黃 敏, 段軍波, 周開來, 劉 茜, 梁榮祥, 黃永炳
武漢理工大學(xué)資源與環(huán)境工程學(xué)院, 湖北 武漢 430070
典型設(shè)施環(huán)境條件對(duì)土壤活性有機(jī)碳及腐殖物質(zhì)碳的影響
黃 敏, 段軍波, 周開來, 劉 茜, 梁榮祥, 黃永炳
武漢理工大學(xué)資源與環(huán)境工程學(xué)院, 湖北 武漢 430070
為明確設(shè)施環(huán)境對(duì)土壤有機(jī)碳形態(tài)變化的影響,選取武漢城郊設(shè)施土壤為研究對(duì)象,分別設(shè)置環(huán)境溫度(4、10和25 ℃)、土壤酸化(土壤pH分別為6.89、6.11和5.30)和土壤鹽漬化〔土壤w(可溶性鹽分)分別為1.90、3.05和5.01 gkg〕3種典型設(shè)施環(huán)境條件,通過為期90 d的室內(nèi)模擬強(qiáng)化試驗(yàn),研究以上3種典型設(shè)施環(huán)境條件對(duì)土壤活性有機(jī)碳動(dòng)態(tài)變化、腐殖物質(zhì)碳組成及有機(jī)碳礦化率的影響. 結(jié)果表明:與4 ℃的對(duì)照處理相比,隨著設(shè)施環(huán)境溫度升高,土壤w(MBC)(MBC為微生物生物量碳)和w(ROOC)(ROOC為易氧化有機(jī)碳)呈上升趨勢(shì),25 ℃時(shí)的最大增幅分別達(dá)19.43%和55.56%;而土壤w(DOC)(DOC為可溶性有機(jī)碳)總體呈先升后降的趨勢(shì),10 ℃下最大增幅為17.23%,25 ℃下最大減幅為60.89%. 與對(duì)照土壤〔pH為6.89,w(可溶性鹽分)為1.90 gkg〕相比,土壤pH為5.30的酸化處理下w(MBC)和w(ROOC)平均降幅分別為29.80%和5.93%,土壤w(可溶性鹽分) 為5.01 gkg的鹽化處理下的平均降幅分別為35.64%和6.26%,而酸化和鹽化使土壤w(DOC)較對(duì)照的平均增幅分別達(dá)58.19%和119.73%. 此外,設(shè)施環(huán)境溫度提高會(huì)降低土壤有機(jī)碳礦化率和HU(胡敏素碳)所占比例,其HAFA(胡敏酸碳富里酸碳含量之比)較對(duì)照增加了1.05倍;而土壤酸化和鹽化會(huì)使有機(jī)碳礦化率較對(duì)照分別增加3.78和7.80倍,其HAFA較對(duì)照分別降低了65.72%和73.21%. 可見,提升設(shè)施環(huán)境溫度、減緩或改善設(shè)施土壤的酸化及鹽化問題,均有利于設(shè)施土壤的固碳減排.
設(shè)施土壤; 活性有機(jī)碳; 腐殖物質(zhì)碳; 有機(jī)碳礦化率; 設(shè)施環(huán)境條件
土壤有機(jī)碳是陸地生態(tài)系統(tǒng)的主要碳庫,具有調(diào)控土壤結(jié)構(gòu)、養(yǎng)分供應(yīng)以及溫室效應(yīng)等作用[1-3],土壤有機(jī)碳動(dòng)態(tài)最初往往通過其活性部分的變化表現(xiàn)出來[4]. 土壤活性有機(jī)碳是指土壤中具有一定溶解性、移動(dòng)快、不穩(wěn)定、易分解礦化,對(duì)植物和土壤微生物活性較高的那部分碳素[5],其中,土壤MBC(微生物生物量碳)、DOC(可溶性有機(jī)碳)和ROOC(易氧化有機(jī)碳)均屬于表征土壤活性有機(jī)碳的常見形態(tài)[6]. 土壤活性有機(jī)碳對(duì)溫室氣體排放的貢獻(xiàn)率較大,對(duì)氣候、土壤和植被變化的響應(yīng)極為敏感,其含量高低直接影響土壤微生物的活性,進(jìn)而影響土壤固碳能力[7-8]. 土壤腐殖物質(zhì)是進(jìn)入土壤的有機(jī)物料在微生物和酶的作用下而形成的一類高分子有機(jī)混合物,它對(duì)土壤結(jié)構(gòu)具有重要的調(diào)節(jié)功能. HS(腐殖物質(zhì)碳)是土壤有機(jī)碳的核心組分,根據(jù)其溶解性差異又分為FA(富里酸碳)、HA(胡敏酸碳)和HU(胡敏素碳)等成分[9]. 其中,HA和HU結(jié)構(gòu)復(fù)雜且難以降解,其有機(jī)碳被認(rèn)為是土壤固定的惰性或穩(wěn)定性有機(jī)碳[10]. HA/FA(胡敏酸碳與富里酸碳含量之比)是表征有機(jī)質(zhì)腐殖化程度的重要指標(biāo),該比值越大,說明腐殖質(zhì)品質(zhì)越好[11].
