張家營(yíng), 劉保雙, 畢曉輝, 吳建會(huì)*, 馮銀廠, 張?jiān)7? 張勤勛
1.南開(kāi)大學(xué)環(huán)境科學(xué)與工程學(xué)院, 國(guó)家環(huán)境保護(hù)城市空氣顆粒物污染防治重點(diǎn)實(shí)驗(yàn)室, 天津 300350 2.菏澤市環(huán)境監(jiān)測(cè)站, 山東 菏澤 274000
菏澤市冬季大氣PM2.5和PM10中碳組分來(lái)源解析
張家營(yíng)1, 劉保雙1, 畢曉輝1, 吳建會(huì)1*, 馮銀廠1, 張?jiān)7?, 張勤勛2
1.南開(kāi)大學(xué)環(huán)境科學(xué)與工程學(xué)院, 國(guó)家環(huán)境保護(hù)城市空氣顆粒物污染防治重點(diǎn)實(shí)驗(yàn)室, 天津 300350 2.菏澤市環(huán)境監(jiān)測(cè)站, 山東 菏澤 274000
為研究菏澤市冬季大氣顆粒物中碳組分的污染特征和來(lái)源,于2016年1月采集菏澤市冬季大氣PM2.5和PM10樣品,基于熱光反射法分析樣品中OC(有機(jī)碳)、EC(元素碳)及8個(gè)碳組分〔OC1、OC2、OC3、OC4、EC1、EC2、EC3和OP(裂解碳)〕的含量,并計(jì)算得到ρ(Char-EC)(Char-EC為燃料燃燒后固體殘?jiān)械腅C)和ρ(Soot-EC)(Soot-EC為燃燒后氣相揮發(fā)物質(zhì)再凝結(jié)形成的EC),以定性識(shí)別大氣顆粒物中碳組分的來(lái)源. 結(jié)果表明,菏澤市冬季大氣顆粒物樣品中碳組分濃度處于較高水平,PM2.5中的ρ(OC)、ρ(EC)分別為26.34、9.22 μgm3,PM10中ρ(OC)、ρ(EC)分別為31.82、10.71 μgm3. 采樣期間大氣PM2.5中碳組分(OC、EC、OC1、OC2、OC3、OC4、EC1、EC2、EC3、Char-EC、Soot-EC)濃度與PM10中相應(yīng)各組分濃度的比值均大于0.5(0.60~0.90),表明碳組分多集中于細(xì)粒子(PM2.5). 大氣顆粒物樣品中各碳組分濃度具有明顯空間差異,各點(diǎn)位大氣PM2.5和PM10中ρ(OC)均顯著高于ρ(EC)(T檢驗(yàn),P<0.05). 菏澤市冬季大氣PM2.5和PM10中Char-ECSoot-EC(二者質(zhì)量濃度之比)分別為10.04、8.00,并且存在顯著的空間差異性(T檢驗(yàn),P<0.05). PMF(正定矩陣因子分解法)解析結(jié)果表明,菏澤市冬季大氣PM2.5和PM10中碳組分來(lái)源主要有4類(lèi),包括兩類(lèi)柴油車(chē)(1類(lèi)排放的碳組分中以EC2為主,定義為柴油車(chē)-1;1類(lèi)排放的碳組分中以EC3為主,定義為柴油車(chē)-2)、汽油車(chē)、生物質(zhì)燃燒和燃煤混合源,對(duì)大氣PM2.5中碳組分的分擔(dān)率分別為13.98%、5.13%、24.47%、41.97%,對(duì)大氣PM10中碳組分的分擔(dān)率分別為16.08%、8.21%、18.34%、47.35%. 可見(jiàn),菏澤市冬季大氣PM2.5和PM10中碳的主要來(lái)源是柴油車(chē)、汽油車(chē)、生物質(zhì)燃燒和燃煤.
菏澤市; 顆粒物; 碳組分; 源解析; PMF模型
隨著中國(guó)經(jīng)濟(jì)的快速發(fā)展和化石能源的大量消耗,導(dǎo)致大量碳組分的排放,很多地區(qū)大氣顆粒物中碳組分的占比持續(xù)增加[1]. 碳組分是顆粒物的重要組成部分,對(duì)霧霾的形成、氣候的改變和人體健康的危害有重要的影響[2-6]. 大氣顆粒物中碳組分的來(lái)源主要包括燃煤、機(jī)動(dòng)車(chē)、生物質(zhì)燃燒等[7-8],其組成主要包括OC(有機(jī)碳)和EC(元素碳). 研究大氣顆粒物中碳組分的污染特征及來(lái)源,對(duì)于認(rèn)識(shí)區(qū)域和城市大氣污染狀況、搞好污染控制有重要的意義[9].
