400.66670.59600.45440.5971 RYW3231.97850.83390.47920.49460.37480.5296 RYW3332.01050.76190.72920.50260.40570.3819 RYW3432.06150.76250.80210.51490.41950.3360 RYW3532.18930.88010.71880.54320.44590.4105 RYW3621.95230.68090.69790.48780.48770.4993 續(xù)附表6 Continued table S6 位點(diǎn)Locus觀測(cè)等位基因Na有效等位基因Ne多樣性指數(shù)I觀測(cè)雜合度Ho期望雜合度HeNei’s期望雜合度Nei多態(tài)性信息含量PIC RYW3832.23150.90720.75000.55190.53290.4922 RYW3921.71670.60820.57290.41750.35140.3980 RYW4032.33580.92550.52080.57190.54500.6771 RYW4132.61971.01660.70830.61830.58260.4453 RYW4232.35370.92910.83330.57510.56250.3423 RYW4332.25300.88310.63540.55620.53400.5465 RYW4431.64040.61720.50000.39040.41260.4052 RYW4521.78860.63280.65620.44090.44200.3494 RYW4632.01160.71980.93750.50290.50180.1133 RYW4721.92460.67340.80210.48040.47380.2760 RYW4832.08200.77950.82290.51970.51710.3105 RYW4932.20820.86070.71880.54710.46570.4356 RYW5031.78550.67100.48960.43990.31800.4702 RYW5131.85340.72790.62500.46040.39610.4686 RYW3732.81531.06330.65620.64480.60270.4765 RYW5231.94780.70330.72920.48660.48410.3576 RYW5332.76761.05290.60420.63870.59900.6038 RYW5432.10530.83020.72920.52500.41280.5198 RYW5532.11350.82470.71880.52690.42400.4679 RYW5632.64561.03540.44790.62200.56010.5826 RYW5732.56711.00730.56250.61050.57070.6416 RYW5832.26020.90070.80210.55760.55670.5219 RYW5932.42050.97720.78120.58690.54740.5060 RYW6032.06290.76280.54170.51520.43780.5862 RYW6131.93920.81800.50000.48430.37750.5448 RYW6221.98620.68970.81250.49650.49060.3020 RYW6321.86330.65600.66670.46330.46070.5868 RYW6432.00890.74950.75000.50220.42200.3502 RYW6532.04230.80720.65620.51040.49280.4388 RYW6632.14750.82430.86460.53430.52360.2360 RYW6732.06520.77550.78120.51580.50710.4080 RYW6832.14650.84690.57290.53410.43080.5809 RYW6932.37650.93780.69790.57920.47990.5282 RYW7021.90020.66670.77080.47370.47740.2909 續(xù)附表6 Continued table S6 位點(diǎn)Locus觀測(cè)等位基因Na有效等位基因Ne多樣性指數(shù)I觀測(cè)雜合度Ho期望雜合度HeNei’s期望雜合度Nei多態(tài)性信息含量PIC RYW7121.90870.66900.65620.47610.39560.5107 RYW7231.66580.68970.44790.39970.42960.4642 RYW7332.06940.84580.53120.51680.49980.5117 RYW7431.89610.68900.75000.47260.37790.3592 RYW7531.14660.28420.11460.12790.12460.1879 RYW7632.08390.79080.54170.52010.39500.6074 RYW7721.99910.69290.91670.49980.49890.1522 RYW7821.61330.56800.40620.38020.28490.5219 RYW7921.71670.60820.57290.41750.35040.5911 RYW8021.91680.67130.72920.47830.46430.3803 RYW8132.04160.74380.85420.51020.50120.2501 RYW8231.99420.77790.69790.49850.41840.4476 RYW8331.36520.52690.23960.26750.24220.4215 RYW8432.00110.71720.76040.50030.49720.4262 RYW8531.95520.70530.67710.48860.48320.6097 平均 Mean2.72942.04000.77080.63360.49980.45510.4723 標(biāo)準(zhǔn)差SD0.44170.28740.13470.15330.07620.07800.1339
Evaluation of Genetic Diversity of Common Millet () Germplasm Available in China using High Motif Nucleotide Repeat SSR Markers
Wang RuiYun1,2, LIU XiaoYu1, Wang HaiGang2, Lu Ping3, Liu MinXuan3, CHEN Ling2, Qiao ZhiJun2
(1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi;2Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture/Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crops, Taiyuan 030031;3Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081)