設(shè)施土壤是在長期覆蓋栽培和高度集約化管理等條件下,一種受人為作用強(qiáng)烈的土壤. 因其長期處于“高溫、高濕、高蒸發(fā)、無降水淋洗”等環(huán)境中,加之高度連作、連續(xù)大量施肥、盲目灌溉等農(nóng)藝措施[12],導(dǎo)致設(shè)施土壤往往出現(xiàn)酸化、鹽漬化及養(yǎng)分失衡等問題[13],這也是當(dāng)前制約設(shè)施土壤可持續(xù)利用的關(guān)鍵因素. 設(shè)施栽培屬于反季節(jié)栽培,一般在月均氣溫低于10 ℃以下的冬春季進(jìn)行,而設(shè)施環(huán)境溫度往往比當(dāng)季露天氣溫高4~17 ℃[14]. 溫度對(duì)土壤w(TOC)、w(MBC)、w(DOC)和w(ROOC)影響顯著,其中環(huán)境溫度升高(5 ℃升至35 ℃),土壤w(TOC)增加7.55%[15]. 調(diào)查顯示,設(shè)施菜地土壤pH一般在4.96~7.97之間[12];而土壤在一定pH范圍內(nèi),w(TOC)與土壤pH呈極顯著相關(guān)(P=0.01)[16]. 土壤鹽漬化、富鹽基離子的土壤環(huán)境也不利于有機(jī)碳的積累[17]. 有關(guān)土壤有機(jī)碳組分的形成轉(zhuǎn)化,當(dāng)前主要集中在露天自然的旱地[18]、水田等濕地[19]、草地[20]等土壤上. 而設(shè)施土壤的環(huán)境條件特殊,其有機(jī)碳轉(zhuǎn)化過程往往不同于自然條件下的露天土壤. 因此,該研究以武漢近郊的設(shè)施菜地土壤為研究對(duì)象,結(jié)合實(shí)際存在的土壤酸化及鹽漬化問題,探討環(huán)境溫度、土壤酸化和鹽化3種典型因素對(duì)土壤活性有機(jī)碳及腐殖物質(zhì)碳變化的影響規(guī)律,以期為設(shè)施土壤有機(jī)質(zhì)管理和有機(jī)碳固定、改善區(qū)域環(huán)境提供理論依據(jù).
1.1試驗(yàn)材料
供試土壤采自武漢市近郊東西湖區(qū)石榴紅村的設(shè)施蔬菜基地的表層(0~20 cm)土壤. 該基地設(shè)施種植歷史已超過20 a,設(shè)施面積約70 hm2,設(shè)施蔬菜類型主要有豇豆、茄子、辣椒、西紅柿、黃瓜、蘿卜等. 土樣采集方法采用“S”形線路隨機(jī)多點(diǎn)混合而成,裝入塑料袋中帶回實(shí)驗(yàn)室及時(shí)研磨,過2 mm篩后置于4 ℃下保存?zhèn)溆? 該設(shè)施土壤為灰潮土,pH為6.89,w(可溶性鹽分) 為1.90 g/kg,w(AP)為80.18 mg/kg,w(TP) 為2.43 g/kg,w(TOC)為9.97 g/kg.
1.2試驗(yàn)方法
1.2.1試驗(yàn)設(shè)計(jì)
將供試土壤用蒸餾水調(diào)節(jié)其含水量至飽和持水量的45%后,置于25 ℃恒溫恒濕條件下預(yù)培養(yǎng)7 d. 稱取若干份500 g(以烘干基計(jì))預(yù)培養(yǎng)的新鮮土樣,設(shè)置環(huán)境溫度、土壤酸化及鹽化3種因素,每種因素又分別設(shè)置3個(gè)水平:①環(huán)境溫度,分別為4 ℃(CK)、10 ℃和25 ℃;②土壤酸化,pH分別為6.89(CK)、6.11和5.30;③鹽化程度,w(可溶性鹽分)分別為1.90 g/kg(CK)、3.05 g/kg和5.01 g/kg. 各處理均設(shè)3次重復(fù). 其中,土壤pH用1∶9稀HNO3溶液和飽和KOH溶液進(jìn)行調(diào)節(jié),土壤可溶性鹽分用兩種混合鹽溶液調(diào)配而成〔混合鹽溶液1,配方為32.80 g/L Ca(NO3)2;混合鹽溶液2,配方為3.02 g/L NaHCO3、6.00 g/L MgSO4、9.91 g/L Na2SO4、3.21 g/L NaCl、5.57 g/L KCl、5.13 g/L KNO3〕. 各處理土樣含水量最后均調(diào)至其飽和持水量的50%. 各處理土壤分別裝入2.5 L密封塑料罐,其中溫度處理置于相應(yīng)溫度的培養(yǎng)箱內(nèi),酸化和鹽化處理均在25 ℃條件下培養(yǎng). 在90 d培養(yǎng)期間,每隔2~3 d打開塑料罐通風(fēng)換氣一次. 定期取樣,分析土壤w(MBC)、w(DOC)和w(ROOC),培養(yǎng)結(jié)束時(shí)測(cè)定土壤HS組分碳含量.
另外,稱取各處理50 g(以烘干基計(jì))土樣置于密封塑料杯,瓶中放入40 mL 0.5 mol/L NaOH溶液,在上述條件下一并培養(yǎng). 12 d后測(cè)定NaOH溶液對(duì)CO2的吸收量. 各處理亦設(shè)3次重復(fù).
1.2.2測(cè)定方法
土壤w(MBC)采用氯仿熏蒸提取法[21]測(cè)定,w(MBC)測(cè)定中未熏蒸土樣提取液中有機(jī)碳含量即為w(DOC).w(ROOC)采用高錳酸鉀氧化法[22]測(cè)定. 土壤有機(jī)碳礦化量可由培養(yǎng)12 d后NaOH溶液對(duì)CO2的吸收量換算得到[23]. 土壤HS先用Na4P2O7·10H2O與NaOH混合液浸提,再用調(diào)節(jié)提取液pH而分離出FA、HA和HU等組分[24],再以重鉻酸鉀氧化法[21]測(cè)定土壤提取液中各HS的有機(jī)碳含量.
1.2.3數(shù)據(jù)處理
試驗(yàn)結(jié)果均以3次重復(fù)的平均值±標(biāo)準(zhǔn)差表示,并采用軟件Origin 9.0進(jìn)行作圖.