近年來(lái),很多研究試圖利用OC/EC(質(zhì)量濃度之比)來(lái)定性識(shí)別大氣顆粒物中碳組分的來(lái)源[10-11]. 如王偉等[12-15]利用OC/EC定性分析了鞍山、黃石、武漢、天津等城市大氣顆粒物中碳組分的主要來(lái)源,結(jié)果表明,機(jī)動(dòng)車(chē)尾氣塵、生物質(zhì)和燃煤塵是大氣顆粒物中碳組分的主要排放源. 然而,基于OC/EC進(jìn)行的源解析存在較大不確定性,因?yàn)镺C/EC一般會(huì)受到一些因素的影響,如SOA(二次有機(jī)氣溶膠)的形成等[16]. 因此,一些研究試圖通過(guò)使用Char-EC/Soot-EC(Char-EC為燃料燃燒后固體殘?jiān)械腅C,Soot-EC為燃燒后氣相揮發(fā)物質(zhì)再凝結(jié)形成的EC,此處為二者質(zhì)量濃度之比)進(jìn)行源識(shí)別. HAN等[17]用Char-EC/Soot-EC解析出生物質(zhì)燃燒和燃煤對(duì)內(nèi)蒙古冬季大氣顆粒物中碳組分貢獻(xiàn)較大. HAN等[18]研究了我國(guó)14個(gè)城市大氣顆粒物中Char-EC/Soot-EC,結(jié)果表明,Char-EC/Soot-EC的變化規(guī)律和源解析結(jié)果變化規(guī)律一致. CAO等[7]通過(guò)研究西安市大氣顆粒物中碳組分,得出生物質(zhì)燃燒的Char-EC/Soot-EC為11.6,燃煤的Char-EC/Soot-EC為1.9. 盡管如此,OC/EC與Char-EC/Soot-EC方法尚不能定量解析大氣顆粒物中碳組分的來(lái)源,并且存在較大不確定性[18]. 因此,一些研究開(kāi)始利用受體模型進(jìn)行大氣顆粒物中碳來(lái)源的定性定量分析研究,如CAO等[7,19-20]把7種碳組分(OC1、OC2、OC3、OC4、EC1、EC2、EC3)納入絕對(duì)主成分分析模型解析了西安、天津、上海等城市大氣顆粒物中碳的來(lái)源,研究表明,燃煤(分擔(dān)率為37%~44%)、生物質(zhì)燃燒(4%~22%)、汽油車(chē)和柴油車(chē)排放(15%~73%)是大氣顆粒物中碳組分的主要來(lái)源. ZHENG等[1,22]通過(guò)CMB(化學(xué)質(zhì)量平衡)模型分別得到田納西河谷地區(qū)、美國(guó)東南部木材燃燒對(duì)大氣顆粒物中碳的貢獻(xiàn)最大(分擔(dān)率為25%~66%),其次是汽油車(chē)和柴油車(chē)的排放(10%~66%). WANG等[22]通過(guò)PMF(正矩陣因子分解)模型得到柴油車(chē)排放(分擔(dān)率為37.5%)和生物質(zhì)燃燒(24.6%)是三亞PAHs的主要來(lái)源. 可以看出,大氣顆粒物中碳組分的來(lái)源解析研究已受到國(guó)內(nèi)外越來(lái)越多的關(guān)注. 但是,運(yùn)用PMF模型進(jìn)行多粒徑段碳組分來(lái)源解析的研究較少.
PMF模型具有不需依賴(lài)源成分譜、分解矩陣中元素非負(fù)、能夠確定污染源及其貢獻(xiàn)的優(yōu)點(diǎn)[14]. 另外,EPA PMF 5.0版本中有三種誤差評(píng)估(error estimation, EE)方法,可以減少PMF分析的不確定性[23]. 因此,利用PMF模型對(duì)大氣顆粒物中碳組分進(jìn)行來(lái)源解析是一種有效的方法[24]. 盡管如此,基于PMF模型的大氣顆粒物中碳組分來(lái)源解析的研究仍然是有限的.
菏澤市是山東省西南部的中等農(nóng)業(yè)城市. 隨著經(jīng)濟(jì)快速增長(zhǎng)和城市化進(jìn)程的加快,化石燃料被大量消耗,2014年菏澤市燃料煤的消耗量近750×104t. 化石燃料的使用會(huì)排放大量的碳?xì)馊苣z進(jìn)入環(huán)境空氣中[25],對(duì)公共健康、大氣能見(jiàn)度以及環(huán)境氣候產(chǎn)生不利影響[14,26]. 該研究擬利用OC/EC、Char-EC/Soot-EC和PMF模型定性定量分析菏澤市顆粒物中碳組分來(lái)源,以期為菏澤市政管理部門(mén)控制和防治污染源提供依據(jù).
1.1大氣PM2.5和PM10樣品采集
根據(jù)菏澤市污染源排放及功能區(qū)分布等,選取6個(gè)采樣點(diǎn)〔華潤(rùn)制藥(35°15.38′N(xiāo)、115°30.95′E)、西城水庫(kù)(35°15.21′N(xiāo)、115°23.17′E)、污水處理廠(35°13.35′N(xiāo)、115°31.60′E)、牡丹高新區(qū)(35°14.64′N(xiāo)、115°24.46′E)、菏澤學(xué)院(35°16.16′N(xiāo)、115°27.60′E)和市政協(xié)(35°14.25′N(xiāo)、115°28.48′E)〕采集大氣PM2.5和PM10樣品. 于2016年1月14—23日進(jìn)行采樣,每天連續(xù)采樣23 h(當(dāng)日10:00—翌日09:00). 其中華潤(rùn)制藥采樣點(diǎn)為交通、工業(yè)混合區(qū);西城水庫(kù)采樣點(diǎn)為農(nóng)村地區(qū);污水處理廠和牡丹高新區(qū)采樣點(diǎn)為交通、住宅混合區(qū);菏澤學(xué)院采樣點(diǎn)為教育、住宅和商業(yè)混合區(qū);市政協(xié)采樣點(diǎn)為住宅、商業(yè)混合區(qū). 采樣點(diǎn)均設(shè)置在距離地面5~10 m的樓頂平臺(tái).
在6個(gè)采樣點(diǎn)采用TH-150C型智能中流量采樣器(武漢天虹儀表有限公司)同時(shí)采集大氣中PM2.5和PM10樣品. 采樣器的流量為100 L/min,共獲得PM2.5有效樣品59個(gè),PM10有效樣品60個(gè). 采樣期間,菏澤市的平均溫度為0.14 ℃、平均相對(duì)濕度(RH)為49.41%、ρ(SO2)為65.17 μg/m3、ρ(NO2)為51.50 μg/m3. 菏澤市冬季盛行西北風(fēng)、南風(fēng)和東風(fēng),平均風(fēng)速(WS)為1.9 m/s.