Theobjective of this study to develop SSRs with high motif (tetra-, penta- and hexa-) nucleotide repeat and use them to evaluate the genetic diversity of common millet germplasms, and to provide significant implications for future linkage maps construction and evolution research of common millet.Comprehensive evaluation of phenotypic diversity was carried out based on membership function, principal component analysis (PCA) and cluster analysis. SSR primers developed in author’s laboratory by high-throughput sequencing were used to identify polymorphisms in different common millet accessions from various geographic origins. PowerMarker 3.25 and PopGen 1.32 were used to calculate the measures of genetic diversity and Nei’s genetic distance, respectively. Mega 5.0 and Structure 2.2 were used to carry out cluster analysis and identify genetic groups.A set of 96 common millet accessions were used and seven phenotypic traits were investigated. Results showed that the genetic variation of tiller numbers and plant height were the most abundant. A total of 85 pairs of amplified primers (56.29%) showed high polymorphism among the 96 genotypes. A total of 71 tetra-nucleotide repeat SSRs were detected, accounted for 83.53%. Meanwhile, 10 (11.76%) penta- and 4 (4.7%) hexa- nucleotide repeat SSRs were identified, respectively. The size of 85 SSRs ranged from 100 to 450 bp with an average value of polymorphism information content (PIC) of 0.51. Resolving power (Rp) value varied from 1.00 to 5.75 (mean = 3.15).Theaverage Rp value of tetra-, penta- and hexa- nucleotide repeat SSRs was 3.15, 2.8 and 4.0, respectively. Evaluating the distribution frequency of 85 SSRs based on Rp, it was observed that their ranges were 0-1, 1-2, 2-3, 3-4, 4-5 and 5-6, with 1 (1.18%), 15 (17.65%), 31 (36.47%), 20 (23.53%), 12 (14.12%) and 6 (7.06%) markers at each interval, respectively. Fifty-one markers accounting for 60% distributed at intervals of 2-3 and 3-4. A total of 232 alleles were amplified among 96 accessions by the 85 SSR markers. 2-3 alleles were generated by each locus, with an average of 2.7294 alleles. Sixty-two markers produced 3 alleles, and 23 markers produced 2 alleles. The range of gene diversity was 0.2842-1.0633, with an average of 0.7708. The range of PIC was 0.0400-0.7281, with an average of 0.4723.Genetic distance and genetic identity of common millet resources with different ecotopes were 0.0093-0.5052 (average=0.1798) and 0.6034-0.9907 (average=0.8485). Cluster analysis based on unweighted pair group method of mathematical averages (UPGMA) separated the 96 accessions into four groups (Northeast spring-sowing, Northern spring-sowing, Northern summer-sowing and Loess Plateau spring & summer-sowing ecotopes). A genetic structure assay indicated a close correlation between geographical region and genetic diversity.The present work developed a set of 85 tetra-, penta- and hexa- nucleotide repeat SSRs in common millet. These high motif microsatellite markers with high Rp value can distinguish different genotypes, generate high polymorphisms in polymerase chain reaction amplification. Based on the above molecular markers, the genetic diversity of Chinese common millet germplasms was assessed and those accessions from Northern spring-sowing and Loess Plateau spring & summer-sowing ecotopes are highly and genetically diverse.
common millet (); high motif SSR; genetic diversity; clustering analysis; population structure
2017-05-17;接受日期:2017-06-12
國(guó)家自然科學(xué)基金(31271791)、山西省回國(guó)留學(xué)人員科研資助項(xiàng)目(2016-066)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-06-13.5-A16)、山西省重點(diǎn)研發(fā)計(jì)劃(一般項(xiàng)目)(農(nóng)業(yè))項(xiàng)目(201603D221003-5)
王瑞云,Tel:15234420135;E-mail:wry925@126.com。劉笑瑜,E-mail:251719093@qq.com。王瑞云和劉笑瑜為同等貢獻(xiàn)作者。通信作者王瑞云。通信作者喬治軍,Tel:0351-7065530;E-mail:nkypzs@126.com
中國(guó)農(nóng)業(yè)科學(xué)2017年20期