2.1環(huán)境溫度對(duì)土壤活性有機(jī)碳變化的影響
由圖1(a)可知,90 d的培養(yǎng)期內(nèi),土壤w(MBC)隨環(huán)境溫度的升高呈現(xiàn)出先減后增的趨勢(shì). 在4、10和25 ℃ 3種環(huán)境溫度下,土壤w(MBC)在培養(yǎng)前5 d均較起始期有所降低,說明土壤微生物存在著對(duì)環(huán)境溫度變化的適應(yīng)期. 第5天時(shí),與4 ℃的對(duì)照處理相比,25 ℃下土壤w(MBC)增加19.43%,而10 ℃下卻減少72.70%. 在培養(yǎng)前中期(0~60 d),3種環(huán)境溫度下w(MBC)差異顯著(P< 0.05),但到第90天,這種差異則不明顯(P>0.05). 土壤w(DOC)隨培養(yǎng)時(shí)間延長總體上呈增加趨勢(shì),而隨環(huán)境溫度的升高出現(xiàn)先增后減的趨勢(shì)〔見圖1(b)〕. 培養(yǎng)至第12天時(shí),3種 環(huán)境溫度下w(DOC)差異性最大(P< 0.01),與4 ℃ 對(duì)照相比,10 ℃下土壤w(DOC)增加17.23%,25 ℃下減少60.89%. 從圖1(c)可知,土壤w(ROOC) 隨培養(yǎng)時(shí)間延長總體呈上升趨勢(shì),并隨環(huán)境溫度的升高而增加,且3種環(huán)境溫度下土壤w(ROOC)存在顯著差異(P< 0.05). 從第12天到培養(yǎng)結(jié)束,與對(duì)照處理相比,10和25 ℃處理土壤w(ROOC)最大增幅分別為35.39%和55.56%.
環(huán)境溫度℃: 1—4; 2—10; 3—25.圖1 不同環(huán)境溫度下土壤活性有機(jī)碳含量的動(dòng)態(tài)變化Fig.1 Dynamics of labile organic carbon in greenhouse soils under different conditions of envieronmental temperature
2.2酸化對(duì)土壤活性有機(jī)碳變化的影響
土壤pH: 1—6.89; 2—6.11; 3—5.30.圖2 不同pH條件下土壤活性有機(jī)碳含量的動(dòng)態(tài)變化Fig.2 Dynamics of labile organic carbon in greenhouse soils with different pH
培養(yǎng)期間不同土壤pH條件下活性有機(jī)碳組分含量的動(dòng)態(tài)變化如圖2所示. 土壤酸化會(huì)顯著降低w(MBC),且在培養(yǎng)中期(12~60 d)3種pH處理土壤w(MBC)均存在顯著差異(P< 0.05),但培養(yǎng)結(jié)束時(shí)的差異不顯著(P>0.05)〔見圖2(a)〕. 與土壤pH為6.89的對(duì)照土壤相比,整個(gè)培養(yǎng)階段,土壤pH為6.11和5.30處理下土壤w(MBC)平均降幅分別為12.43%和29.80%,其中培養(yǎng)中期分別為14.31%和37.92%. 從圖2(b)可知,土壤w(DOC)隨培養(yǎng)時(shí)間延長總體呈上升趨勢(shì),且酸化使土壤w(DOC)增加. 培養(yǎng)期間,3種pH下土壤w(DOC)在均存在顯著差異(P<0.05). 第40天時(shí)酸化對(duì)土壤w(DOC)影響最大,與土壤pH為6.89的對(duì)照土壤相比,土壤pH為6.11和5.30的土壤w(DOC)分別增加了73.34%和58.19%. 由圖2(c)可知,所有處理的土壤w(ROOC)一直維持在1.67 gkg以上,酸化使土壤w(ROOC)顯著降低,但在整個(gè)培養(yǎng)階段,兩種酸化處理土壤w(ROOC)差異并不顯著(P>0.05). 與對(duì)照相比,土壤pH為6.11和5.30的土壤w(ROOC)平均降幅分別為10.98%和5.93%.
w(可溶性鹽分)(gkg): 1—1.90; 2—3.05; 3—5.01.圖3 不同鹽化程度下土壤活性有機(jī)碳含量的動(dòng)態(tài)變化Fig.3 Dynamics of labile organic carbon in greenhouse soils with different salinization degree
2.3鹽化對(duì)土壤活性有機(jī)碳變化的影響
鹽化對(duì)設(shè)施土壤活性有機(jī)碳各組分的影響與酸化的效應(yīng)類似(見圖3):①土壤w(MBC)隨土壤鹽化程度的加重而顯著降低〔見圖3(a)〕;第40天時(shí)鹽化對(duì)土壤w(MBC)影響最大,與w(可溶性鹽分)為1.90 gkg的對(duì)照土壤相比,w(可溶性鹽分)為3.05和5.01 gkg處理下土壤w(MBC)分別降低了37.54%和55.92%;第40天后,3種鹽分處理的處理土壤w(MBC)差異性逐漸縮小,培養(yǎng)結(jié)束時(shí)各處理土壤w(MBC)無顯著差異(P>0.05),但整個(gè)培養(yǎng)階段,土壤w(MBC)平均降幅分別達(dá)18.63%和35.64%. ②土 壤w(DOC)隨土壤鹽化程度加重而顯著增加〔見圖3(b)〕,第40天時(shí),與對(duì)照相比,w(可溶性鹽分)為3.05和5.01 gkg處理的土壤w(DOC)分別增加98.92%和119.73%,培養(yǎng)結(jié)束時(shí)各處理土壤w(DOC)差異亦不顯著(P>0.05). 鹽化程度加重總體上使土壤w(ROOC)降低〔見圖3(c)〕,培養(yǎng)12 d后,與對(duì)照土壤相比,w(可溶性鹽分)為3.05和5.01 gkg處理的土壤w(ROOC)分別降低4.76%~26.61%和15.47%~21.77%,而整個(gè)培養(yǎng)階段,土壤w(ROOC)平均降幅分別為13.42%和6.26%.
2.4不同設(shè)施環(huán)境條件對(duì)土壤有機(jī)碳礦化的影響
由表1可知,環(huán)境溫度從4 ℃升至25 ℃時(shí),土壤有機(jī)碳礦化率由5.32%降至0.90%,降低了83.08%. 可見設(shè)施環(huán)境溫度的提升可阻滯土壤有機(jī)碳礦化,這有利于設(shè)施土壤中有機(jī)碳的固定. 土壤酸化和鹽化過程均可促進(jìn)土壤有機(jī)碳礦化,不利于設(shè)施土壤有機(jī)而碳的積累. 如當(dāng)土壤pH從6.89降至5.30,土壤有機(jī)碳礦化率由0.90%增至4.31%,增加了3.78倍;w(可溶性鹽分) 從1.09 gkg增至5.01 gkg時(shí),其土壤有機(jī)碳礦化率增加7.80倍.