1.2OC和EC分析
該研究采用美國(guó)沙漠研究所研制的DRI Model 2001A型熱光分析儀,基于熱光反射法分析大氣PM2.5和PM10中的碳組分[18]. 從濾膜上截取0.558 cm2待測(cè)樣品送入熱光分析儀,在純氦氣環(huán)境下,于140 ℃(OC1)、280 ℃(OC2)、480 ℃(OC3)和580 ℃(OC4)熱解有機(jī)碳,然后在含氧氣(2%)和氦氣(98%)環(huán)境下,于580 ℃(EC1)、740 ℃(EC2)和840 ℃(EC3)逐步加熱氧化元素碳. 采用633 nm的He-Ne激光照射樣品,檢測(cè)無(wú)氧加熱下OP(裂解碳)的生成量[17]. OC的定義為OC1+OC2+OC3+OC4+OP,EC的定義為EC1+EC2+EC3-OP,Char-EC的定義為EC1-OP,Soot-EC的定義為EC2+EC3.
每個(gè)采樣時(shí)段均采集兩個(gè)現(xiàn)場(chǎng)空白濾膜,測(cè)定單位面積濾膜上OC、EC含量的平均值作為該時(shí)段樣品本底值扣除. 單位面積空白濾膜上OC和EC含量分別為0.7~0.8和0~0.06 μg/cm2,低于實(shí)際樣本的5%和1%. 每個(gè)采樣時(shí)段均采集2~3個(gè)平行樣品,用于采樣現(xiàn)場(chǎng)和實(shí)驗(yàn)室分析的全過(guò)程質(zhì)量控制. 平行樣中測(cè)得的單位面積濾膜上OC和EC含量相對(duì)偏差均在10%以?xún)?nèi). OC和EC的方法檢出限(MDLs)分別為0.45和0.06 μg/cm2.
1.3PMF模型
PMF模型利用權(quán)重計(jì)算出顆粒物中各化學(xué)組分的誤差,然后通過(guò)最小二乘法來(lái)確定顆粒物的主要污染源及其貢獻(xiàn)[17]. PMF的基本原理是將多樣本、多物種的采樣數(shù)據(jù)看作是一個(gè)n×m的X(i×j)矩陣[27],樣本的實(shí)測(cè)質(zhì)量濃度Xij表達(dá)為
(1)
X=GF+E
(2)
式中,i為受體樣本,j為物種,p為污染源數(shù),g為源對(duì)受體的相對(duì)貢獻(xiàn),f為污染源中某物種的含量,eij為實(shí)測(cè)的樣本質(zhì)量濃度與其解析值的殘差[28]. 式(2)表示原始矩陣X可以分解為兩個(gè)因子矩陣——源貢獻(xiàn)矩陣G(i×k)、源成分譜矩陣F(k×j)以及一個(gè)殘差矩陣E(i×j).
PMF模型通過(guò)定義一個(gè)目標(biāo)函數(shù)Q,最終解析得到使目標(biāo)函數(shù)Q值最小的G矩陣和F矩陣[29],從而得到最優(yōu)的因子解析結(jié)果:
μij)2
(3)
式中,μ為樣本的不確定度.
該研究采用Paatero等[30]提出的共軛梯度算法以最大限度地減小目標(biāo)函數(shù)Q〔見(jiàn)式(4),這種方法是以估算的數(shù)據(jù)的不確定性(或調(diào)整的數(shù)據(jù)的不確定性)為基礎(chǔ)的〕,從而確定污染源貢獻(xiàn)矩陣G和污染源成分矩陣F.
(4)
EPA PMF5.0包括三種誤差評(píng)估(EE)方法——BS(Bootstrap)、DISP (Displacement)、BS-DISP[23,31]. BS是一種自舉的分析方法,受隨機(jī)誤差和旋轉(zhuǎn)不確定性的影響[29];DISP是一種替換分析的方法,受旋轉(zhuǎn)不確定性的影響,但不受隨機(jī)誤差影響[32];BS-DISP則結(jié)合BS和DISP兩種方法.
SN(信噪比)是PMF模型中用來(lái)消除弱變量的,信號(hào)矢量被定義為S,噪聲矢量被定義為N,SN的定義[33]:
SN=
(5)
式中,sl和nl分別為PM2.5和PM10中的碳組分l的信號(hào)和噪聲. 當(dāng)SN≤0.2時(shí),在PMF的輸入數(shù)據(jù)統(tǒng)計(jì)表中設(shè)置該變量為“bad”,使得該組分不會(huì)被納入分析中;當(dāng)0.2 2.1大氣PM2.5和PM10中碳組分特征 菏澤市冬季大氣PM2.5中ρ(OC)、ρ(EC)分別為26.34、9.22 μg/m3,PM10中ρ(OC)、ρ(EC)分別為31.82、10.71 μg/m3;PM2.5中ρ(OC)、ρ(EC)與PM10中ρ(OC)、ρ(EC)的比值分別為0.83、0.86,說(shuō)明OC、EC多集中于細(xì)粒子(PM2.5). 菏澤市冬季大氣PM2.5與PM10中7種碳組分的構(gòu)成見(jiàn)圖1. PM2.5與PM10碳組分中,ρ(EC1)分別為10.52、13.43 μg/m3,并且w(EC1)最高,分別為29.59%、31.57%(見(jiàn)圖1),EC1主要來(lái)自于燃煤排放[35],表明菏澤市冬季大氣顆粒物中碳組分可能受燃煤影響較大. PM2.5與PM10中ρ(OC4)分別為8.81、10.20 μg/m3,w(OC4)分別為24.77%、23.98%,僅次于w(EC1),與成都[36]、南京[37]類(lèi)似.w(OC1)、w(EC2)、w(EC3)均較低(分別為9.42%~9.52%、2.08%~2.42%、0.27%~0.38%). PM2.5與PM10中ρ(OC1)、ρ(OC2)、ρ(OC3)、ρ(OC4)、ρ(EC1)、ρ(EC2)、ρ(EC3)、ρ(Char-EC)、ρ(Soot-EC)的比值均大于0.5(0.60~0.90),其中ρ(OC3)比值(0.90)最大,ρ(EC3) 比值(0.60)最小,說(shuō)明這些碳組分多集中于細(xì)粒子(PM2.5)上. 與國(guó)內(nèi)其他城市相比,菏澤市冬季大氣PM2.5中ρ(OC)、ρ(EC)高于泰安、南京、上海、杭州,低于廣州、北京;PM10中ρ(OC)、ρ(EC)高于泰安、南京、上海、杭州、北京,低于廣州(見(jiàn)表1). 此外,大氣PM2.5與PM10中OC/EC高于泰安、南京、上海、廣州. 與國(guó)外城市相比,菏澤市大氣顆粒物中ρ(OC)、ρ(EC)處于較高水平. 由此可見(jiàn),各城市間大氣顆粒物中碳組分的含量存在明顯差異,這可能與排放源、氣象條件的差異以及區(qū)域傳輸有關(guān). 圖1 菏澤市冬季大氣PM2.5與PM10中七種碳組分的質(zhì)量分?jǐn)?shù)Fig.1 Mass fraction of seven carbon fraction in PM2.5 and PM10 in winter of Heze 表1 國(guó)內(nèi)外主要城市大氣顆粒物中ρ(OC)、ρ(EC)和OCEC平均值 Table 1 Mass concentrations of OC and EC and the average ratios of OCEC in other cities 表1 國(guó)內(nèi)外主要城市大氣顆粒物中ρ(OC)、ρ(EC)和OCEC平均值 城市ρ(OC)∕(μg∕m3)ρ(EC)∕(μg∕m3)OC∕EC顆粒物季節(jié)數(shù)據(jù)來(lái)源菏澤2634922286PM25冬季該研究菏澤31821071297PM10冬季該研究泰安1016391260PM25冬季文獻(xiàn)[37]南京13853260PM25冬季文獻(xiàn)[38]上海169100169PM25冬季文獻(xiàn)[39]杭州17136475PM25冬季文獻(xiàn)[40]廣州17541427PM25冬季文獻(xiàn)[41]北京245819299PM25冬季文獻(xiàn)[41]美國(guó)丹佛337044770PM25夏季文獻(xiàn)[42]比利時(shí)根特4110410PM25冬季文獻(xiàn)[43] 菏澤市冬季大氣顆粒物中碳組分的空間分布特征如圖2所示. 在6個(gè)采樣點(diǎn)中,PM2.5和PM10中ρ(OC)均明顯高于ρ(EC)(T檢驗(yàn),P<0.05),這是由大氣化學(xué)反應(yīng)和大量的人為排放源造成的[44]. 