表1 不同設(shè)施環(huán)境下土壤有機(jī)碳礦化率和腐殖物質(zhì)的HAFA
Table 1 The organic carbon mineralization rate and the ratio of HAFA in greenhouse soils humus substance under three greenhouse factors
表1 不同設(shè)施環(huán)境下土壤有機(jī)碳礦化率和腐殖物質(zhì)的HAFA
環(huán)境條件有機(jī)碳礦化率∕%HA∕FA4532±010483環(huán)境溫度∕℃10150±01042625090±010989689090±010989土壤pH611060±020796530431±010339190090±010989土壤w(可溶性鹽分)∕(g∕kg)305873±010265501792±010405
2.5不同設(shè)施環(huán)境條件對(duì)土壤腐殖物質(zhì)碳組成的影響
培養(yǎng)結(jié)束時(shí)不同處理土壤HS碳組分及其變化情況如圖4所示. 設(shè)施土壤HS碳組分中,w(HU)(7.30~8.71 gkg)最高,其次是w(HA)(2.07~2.52 gkg),w(FA)(0.25~0.83 gkg)最低. 由圖4(a)可知,與4 ℃的對(duì)照相比,25 ℃處理土壤w(HA)增加11.01%,而w(FA)降低了46.81%;10 ℃處理土壤w(HA)下降8.81%,而w(FA)與對(duì)照差異不顯著(P>0.05). 10和25 ℃處理土壤w(HU)均顯著低于對(duì)照. HAFA隨溫度升高而增加,與對(duì)照相比增加1.05倍(見表1),設(shè)施環(huán)境溫度的提升可促進(jìn)土壤腐殖質(zhì)品質(zhì)的改善. 由圖4(b)可見,與pH為6.89的對(duì)照土壤相比,酸化處理土壤的w(HA)和w(HU)均降低,而pH為6.11和5.30處理的土壤w(FA)分別提高20.00%和1.60倍. 土壤HAFA隨pH減小而降低,與對(duì)照相比降低65.72%(見表1). 由圖4(c)可知,與對(duì)照相比,鹽化處理下w(HA)和w(HU)均顯著降低,平均降幅分別達(dá)9.56%和5.17%,而w(可溶性鹽分)為3.05和5.01 gkg處理的土壤分別升高了2.32和1.32倍,w(FA)較對(duì)照顯著升高(P< 0.05). 土壤HAFA隨鹽化加重而呈降低趨勢(shì),與對(duì)照相比最大降幅為73.21%(見表1).
圖4 不同設(shè)施環(huán)境條件對(duì)土壤腐殖物質(zhì)碳含量的影響Fig.4 Effects of three greenhouse factors on humus substance carbon concentrations in greenhouse soils
3.1不同設(shè)施環(huán)境條件對(duì)土壤微生物量碳的影響
土壤活性有機(jī)碳對(duì)環(huán)境變化具有高度敏感性,但不同組分土壤活性有機(jī)碳對(duì)環(huán)境溫度、土壤pH和鹽分等因素變化的響應(yīng)敏感性存在差異[25]. 土壤MBC是土壤有機(jī)質(zhì)中最活躍和最易變化的部分,與土壤有機(jī)碳轉(zhuǎn)化有密切關(guān)系,其含量高低是衡量土壤質(zhì)量優(yōu)劣的重要指標(biāo)[26]. 設(shè)施栽培一般在溫度較低的冬春季進(jìn)行,設(shè)施環(huán)境溫度往往比當(dāng)季露天氣溫高4~17 ℃[14]. 該研究中將4 ℃設(shè)為冬季室外氣溫的對(duì)照處理,研究結(jié)果顯示,環(huán)境溫度升至10和25 ℃時(shí),土壤w(MBC)隨環(huán)境溫度的升高呈現(xiàn)出先減后增的趨勢(shì). Verburg等[27]的研究結(jié)果也與此類似. 低溫環(huán)境下升溫(如從4 ℃升至10 ℃),土壤微生物呼吸強(qiáng)度增大,所消耗的有機(jī)物質(zhì)高于其自身形成的生物量,最終導(dǎo)致土壤w(MBC)下降[14];而在溫度較高環(huán)境下升溫(如從10 ℃升至25 ℃),微生物活性顯著增強(qiáng),其生物量形成速率要高于其呼吸強(qiáng)度,導(dǎo)致土壤w(MBC)增加. 土壤酸化和鹽漬化現(xiàn)象是設(shè)施栽培中的常見問題. 按半干旱半濕潤區(qū)土壤鹽化程度分級(jí)標(biāo)準(zhǔn)[12],該研究中土壤1.90、3.05和5.01 g/kg的可溶性鹽分含量可對(duì)應(yīng)為輕度、中度和重度這3種鹽化程度,結(jié)果顯示土壤酸化和鹽化程度加劇均降低了土壤w(MBC). 酸化和鹽化破壞了土壤微生物原有的生活環(huán)境,對(duì)土壤微生物產(chǎn)生脅迫作用,抑制了微生物增殖,造成土壤w(MBC)下降[28-29]. 該研究顯示,土壤MBC對(duì)土壤酸化與鹽漬化的響應(yīng)類似,并隨酸化過程和鹽化程度加劇而下降. 鹽分含量增加可提高土壤中碳降解胞外酶的活性,從而促進(jìn)土壤有機(jī)碳的分解[30]. 該研究結(jié)果也顯示,設(shè)施環(huán)境升溫使土壤有機(jī)碳礦化率降低,這與大多數(shù)研究結(jié)果[31]相悖,可能與設(shè)施土壤的酸化與鹽化問題有關(guān). Beltrán-Hernández等[32]的研究結(jié)果顯示,高鹽分條件下土壤CO2釋放量是低鹽分條件下的2倍左右. 該研究中,酸化和鹽化均提高了設(shè)施土壤有機(jī)碳礦化率,會(huì)造成土壤CO2釋放量增加,加劇設(shè)施環(huán)境的溫室效應(yīng).
3.2不同設(shè)施環(huán)境條件對(duì)土壤可溶性有機(jī)碳的影響
土壤DOC是微生物的底物,在養(yǎng)分循環(huán)[18]和環(huán)境保護(hù)[33]方面有重要作用. 土壤腐殖質(zhì)、植物凋落物、根系分泌物和微生物的代謝產(chǎn)物均是其重要來源[34]. 土壤w(DOC)一般不超過土壤有機(jī)碳總量的2%,但其含量和性質(zhì)能夠反映土壤有機(jī)碳的穩(wěn)定性[35]. 溫度顯著影響土壤DOC轉(zhuǎn)換,且溫度敏感性隨著培養(yǎng)時(shí)間延長有降低趨勢(shì)[36]. 該研究結(jié)果顯示,溫度對(duì)設(shè)施土壤w(DOC)的影響在不同溫度段存在差異. 溫度增高促進(jìn)降解土壤基質(zhì)微生物的活性增強(qiáng),難降解的有機(jī)碳在微生物作用下易于轉(zhuǎn)化為DOC[37];與此同時(shí),溫度與土壤呼吸強(qiáng)度成正比,溫度升高能夠加速土壤微生物的生物周轉(zhuǎn),促進(jìn)土壤有機(jī)碳的分解. 該研究結(jié)果顯示,土壤w(DOC)變化對(duì)土壤酸化與鹽化的響應(yīng)類似,均隨酸化和鹽化程度加劇而上升. Clark等[38]等研究結(jié)果也與此類似. pH可影響土壤中礦物的吸附能力,土壤有機(jī)碳大部分為酸性組分,在低pH條件下,易與其他物質(zhì)如鈣鎂化合物發(fā)生中和反應(yīng),從而增加土壤w(DOC)[39]. 土壤鹽分通過影響微生物生活環(huán)境而驅(qū)動(dòng)土壤w(DOC)變化,Van Heemst等[40]研究發(fā)現(xiàn),土壤w(DOC)與鹽分存在負(fù)相關(guān)線性關(guān)系. 土壤DOC作為易于被微生物吸收利用的有機(jī)碳源,其含量高低直接影響土壤微生物活性及有機(jī)碳礦化率. 山櫸林土壤DOC的損失與土壤呼吸產(chǎn)生的ρ(CO2)呈極顯著線性相關(guān)(R=0.79,P<0.01)[41],筆者所得研究結(jié)果也顯示,設(shè)施土壤酸化或鹽化均提高了土壤w(DOC)和有機(jī)碳礦化率,結(jié)合設(shè)施土壤w(MBC)的動(dòng)態(tài)變化來看,設(shè)施土壤酸化或鹽化不利于微生物對(duì)DOC的同化,對(duì)土壤CO2的減排不利.
3.3不同設(shè)施環(huán)境條件對(duì)土壤易氧化有機(jī)碳的影響
土壤ROOC作為土壤有機(jī)碳中周轉(zhuǎn)最快的組分,是土壤養(yǎng)分的潛在來源及土壤微生物活動(dòng)的重要能源,常作為表征土壤肥力變化的重要指標(biāo)[42]. Hassan等[43-44]研究表明,土壤w(ROOC)與溫度呈正相關(guān),但溫度敏感性隨著培養(yǎng)時(shí)間延長有降低趨勢(shì),筆者所得結(jié)果也顯示溫度升高可提高設(shè)施土壤w(ROOC). 與環(huán)境溫度的影響相反,設(shè)施土壤w(ROOC)均隨土壤的酸化和鹽化加劇而呈下降趨勢(shì),張仕吉等[45]研究結(jié)論也與此相似. 原因可能在于酸化或鹽化成為了設(shè)施土壤微生物類群和活性的脅迫條件,而不利于土壤ROOC的周轉(zhuǎn)與形成. 另外,ROOC作為土壤中最易被氧化且活性較高的有機(jī)碳,其含量高低能顯著影響設(shè)施土壤固碳能力及溫室氣體的排放,有研究[46]顯示,土壤有機(jī)碳礦化率與土壤w(ROOC)呈顯著正相關(guān). 綜上,設(shè)施環(huán)境溫度的提升、設(shè)施土壤酸化或鹽化的減緩與改善,均有利于設(shè)施土壤的固碳減排.
3.4不同設(shè)施環(huán)境條件對(duì)土壤腐殖物質(zhì)碳組成的影響
土壤HS是有機(jī)質(zhì)的主體,它作為土壤的重要碳庫,在土壤有機(jī)碳的循環(huán)轉(zhuǎn)化中起重要作用. 土壤HS的傳統(tǒng)分組包括HA、FA和HU等組分[47].w(HS)的多少取決于形成量和分解量的相對(duì)大小,而土壤環(huán)境條件決定著HS的形成是以HA為主,還是以FA為主[48]. 該研究結(jié)果顯示,溫度、土壤pH和鹽分對(duì)土壤HS碳影響并不顯著(P>0.05),但溫度升高使HA/FA增加,而使w(HU)下降. 這表明設(shè)施環(huán)境溫度的提升有利于土壤腐殖質(zhì)品質(zhì)的改善,而溫度升高增強(qiáng)了微生物活性,可能促進(jìn)惰性HU碳向其他形態(tài)的轉(zhuǎn)化. 隨土壤酸化和鹽化加劇,HA/FA值降低,土壤酸化和鹽化降低了土壤微生物活性,HA在結(jié)構(gòu)上脂肪族側(cè)鏈減少,芳化度增加,土壤有機(jī)碳腐殖化程度降低[48]. HS碳是土壤有機(jī)質(zhì)中最難降解的部分,其種類組成直接影響設(shè)施土壤有機(jī)質(zhì)品質(zhì)及固碳減排潛力.
a) 與4 ℃對(duì)照相比,設(shè)施環(huán)境溫度在4~25 ℃范圍內(nèi)提升條件下,土壤w(MBC)和w(ROOC)最大增幅分別為19.43%和55.56%;土壤w(DOC)和有機(jī)碳礦化率均降低. 與對(duì)照土壤〔pH為6.89,w(可溶性鹽分)為1.90 gkg〕相比,隨設(shè)施土壤酸化和鹽化程度的加重,土壤w(MBC)和w(ROOC)平均降幅分別為34.78%和6.92%;土壤w(DOC)最大增幅分別為58.19%和119.73%;有機(jī)碳礦化率分別了增加3.78和7.80倍.
b) 設(shè)施栽培中溫度升高、土壤酸化或鹽化這3種典型環(huán)境條件對(duì)土壤HS的影響存在差異,其中溫度升高,土壤HAFA較對(duì)照可提高1.05倍,有利于改善土壤腐殖質(zhì)品質(zhì),而土壤酸化和鹽化使土壤HAFA 較對(duì)照分別降低65.72%和73.21%,對(duì)土壤腐殖質(zhì)品質(zhì)不利.
c) 綜合分析可知,提升設(shè)施環(huán)境溫度、減緩或改善設(shè)施土壤的酸化及鹽化問題,均有利于設(shè)施土壤的固碳減排.