菏澤學(xué)院采樣點(diǎn)PM2.5和PM10中ρ(OC)、ρ(EC)、ρ(OC2)、ρ(OC3)、ρ(EC1)、ρ(Char-EC)最高;華潤(rùn)制藥采樣點(diǎn)PM2.5和PM10中ρ(OC1)、ρ(OC4)、ρ(EC2)、ρ(Soot-EC)最高;西城水庫(kù)采樣點(diǎn)PM2.5中ρ(OC1)、ρ(OC2)、ρ(OC3)、ρ(OC4)、ρ(EC1)、ρ(EC2)、ρ(Char-EC)、ρ(Soot-EC)最低,這是因?yàn)槲鞒撬畮?kù)為農(nóng)村地區(qū),碳?xì)馊苣z的排放較少;華潤(rùn)制藥采樣點(diǎn)PM10中ρ(OC)、ρ(OC1)、ρ(OC4)最低. 圖2 不同采樣點(diǎn)的碳組分質(zhì)量濃度Fig.2 The concentrations of carbonaceous species at different sampling sites 采樣期間,菏澤市大氣PM2.5中OCEC平均值為3.16,其中菏澤學(xué)院采樣點(diǎn)最高(3.88),市政協(xié)采樣點(diǎn)最低(2.90);PM10中OCEC平均值為3.12,其中華潤(rùn)制藥采樣點(diǎn)最高(4.41),污水處理廠采樣點(diǎn)最低(見(jiàn)圖3). 研究表明,生物質(zhì)燃燒排放大氣顆粒物中OCEC在9.0~12.3之間[7,45],燃煤排放大氣顆粒物中OCEC在2.7~3.0之間[7,46],機(jī)動(dòng)車(chē)排放大氣顆粒物中OCEC在1.1~1.6之間[7,46],因此,菏澤市冬季大氣PM2.5和PM10中碳組分可能受燃煤排放的影響較大. 圖3 菏澤市大氣PM2.5和PM10中OCEC的空間變化Fig.3 Spatial distributions of OC EC in atmospheric PM2.5 and PM10 in Heze 圖4 菏澤市大氣PM2.5和PM10中Char-ECSoot-EC的空間變化Fig.4 Spatial distributions of Char-ECSoot-EC in atmospheric PM2.5 and PM10 in Heze 采樣期間,菏澤市大氣PM2.5和PM10中Char-ECSoot-EC分別為10.04和8.00,不同采樣點(diǎn)間差異顯著(T檢驗(yàn),P<0.05)(見(jiàn)圖4). 相關(guān)研究表明,生物質(zhì)燃燒的Char-ECSoot-EC高于10,機(jī)動(dòng)車(chē)排放的Char-ECSoot-EC低于1,燃煤排放的Char-ECSoot-EC低于2[41-42],因此,生物質(zhì)燃燒源可能是菏澤市冬季顆粒物中碳組分的重要貢獻(xiàn)源類(lèi). 從Char-ECSoot-EC的空間分布來(lái)看,菏澤學(xué)院采樣點(diǎn)大氣PM2.5和PM10中Char-ECSoot-EC均最高,分別為16.80、10.23,說(shuō)明菏澤學(xué)院采樣點(diǎn)大氣顆粒物中碳組分受到生物質(zhì)燃燒的影響較大,這可能是因?yàn)楹蕽蓪W(xué)院位于菏澤市北部,鄰近農(nóng)村地區(qū),受農(nóng)村地區(qū)生物質(zhì)燃燒的影響所致. 華潤(rùn)制藥采樣點(diǎn)大氣PM2.5和PM10中Char-ECSoot-EC最低,分別為7.54、3.91,說(shuō)明華潤(rùn)制藥采樣點(diǎn)受燃煤和機(jī)動(dòng)車(chē)排放影響較大,這可能與該采樣點(diǎn)位于交通、工業(yè)混合區(qū)有關(guān). 2.2PMF模型源解析 2.2.1誤差評(píng)估(error estimation, EE)分析 PMF模型的誤差評(píng)估參數(shù)如表2所示. 當(dāng)因子數(shù)由2增至6時(shí),大氣PM2.5中碳組分的Q(Robust)Qexp〔Q(Robust)為排除不確定較大數(shù)據(jù)后計(jì)算的Q值;Qexp為預(yù)期的Q值,Qexp=(X中的“strong”數(shù)據(jù)值的數(shù)量)-(G和F中元素?cái)?shù)量的總和)〕由10.3降至3.0,PM10中碳組分的Q(Robust)Qexp由17.9降至3.6. 當(dāng)因子數(shù)由4增至5時(shí),Q(Robust)Qexp的減少量在PM2.5與PM10的碳組分中均最小,分別為0.7和1.6. 隨著因子數(shù)的增加,Q值的變化量減小,表明該因子數(shù)為最佳選擇[23]. 當(dāng)因子數(shù)為4時(shí),BS mapping(BS方法計(jì)算時(shí)因子映射率)為100%、DISP % dQ(DISP方法計(jì)算時(shí)的Q值變化率)<0.1%、DISP swaps(DISP方法計(jì)算時(shí)因子替代的個(gè)數(shù))為0,結(jié)果較穩(wěn)定[23]. 測(cè)量的ρ(總碳)〔包括ρ(OC1)、ρ(OC2)、ρ(OC3)、ρ(OC4)、ρ(EC1)、ρ(EC2)、ρ(EC3)、ρ(Char-EC) 和ρ(Soot-EC)〕和用PMF模型計(jì)算的ρ(總碳) 的相關(guān)系數(shù)達(dá)到0.85(見(jiàn)圖5). 因此該研究中因子數(shù)選擇4個(gè). 2.2.2源解析結(jié)果 表2 菏澤市大氣PM2.5 和PM10中碳組分的PMF和誤差評(píng)估參數(shù) 注: 1stF為第一個(gè)因子. 圖5 菏澤市冬季大氣PM2.5和PM10中ρ(總碳)計(jì)算值及測(cè)量值的相關(guān)性Fig.5 Correlations between the calculated and the measured total carbon concentrations in atmospheric PM2.5 and PM10 during the winter in Heze 圖6 PMF解析大氣PM2.5和PM10中碳組分不同來(lái)源成分譜Fig.6 Source profiles obtained with the PMF for carbonaceous components in atmospheric PM2.5 and PM10 該研究采用美國(guó)國(guó)家環(huán)境保護(hù)局發(fā)布的PMF 5.0[29],對(duì)菏澤市冬季大氣PM2.5和PM10中的碳組分進(jìn)行來(lái)源解析,解析出4類(lèi)因子,其成分譜如圖6所示. 如圖6(a)所示,對(duì)于PM2.5中的碳組分,因子1中OC2(31.20%)、OC3(62.11%)、OC4(75.45%)、EC1(57.70%)、Char-EC(55.80%)的占比較高,標(biāo)識(shí)該因子所對(duì)應(yīng)的污染源為汽油車(chē)[1,35];EC2是因子2的主要成分(54.69%),EC3在因子4中的占比為100%,標(biāo)識(shí)因子2和因子3為兩類(lèi)柴油車(chē)源[47]. 把排放的碳組分中以EC2為主的柴油車(chē)定義為柴油車(chē)-1,以EC3為主的柴油車(chē)定義為柴油車(chē)-2,則因子2和因子3分別為柴油車(chē)-1源和柴油車(chē)-2源;因子3代表生物質(zhì)燃燒和燃煤混合源,該因子中OC1(60.28%)和OC2(59.62%)占比較高[48-50]. 如圖6(b)所示,對(duì)于PM10中的碳組分,4個(gè)因子的標(biāo)示組分類(lèi)似于PM2.5,分別代表柴油車(chē)-1、柴油車(chē)-2、汽油車(chē)、生物質(zhì)燃燒和燃煤混合源. 根據(jù)源解析結(jié)果(見(jiàn)圖7),生物質(zhì)燃燒和燃煤混合源對(duì)PM2.5和PM10中碳組分的分擔(dān)率最大,分別為41.97%和47.35%,這與2.1節(jié)的結(jié)果相一致,表明菏澤市冬季生物質(zhì)燃燒和燃煤污染較為嚴(yán)重. 因此,民用散燒、工業(yè)鍋爐和窯爐、電廠燃煤以及供暖供熱鍋爐需進(jìn)一步加強(qiáng)監(jiān)管. 汽油車(chē)對(duì)PM2.5和PM10中碳組分的分擔(dān)率僅次于生物質(zhì)燃燒和燃煤混合源,分別為24.47%和18.34%. 柴油車(chē)-1對(duì)PM2.5和PM10中碳組分的分擔(dān)率高于柴油車(chē)-2,分別為13.98%和16.08%. 