[1] SCHLESINGER W H.Evidence from chronosequence studies for a low carbon-storage potential of soils[J].Nature,1990,348(6298):232-234.
[2] MANLAY R J,FELLER C,SWIFT M J.Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems[J].Agriculture,Ecosystems and Environment,2007,119(3/4):217-233.
[3] WANG Ping,LIU Yalong,LI Liangqing,etal.Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence[J].Scientific Reports,2015,5(8):15704-15716.
[4] WANG Xiaohua,YANG Haishui,LIU Jian,etal.Effects of ditch-buried straw return on soil organic carbon and rice yields in a rice-wheat rotation system[J].Catena,2015,127:56-63.
[5] 張劍,汪思龍,王清奎,等.不同森林植被下土壤活性有機(jī)碳含量及其季節(jié)變化[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2009,17(1):41-47.
ZHANG Jian,WANG Silong,WANG Qingkui,etal.Content and seasonal change in soil labile organic carbon under different forest covers[J].Chinese Journal of Eco-Agriculture,2009,17(1):41-47.
[6] LIANG B C,MACKENZIE A F,SCHNITZER M,etal.Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J].Biology and Fertility of Soils,1997,26(2):88-94.
[7] 郭靈輝,高江波,吳紹洪,等.1981—2010年內(nèi)蒙古草地土壤有機(jī)碳時(shí)空變化及其氣候敏感性[J].環(huán)境科學(xué)研究,2016,29(7):1050-1058.
GUO Linghui,GAO Jiangbo,WU Shaohong,etal.Spatial-temporal change of soil organic carbon and its susceptibility to climate change in Inner Mongolia Grassland during 1981-2010[J].Research of Environmental Sciences,2016,29(7):1050-1058.
[8] ZHANG Jiaojiao,LI Yongfu,CHANG S X,etal.Understory management and fertilization affected soil greenhouse gas emissions and labile organic carbon pools in a Chinese chestnut plantation[J].Forest Ecology and Management,2015,337(6):126-134.
[9] ZHOU Ying,SELVAM A,WONG J W C.Evaluation of humic substances during co-composting of food waste,sawdust and Chinese medicinal herbal residues[J].Bioresource Technology,2014,168(3):229-234.
[10] JABIOL B,ZANELLA A,PONGE J,etal.A proposal for including humus forms in the world reference base for soil resources (WRB-FAO)[J].Geoderma,2013,192(2):286-294.
[11] FUKUSHIMA M,YAMAMOTO K,OOTSUKA K,etal.Effects of the maturity of wood waste compost on the structural features of humic acids[J].Bioresource Technology,2009,100(2):791-797.
[12] 黃敏,余婉霞,李亞兵,等.武漢城郊設(shè)施菜地土壤pH與可溶性鹽分的變化規(guī)律分析[J].水土保持學(xué)報(bào),2013,27(6):51-56.
HUANG Min,YU Wanxia,LI Yabing,etal.Variations of the pH and soluble salt in greenhouse soil from suburbs of Wuhan[J].Journal of Soil and Water Conservation,2013,27(6):51-56.
[13] 曾希柏,白玲玉,蘇世鳴,等.山東壽光不同種植年限設(shè)施土壤的酸化與鹽漬化[J].生態(tài)學(xué)報(bào),2010,30(7):1853-1859.
ZENG Xibai,BAI Lingyu,SU Shiming,etal.Acidification and salinization in greenhouse soil of different cultivating years form Shouhuang City,Shandong[J].Acta Ecologica Sinica,2010,30(7):1853-1859.
[14] 張乃明,常曉冰,秦太峰.設(shè)施農(nóng)業(yè)土壤特性與改良[M].北京:化學(xué)工業(yè)出版社,2008.
[15] QI Ruiming,LI Jun,LIN Zhean,etal.Temperature effects on soil organic carbon,soil labile organic carbon fractions,and soil enzyme activities under long-term fertilization regimes[J].Applied Soil Ecology,2016,102(10):36-45.
[16] 郝翠,李洪遠(yuǎn),李姝娟,等.天津?yàn)I海濕地土壤有機(jī)碳儲(chǔ)量及其影響因素分析[J].環(huán)境科學(xué)研究,2011,24(11):1276-1282.
HAO Cui,LI Hongyuan,LI Shujuan,etal.Analysis of soil organic carbon storage and influencing factors in the soil of binhai wetland in Tianjin[J].Research of Environmental Sciences,2011,24(11):1276-1282.
[17] 代杰瑞,龐緒貴,曾憲東,等.山東省土壤有機(jī)碳密度的空間分布特征及其影響因素[J].環(huán)境科學(xué)研究,2015,28(9):1449-1458.
DAI Jierui,PANG Xugui,ZENG Xiandong,etal.Soil carbon density and distribution and influencing factors in Shandong Province[J].Research of Environmental Sciences,2015,28(9):1449-1458.
[18] LIECHTY H O,KUUSEOKS E,MROZ G D.Dissolved organic carbon in northern hardwood stands with differing acidic inputs and temperature regimes[J].Journal of Environmental Quality,1995,24(3):927-933.
[19] MISHRA U,TORN M S,FINGERMAN K.Miscanthus biomass productivity within US croplands and its potential impact on soil organic carbon[J].Global Change Biology Bioenergy,2013,5(4):391-399.
[20] NORTON J B,JUNGST L J,NORTON U,etal.Soil carbon and nitrogen storage in upper montane riparian meadows[J].Ecosystems,2011,14(8):1217-1231.
[21] 吳金水,林啟美,黃巧云,等.土壤微生物生物量測(cè)定方法及其應(yīng)用[M].北京:氣象出版社,2006.