然而,在PM2.5和PM10中均有一些源沒(méi)有被PMF識(shí)別出(其他源分擔(dān)率大于10%),這是因?yàn)橐恍┡欧旁磸?fù)雜,特別是對(duì)于開(kāi)放源,如垃圾燃燒和道路灰塵等[37]. 生物質(zhì)燃燒和燃煤、柴油車(chē)-1、柴油車(chē)-2對(duì)PM10中碳組分的分擔(dān)率大于PM2.5中碳組分(見(jiàn)圖7),表明這三種源產(chǎn)生的污染物以粗顆粒為主. 圖7 PMF模型解析各類(lèi)源對(duì)大氣PM2.5和PM10中碳組分的分擔(dān)率Fig.7 Source apportionment of carbonaceous components in atmospheric PM2.5 and PM10 in Heze a) 菏澤市冬季大氣顆粒物中碳組分濃度處于較高水平,PM2.5中的ρ(OC)、ρ(EC)分別為26.34、9.22 μgm3,PM10中ρ(OC)、ρ(EC)分別為31.82、10.71 μgm3. 采樣期間大氣PM2.5中碳組分(OC、EC、OC1、OC2、OC3、OC4、EC1、EC2、EC3、Char-EC、Soot-EC)濃度與大氣PM10中相應(yīng)各組分濃度的比值均大于0.5(0.60~0.90),表明碳組分多集中于細(xì)粒子(PM2.5). b) 菏澤市冬季大氣PM2.5和PM10中OCEC分別為3.16、3.12,Char-ECSoot-EC分別為10.04、8.00,一定程度上表明菏澤市冬季大氣顆粒物中的碳組分受燃煤、生物質(zhì)燃燒的影響較大. c) 菏澤市冬季大氣顆粒物中的各碳組分濃度具明顯空間差異,各采樣點(diǎn)PM2.5和PM10中ρ(OC)均顯著高于ρ(EC)(T檢驗(yàn),P<0.05);PM2.5和PM10中Char-ECSoot-EC存在顯著的空間差異性(T檢驗(yàn),P<0.05). d) PMF解析結(jié)果表明,菏澤市冬季大氣PM2.5和PM10中碳的來(lái)源主要有4類(lèi),包括柴油車(chē)-1、柴油車(chē)-2、汽油車(chē)、生物質(zhì)燃燒和燃煤混合源;對(duì)大氣PM2.5中碳組分的分擔(dān)率分別為13.98%、5.13%、24.47%、41.97%,對(duì)大氣PM10中碳組分的分擔(dān)率分別為16.08%、8.21%、18.34%、47.35%. [1] ZHENG Mei,CASS G R,SCHAUER J J,etal.Source apportionment of PM2.5in the Southeastern United States using solvent-extractable organic compounds as tracers[J].Environmental Science & Technology,2002,36(11):2361-2371. [2] BISHT D S,DUMKA U C,KASKAOUTIS D G,etal.Carbonaceous aerosols and pollutants over Delhi urban environment:temporal evolution,source apportionment and radiative forcing[J].Science of the Total Environment,2015,521/522:431-445. [3] LIU Baoshuang,BI Xiaohui,FENG Yinchang,etal.Fine carbonaceous aerosol characteristics at a megacity during the Chinese Spring Festival as given by OC/EC online measurements[J].Atmospheric Research,2016,181:20-28. [4] MENON S,HANSEN J,NAZARENKO L,etal.Climate effects of black carbon aerosols in China and India[J].Science,2002,297(5590):2250-2253. [5] SEINFELD J H.Atmospheric chemistry and physics:from air pollution to climate change[M].2nd ed.Wiley,America:Pergamon Press,1986. [6] YTTRI K E,AAS W,BJERKE A,etal.Elemental and organic carbon in PM10:a one year measurement campaign within the European Monitoring and Evaluation Programme EMEP[J].Atmospheric Chemistry & Physics Discussions,2007,7(22):5711-5725. [7] CAO J J,WU F,CHOW J C,etal.Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an,China[J].Atmospheric Chemistry & Physics,2005,5(11):3127-3137. [8] ZHANG Renjian,JING Junshan,TAO Jun,etal.Chemical characterization and source apportionment of PM2.5in Beijing:seasonal perspective[J].Atmospheric Chemistry & Physics,2013,13(14):7053-7074. [9] OGULEI D,HOPKE P K,ZHOU L,etal.Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data[J].Atmospheric Environment,2006,40(2):396-410. [10] HAN Y M,CAO J J,LEE S C,etal.Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi′an,China[J].Atmospheric Chemistry & Physics,2010,10(2):1487-1495. [11] SAFAI P D,RAJU M P,RAO P S P,etal.Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance[J].Atmospheric Environment,2014,92(1/2/3):493-500. [12] 王偉,姬亞芹,趙哲,等.鞍山城區(qū)夏季PM2.5中碳組分污染特征及來(lái)源[J].環(huán)境工程技術(shù)學(xué)報(bào),2015,5(2):91-96. WANG Wei,JI Yaqin,ZHAO Zhe,etal.Pollution characteristics of carbon fractions in PM2.5and their sources in urban area of Anshan City in summer[J].Journal of Environmental Engineering Technology,2015,5(2):91-96. [13] 劉浩,張家泉,張勇,等.黃石市夏季晝間大氣PM10與PM2.5中有機(jī)碳、元素碳污染特征[J].環(huán)境科學(xué)學(xué)報(bào),2014,34(1):36-42. LIU Hao,ZHANG Jiaquan,ZHANG Yong,etal.Pollution characteristics of organic carbon and elemental carbon in atmospheric particles during the summer day in Huangshi City[J].Acta Scientiae Circumstantiae,2014,34(1):36-42. [14] 成海容,王祖武,馮家良,等.武漢市城區(qū)大氣PM2.5的碳組分與源解析[J].生態(tài)環(huán)境學(xué)報(bào),2012(9):1574-1579. CHENG Hairong,WANG Zuwu,FENG Jialiang,etal.Carbonaceous species composition and source apportionment of PM2.5in urban atmosphere of Wuhan[J].Ecology and Environmental Sciences,2012(9):1574-1579. [15] 古金霞,白志鵬,劉愛(ài)霞,等.天津冬季PM2.5與PM10中有機(jī)碳、元素碳的污染特征[J].環(huán)境污染與防治,2009,31(8):33-36. GU Jinxia,BAI Zhipeng,LIU Aixia,etal.Pollution characteristics of OC and EC in PM2.5and PM10in Tianjin winter[J].Environmental Pollution & Control,2009,(8):33-36. [16] CASTRO L M,PIO C A,HARRISON R M,etal.Carbonaceous aerosol in urban and rural European atmospheres:estimation of secondary organic carbon concentrations[J].Atmospheric Environment,1999,33(17):2771-2781. [17] HAN Y M,HAN Z W,CAO J J,etal.Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area,Northern China and its transport significance[J].Atmospheric Environment,2008,42(10):2405-2414. [18] HAN Y M,LEE S C,CAO J J,etal.Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China[J].Atmospheric Environment,2009,43(38):6066-6073. [19] 史國(guó)良,陳剛,田瑛澤,等.天津大氣PM2.5中碳組分特征和來(lái)源分析[J].環(huán)境污染與防治,2016,38(1):1-7. SHI Guoliang,CHEN Gang,TIAN Yingze,etal.Characteristic and source of carbon fractions in PM2.5in Tianjin urban area[J].Environmental Pollution & Control,2016,38(1):1-7. [20] 黃眾思,修光利,朱夢(mèng)雅,等.上海市夏冬兩季 PM2.5中碳組分污染特征及來(lái)源解析[J].環(huán)境科學(xué)與技術(shù),2014,7(4):124-129. HUANG Zhongsi,XIU Guangli,ZHU Mengya,etal.Characteristics and sources of carbonaceous species in PM2.5in summer and winter in Shanghai[J].Environmental Science & Technology(China),2014,37(4):124-129. [21] KE Lin,DING Xiang,TANNER R L,etal.Source contributions to carbonaceous aerosols in the Tennessee Valley Region[J].Atmospheric Environment,2007,41(39):8898-8923. [22] WANG Jingzhi,HO S S H,CAO Junji,etal.Characteristics and major sources of carbonaceous aerosols in PM2.5,from Sanya,China[J].Science of the Total Environment,2015,530/531:110-119. [23] BROWN S G,EBERLY S,PAATERO P,etal.Methods for estimating uncertainty in PMF solutions:examples with ambient air and water quality data and guidance on reporting PMF results[J].Science of the Total Environment,2015,518/519:626-635. [24] CHEN Yang,CAO Junji,ZHAO Jing,etal.N-alkanes and polycyclic aromatic hydrocarbons in total suspended particulates from the southeastern Tibetan Plateau:concentrations,seasonal variations,and sources[J].Science of the Total Environment,2014,470/471(2):9-18. [25] 康蘇花,李海峰,楊麗杰,等.石家莊市大氣顆粒物碳組分特征分析[J].科學(xué)技術(shù)與工程,2014,14(30):280-282. [26] 董海燕,古金霞,陳魁,等.天津市區(qū)PM2.5中碳組分污染特征及來(lái)源分析[J].中國(guó)環(huán)境監(jiān)測(cè),2013,29(1):34-38. DONG Haiyan,GU Jinxia,CHEN Kui,etal.Character and source analysis of carbonaceous aerosol in PM2.5in the center of Tianjin City[J].Environmental Monitoring in China,2013,29(1):34-38. [27] 楊佳美,戴啟立,劉保雙,等.關(guān)中地區(qū)背景點(diǎn)位環(huán)境空氣PM2.5來(lái)源解析與多模型結(jié)果對(duì)比[J].環(huán)境科學(xué)研究,2017,30(2):184-192. YANG Jiamei,DAI Qili,LIU Baoshuang,etal.Source apportionment of ambient PM2.5at background sites in Guanzhong area,China:comparison of results obtained by multiple models[J].Research of Environmental Sciences,2017,30(2):184-192. [28] PAATERO P.Least squares formulation of robust non-Negative factor analysis[J].Chemometrics Intelligent Laboratory Systems,1997,37(1):27-35. [29] NORRIS G,DUVALL R.EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and user guide[R].Washington DC:Environmental Protection Agency,2014:14-50. [30] PAATERO P,HOPKE P K.Discarding or downweighting high-Noise variables in factor analytic models[J].Analytica Chimica Acta,2003,490(1/2):277-289. [31] LIU