[22] GTAEME J,BLAIR D B,ROD D B,etal.Soil carbon fractions based on their degree of oxidation,and the development of a carbon management index for agricultural systems[J].Agricultural Research,1995,46(14):59-66.
[23] STEINWEG J M,FISK M C,MCALEXANDER B,etal.Experimental snowpack reduction alters organic matter and net N mineralization potential of soil macroaggregates in a northern hardwood forest[J].Biology and Fertility of Soils,2008,45(1):1-10.
[24] 李學(xué)垣.土壤化學(xué)及試驗(yàn)指導(dǎo)[M].北京:中國農(nóng)業(yè)出版,1997.
[25] 柳敏,宇萬太,姜子紹,等.土壤活性有機(jī)碳[J].生態(tài)學(xué)雜志,2006,25(11):1412-1417.
LIU Min,YU Wantai,JIANG Zishao,etal.A research review on soil active organic carbon[J].Chinese Journal of Ecology,2006,25(11):1412-1417.
[26] 凌德,李婷,張世熔,等.外源土霉素和磺胺二甲嘧啶對(duì)土壤活性有機(jī)碳含量的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(2):297-302.
LING De,LI Ting,ZHANG Shirong,etal.Effects of exogenetic oxytetracycline and sulfamethazine on soil labile organic carbon contents[J].Journal of Agro-Environment Science,2015,34(2):297-302.
[27] VERBURG P,DAM D V,HEFTING M M,etal.Microbial transformations of C and N in a boreal forest floor as affected by temperature[J].Plant and Soil,1999,208(17):187-197.
[28] DLAMINI P,CHIVENGE P,CHAPLOT V.Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH:a meta-analysis shows[J].Agriculture,Ecosystems and Environment,2016,221(5):258-269.
[29] 操慶,曹海生,魏曉蘭,等.鹽脅迫對(duì)設(shè)施土壤微生物量碳氮和酶活性的影響[J].水土保持學(xué)報(bào),2015,29(4):300-304.
CAO Qing,CAO Haisheng,WEI Xiaolan,etal.Effect of salt stress on carbon and nitrogen of microbial biomass and activity of enzyme in greenhouse soil[J].Journal of Soil and Water Conservation,2015,29(4):300-304.
[30] MORRISSEY E M,BERRIER D J,NEUBAUER S C,etal.Using microbial communities and extracellular enzymes to link soil organic matter characteristics to greenhouse gas production in a tidal freshwater wetland[J].Biogeochemistry,2014,117(2/3):473-490.
[31] CI E,AL-KAISI M M,WANG L,etal.Soil organic carbon mineralization as affected by cyclical temperature fluctuations in a karst region of southwestern China[J].Pedosphere,2015,25(4):512-523.
[32] BELTRN-HERNNDEZ R I,COSS-MUNOZ E,LUNA-GUIDO M L,etal.Carbon and nitrogen dynamics in alkaline saline soil of the former Lake Texcoco (Mexico) as affected by application of sewage sludge[J].European Journal of Soil Science,1999,50(4):601-608.
[33] KIM Y,ULLAH S,MOORE T R,etal.Dissolved organic carbon and total dissolved nitrogen production by boreal soils and litter:the role of flooding,oxygen concentration,and temperature[J].Biogeochemistry,2014,118(1/2/3):35-48.
[34] IQBAL J,HU R,FENG M,etal.Microbial biomass and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses:a case study at three gorges reservoir area,south China[J].Agriculture,Ecosystems & Environment,2010,137(3/4):294-307.
[35] 李玲,仇少君,劉京濤,等.土壤溶解性有機(jī)碳在陸地生態(tài)系統(tǒng)碳循環(huán)中的作用[J].應(yīng)用生態(tài)學(xué)報(bào),2012,23(5):1407-1414.
LI Ling,QIU Shaojun,LIU Jingtao,etal.Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems:a review[J].Chinese Journal of Applied Ecology,2012,23(5):1407-1414.
[36] 趙本嘉,黃錦學(xué),李偉,等.福建中亞熱帶闊葉林土壤有機(jī)碳礦化的溫度敏感性及其影響因素[J].亞熱帶資源與環(huán)境學(xué)報(bào),2015,10(4):8-16.
ZHAO Benjia,HUANG Jinxue,LI Wei,etal.Temperature sensitivity of organic carbon and influencing factors in Fujian mid-subtropical broadleaved forest[J].Journal of Subtropical Resources and Environment,2015,10(4):8-16.
[37] COOKSON W R,OSMAN M,MARSCHNER P,etal.Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature[J].Soil Biology and Biochemistry,2007,39(3):744-756.
[38] CLARK J M,BOTTRELL S H,EVANS C D,etal.The importance of the relationship between scale and process in understanding long-term DOC dynamics[J].Science of the Total Environment,2010,408(13):2768-2775.
[39] 黃黎英,曹建華,周莉,等.不同地質(zhì)背景下土壤溶解有機(jī)碳含量的季節(jié)動(dòng)態(tài)及其影響因子[J].生態(tài)環(huán)境,2007,16(4):1282-1288.
HUANG Liying,CAO Jianhua,ZHOU Li,etal.Seasonal change and the influence factors of soil dissolved organic carbon at different geological background[J].Ecology and Environment,2007,16(4):1282-1288.
[40] VAN HEEMST J,MEGENS L,HATCHER P G,etal.Nature,origin and average age of estuarine ultrafiltered dissolved organic matter as determined by molecular and carbon isotope characterization[J].Organic Geochemistry,2000,31(9):847-857.
[41] ANDREASSON F,BERGKVIST B,B??TH E.Bioavailability of DOC in leachates,soil matrix solutions and soil water extracts from beech forest floors[J].Soil Biology and Biochemistry,2009,41(8):1652-1658.
[42] ZOU X M,RUAN H H,FU Y,etal.Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation-incubation procedure[J].Soil Biology and Biochemistry,2005,37(10):1923-1928.
[43] HASSAN W,BANO R,KHATAK B U,etal.Temperature sensitivity and soil organic carbon pools decomposition under different moisture regimes:effect on total microbial and enzymatic activity[J].Clean-Soil Air Water,2015,43(3):391-398.
[44] GERAEI D S,HOJATI S,LANDI A,etal.Total and labile forms of soil organic carbon as affected by land use change in southwestern Iran[J].Geoderma Regional,2016,7(1):29-37.