Baoshuang,WU Jianhui,ZHANG Jiaying,etal.Characterization and source apportionment of PM2.5,based on error estimation from EPA PMF 5.0 model at a medium city in China[J].Environmental Pollution,2017,222:10-22. [32] PAATERO P,EBERLY S,BROWN S G,etal.Methods for estimating uncertainty in factor analytic solutions[J].Atmospheric Measurement Techniques,2014,6(4):7593-7631. [33] TAHERI A.Identification of particulate matter sources on an hourly time-scale in a wood burning community[J].Environmental Science & Technology,2012,46(9):4767. [34] ANCELET T,DAVY P K,MITCHELL T,etal.Identification of particulate matter sources on an hourly time-scale in a wood burning community[J].Environmental Science & Technology,2012,46(9):4767. [35] CHOW J C,WATSONJ G,KUHNS H,etal.Source profiles for industrial,mobile,and area sources in the Big Bend Regional Aerosol Visibility and Observational study[J].Chemosphere,2004,54(2):185-208. [36] SHI Guoliang,PENG Xing,LIU Jiayuan,etal.Quantification of long-term primary and secondary source contributions to carbonaceous aerosols[J].Environmental Pollution,2016,219:897-905. [37] LI Bing,ZHANG Jie,ZHAO Yu,etal.Seasonal variation of urban carbonaceous aerosols in a typical city Nanjing in Yangtze River Delta,China[J].Atmospheric Environment,2015,106:223-231. [38] PATHAK R K,WANG T,HO K F,etal.Characteristics of summertime PM2.5organic and elemental carbon in four major Chinese cities:implications of high acidity for water-soluble organic carbon (WSOC)[J].Atmospheric Environment,2011,45(45):318-325. [39] CAO J J,LEE S C,CHOW J C,etal.Spatial and seasonal distribution of carbonaceous aerosols over China[J].Journal of Geophysical Research Atmospheres,2007,112(D22):11-22. [40] YANG Fumo,TAN Jihua,ZHAO Qingquan,etal.Characteristics of PM2.5speciation in representative megacities and across China[J].Atmospheric Chemistry & Physics,2011,11(11):1025-1051. [41] YU Shaocai,DENNISR L,BHAVE P V,etal.Primary and secondary organic aerosols over the United States:estimates on the basis of observed organic carbon (OC) and elemental carbon (EC),and air quality modeled primary OC/EC ratios[J].Atmospheric Environment,2004,38(31):5257-5268. [42] CHEN Shuijen,LIAO Shihu,JIAN Weijain,etal.Particle size distribution of aerosol variations of aerosol carbons in ambient air[J].Environment International,1997,23(4):475-488. [43] CAO J J,LEE S C,HO K F,etal.Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region,China[J].Atmospheric Environment,2004,38(27):4447-4456. [44] LI Weifang,BAI Zhipeng.Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin,China[J].Particuology,2009,7(6):432-437. [45] CACHIER H,BREMOND M P,BUAT-MENARD P.Carbonaceous aerosols from different tropical biomass burning sources[J].Nature,1989,340(6232):371-373. [46] WATSON J G,CHOW J C,HOUCK J E.PM2.5chemical source profiles for vehicle exhaust,vegetative burning,geological material,and coal burning in Northwestern Colorado during 1995[J].Chemosphere,2001,43(8):1141. [47] WATSON J G,CHOW J C,LOWENTHAL D H,etal.Differences in the carbon composition of source profiles for diesel- and gasoline-powered vehicles[J].Atmospheric Environment,1994,28(15):2493-2505. [48] KIM E,HOPKE P K,EDGERTON E S.Source identification of atlanta aerosol by positive matrix factorization[J].Journal of the Air & Waste Management Association,2003,53(6):731-739. [49] KIM E,HOPKE P K.Improving source identification of fine particles in a rural northeastern US area utilizing temperature-resolved carbon fractions[J].Journal of Geophysical Research Atmospheres,2004,109(D9):729-736. [50] NIU Zhenchuan,WANG Sen,CHEN Jinsheng,etal.Source contributions to carbonaceous species in PM2.5and their uncertainty analysis at typical urban,peri-urban and background sites in southeast China[J].Environmental Pollution,2013,181(6):107-114. SourceApportionmentofCarbonaceousSpeciesinAtmosphericPM2.5andPM10duringWinterinHezeCity,China ZHANG Jiaying1, LIU Baoshuang1, BI Xiaohui1, WU Jianhui1*, FENG Yinchang1, ZHANG Yufen1, ZHANG Qinxun2 1.State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China 2.Heze Environmental Monitoring Center Station, Heze 274000, China To investigate the characteristics and sources of carbonaceous species in atmospheric PM2.5and PM10in Heze City, atmospheric PM2.5and PM10samples were collected in January 2016. The organic carbon (OC), element carbon (EC) and eight carbon fractions (OC1, OC2, OC3, OC4, EC1, EC2, EC3 and pyrolytic carbon (OP)) were analyzed using thermaloptical reflectance. In addition, the concentrations formed from the solid residues of combustion (Char-EC) and formed from volatiles within and recondensed from the high-temperature gas phase (Soot-EC) were calculated. The results indicate that the concentrations of carbonaceous species in atmospheric particulate matter were higher in winter. The concentrations of OC and EC in atmospheric PM2.5were 26.34 and 9.22 μgm3, respectively, and those in atmospheric PM10were 31.82 and 10.71 μgm3, respectively. During the sampling period, the concentration ratios of carbon fractions (OC, EC, OC1, OC2, OC3, OC4, EC1, EC2, EC3, Char-EC and Soot-EC) in atmospheric PM2.5to those in PM10were greater than 0.5, indicating that these fractions were widely concentrated in fine particles (PM2.5). The carbonaceous species in atmospheric PM2.5and PM10showed significant spatial differences, and the concentrations of OC in atmospheric PM2.5and PM10were significantly higher than those of EC in PM2.5and PM10at each site (T-test,P<0.05). The Char-ECSoot-EC (the ratios of the mass concentrations) in atmospheric PM2.5and PM10were 10.04 and 8.00, respectively, and there were obvious spatial differences in Char-ECSoot-EC (T-test,P<0.05). Four emissions sources of carbonaceous species in atmospheric PM2.5and PM10were identified by using the PMF model during winter in Heze. These sources mainly included two types of diesel vehicles (diesel vehicles dominated by factor profile EC2 were defined as diesel vehicle-1, and diesel vehicles dominated by factor profile EC3 were defined as diesel vehicle-2), gasoline vehicles, and the mixture of biomass combustion and coal combustion. The contributions of the four emissions sources to carbonaceous species in atmospheric PM2.5were 13.98%, 5.13%, 24.47% and 41.97%, respectively, and to those in atmospheric PM10were 16.08%, 8.21%, 18.34% and 47.35%, respectively. The main sources of carbonaceous species in atmospheric PM2.5and PM10were diesel vehicles, gasoline vehicles, biomass burning and coal combustion. Heze City; particulate matter; carbonaceous species; source apportionment; PMF 2017-02-15 2017-08-13 國(guó)家自然科學(xué)基金項(xiàng)目(21407081);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFC0208500) 張家營(yíng)(1995-),女,河北邢臺(tái)人,1060272419@qq.com. *責(zé)任作者,吳建會(huì)(1978-),男,山東新泰人,副教授,博士,主要從事大氣顆粒物來(lái)解析及污染防治研究,envwujh@nankai.edu.cn 張家營(yíng),劉保雙,畢曉輝,等.菏澤市冬季大氣PM2.5和PM10中碳組分來(lái)源解析[J].環(huán)境科學(xué)研究,2017,30(11):1670-1679. ZHANG Jiaying,LIU Baoshuang,BI Xiaohui,etal.Source apportionment of carbonaceous species in atmospheric PM2.5and PM10during winter in Heze City, China[J].Research of Environmental Sciences,2017,30(11):1670-1679. X51 1001-6929(2017)11-1670-10 A 10.13198j.issn.1001-6929.2017.03.112 結(jié)果與討論
3 結(jié)論