[45] 張仕吉,項(xiàng)文化,孫偉軍,等.中亞熱帶土地利用方式對(duì)土壤易氧化有機(jī)碳及碳庫管理指數(shù)的影響[J].生態(tài)環(huán)境學(xué)報(bào),2016,25(6):911-919.
ZHANG Shiji,XIANG Wenhua,SUN Weijun,etal.Effects of land use on soil readily oxidized carbon and carbon management index in hilly region of central Hunan Province[J].Ecology and Environmental Sciences,2016,25(6):911-919.
[46] 鄔建紅,潘劍君,葛序娟,等.不同農(nóng)業(yè)利用方式土壤有機(jī)碳礦化及其與有機(jī)碳組分的關(guān)系[J].水土保持學(xué)報(bào),2015,29(6):178-183.
WU Jianhong,PAN Jianjun,GE Xujuan,etal.Mineralization of soil organic carbon and its relationship with organic carbon fractions under different agricultural land uses[J].Journal of Soil and Water Conservation,2015,29(6):178-183.
[47] PONGE J,SARTORI G,GARLATO A,etal.The impact of parent material,climate,soil type and vegetation on Venetian forest humus forms:a direct gradient approach[J].Geoderma,2014,226/227(8):290-299.
[48] 張艷鴻,竇森,董珊珊,等.秸稈深還及配施化肥對(duì)土壤腐殖質(zhì)組成和胡敏酸結(jié)構(gòu)的影響[J].土壤學(xué)報(bào),2016,53(3):694-702.
ZHANG Yanhong,DOU Sen,DONG Shanshan,etal.Effect of deep incorporation of corn stover combined chemical fertilizer on composition of soil humus and structure of humic acid in soil[J].Acta Pedologica Sinica,2016,53(3):694-702.
EffectsofTypicalGreenhouseFactorsonLabileOrganicCarbonandHumusSubstanceCarboninSoil
HUANG Min, DUAN Junbo, ZHOU Kailai, LIU Xi, LIANG Rongxiang, HUANG Yongbing
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Both labile organic carbon and humus substance carbon are main carbon pools in soil, and they play essential roles in soil carbon cycling. The effects of three typical greenhouse parameters including environmental temperature (4, 10 and 25 ℃), soil acidification (pH 6.89, 6.11 and 5.30) and salinization (1.90, 3.05 and 5.01 gkg for soluble salt) on organic carbon in the greenhouse soil were investigated through laboratory experiments. The dynamics of microbial biomass carbon (MBC), dissolved organic carbon (DOC) and readily oxidizing organic carbon (ROOC) in greenhouse soil were determined during 90 days′ incubation period. The soil humus substance carbon at the 90thday and the mineralization rate of organic carbon at the 12thday were also analyzed. The results showed that, compared with the control (at 4 ℃), the contents of MBC and ROOC in greenhouse soil increased significantly with the rising of environmental temperature, with maximum increases of 19.43% and 55.56% at 25 ℃, respectively, whereas the contents of DOC increased by 17.23% at 10 ℃ and decreased by 60.89% at 25 ℃. Both acidification and salinization of greenhouse soil could reduce the contents of MBC and ROOC while increasing the content of DOC. Compared with the control (at pH 6.89 and 1.90 gkg for soluble salt), the contents of MBC and ROOC in acidified soil (pH 5.30) decreased by 29.80% and 5.93% on average, while the ones in salinized soil (5.01 gkg for soluble salt) decreased by 35.64% and 6.26% on average, respectively. In contrast, the contents of DOC increased by 58.19% and 119.73% on average in acidified soil (pH 5.30) and salinized soil (5.01 gkg for soluble salt), respectively. Helpfully, the increase in environmental temperature reduced the mineralization rate of soil organic carbon and decreased the percentage of humus carbon (HU), whereas the ratio of humic acid carbonfulvic acid carbon (HAFA) at 25 ℃ was 1.05 times higher than the control. Compared with the control, the mineralization rate of organic carbon in acidified soil (pH 5.30) and salinized soil (5.01 gkg for soluble salt) increased by 3.78 and 7.80 times, respectively. However, the ratio of HAFA decreased by 65.72% and 73.21%, respectively. Therefore, increasing environmental temperature and preventing greenhouse soil from acidification and salinization would be efficient strategies to sequestrate carbon and thus reduce CO2emissions from greenhouse soils.
greenhouse soil; labile organic carbon; humus substance carbon; mineralization rate of organic carbon; greenhouse environmental factors
2017-04-20
2017-07-13
國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(41101210);中國留學(xué)基金委資助項(xiàng)目(留金發(fā)[2014]3012)
黃敏(1973-),女,湖北荊州人,副教授,博士,主要從事土壤環(huán)境和區(qū)域生態(tài)研究,huangmin@whut.edu.cn.
黃敏,段軍波,周開來,等.典型設(shè)施環(huán)境條件對(duì)土壤活性有機(jī)碳及腐殖物質(zhì)碳的影響[J].環(huán)境科學(xué)研究,2017,30(11):1706-1714.
HUANG Min,DUAN Junbo,ZHOU Kailai,etal.Effects of typical greenhouse factors on labile organic carbon and humus substance carbon in soil[J].Research of Environmental Sciences,2017,30(11):1706-1714.
X144;X131.3
1001-6929(2017)11-1706-09
A
10.13198j.issn.1001-6929.2017.03.01
聲明
為適應(yīng)我國信息化建設(shè),擴(kuò)大本刊及作者知識(shí)信息交流渠道,本刊已被國內(nèi)外多家檢索數(shù)據(jù)庫收錄,并以數(shù)字化方式出版(優(yōu)先出版)復(fù)制、匯編、發(fā)行、信息網(wǎng)絡(luò)傳播本刊全文,作者著作權(quán)使用費(fèi)與本刊稿酬一次性給付. 如果作者不同意文章被相關(guān)數(shù)據(jù)庫收錄或優(yōu)先數(shù)字出版,請(qǐng)?jiān)趤砀鍟r(shí)向本刊做出紙面聲明,以便做出適當(dāng)處理.
特此聲明!
《環(huán)境科學(xué)研究》編輯部