謝沂均 張 倩 薛耀明
·基礎(chǔ)醫(yī)學(xué)·
microRNA在糖尿病腎病小管間質(zhì)纖維化中的作用
謝沂均 張 倩 薛耀明
糖尿病腎病是糖尿病一個主要的微血管病變,臨床上以持續(xù)白蛋白尿和(或)腎小球濾過率進行性下降為主要特征。研究發(fā)現(xiàn),腎小管間質(zhì)病變與糖尿病相關(guān)慢性腎臟病腎臟功能惡化的相關(guān)性較腎小球病變更為密切。microRNA(miRNA)是生物小分子,已成為糖尿病腎病研究領(lǐng)域的新方向,被證實與糖尿病腎病的發(fā)生、發(fā)展相關(guān),miRNA參與腎小管間質(zhì)纖維化,導(dǎo)致腎小管結(jié)構(gòu)改變和功能障礙。本文就miRNA參與糖尿病腎病腎小管病理生理過程作用機制的作一綜述。
糖尿病腎病 microRNA 腎小管間質(zhì)纖維化 細胞外囊泡
糖尿病腎病是糖尿病引起的嚴重和危害性最大的一種慢性并發(fā)癥,隨著糖尿病患病率在我國的不斷增長,糖尿病腎病已經(jīng)超過了腎小球腎炎相關(guān)慢性腎臟病,成為我國慢性腎臟病的首要病因[1]。目前,尿蛋白肌酐比值(albumin-to-creatinine ratio,ACR)和腎小球濾過率(glomerular filtration rate,GFR),仍作為評估腎小球損傷和腎功能的標準方法。在過去一個世紀,醫(yī)學(xué)的進步改善了糖尿病的管理,大大提高了糖尿病患者的存活率,但這些標準護理方法仍然無法消除糖尿病腎病的風險,提示了進一步尋求新的糖尿病腎病的早期診斷標準的必要性。既往認為糖尿病腎病以腎小球系膜細胞病變?yōu)橹鳎芯堪l(fā)現(xiàn),腎小管損傷在糖尿病腎病早期即可出現(xiàn),且可先于腎小球疾病[2]。近年研究發(fā)現(xiàn)microRNA(miRNA)可能成為糖尿病腎病的新的診斷標志與治療靶點,本文就miRNA在糖尿病腎病中腎小管間質(zhì)纖維化機制進行綜述。
糖尿病腎病的發(fā)病機制至今尚不明確,研究顯示,糖尿病腎損傷始于高血糖,受到一些相關(guān)危險因子的影響,通過啟動細胞因子,造成腎臟及其他一些重要臟器的損害。糖尿病腎病早期臨床表現(xiàn)為高濾過狀態(tài)與微量白蛋白尿,無論是1型還是2型糖尿病,其病理生理變化是相似的,反映在腎小球和腎小管細胞內(nèi)外的紊亂,包括腎小球和腎小管的增生、肥大,出入球小動脈玻璃樣變,尤其以出球小動脈的玻璃樣變更具特征性[2]。既往認為糖尿病腎病最重要的結(jié)構(gòu)變化發(fā)生在腎小球,包括腎小球基膜增厚、系膜擴張、足細胞損傷、腎小球硬化。然而,隨著研究深入,發(fā)現(xiàn)腎小管也同樣有重要的結(jié)構(gòu)改變,即近曲小管基膜增厚、腎小管萎縮及細胞凋亡增加、腎間質(zhì)炎性浸潤、腎間質(zhì)纖維化、管周毛細血管稀疏等[3]。Mason等[24]研究發(fā)現(xiàn),在2型糖尿病合并微量或大量蛋白尿的患者中,40%有腎小管間質(zhì)損傷,尤其是近曲小管損傷,而同時僅僅伴有輕微的腎小球損傷。
越來越多的研究表明,腎小管上皮細胞(proximal tubular epithelial cell,PTEC)在糖尿病腎病發(fā)病機制中起重要作用。糖尿病導(dǎo)致的基質(zhì)改變,如高糖環(huán)境、尿蛋白的產(chǎn)生、糖化血紅蛋白的波動、晚期糖基化終產(chǎn)物的堆積、血管緊張素II及生長因子的升高,誘導(dǎo)腎小管上皮細胞激活了信號通路,包括核因子κB(NF-κB)、蛋白激酶C(PKC)、Smad3[5]、細胞外信號調(diào)節(jié)激酶1/2(extracellular signal-regulated kinase,ERK)[6],p38信號轉(zhuǎn)導(dǎo)[7]與轉(zhuǎn)錄激活子-1(signal transducer and activator of transcription-1,STAT-1)[8],使活性氧(ROS)堆積[5]。最近研究發(fā)現(xiàn),激肽釋放酶-激肽系統(tǒng)(kallikrein-kinin system,KKS)與Toll樣受體(toll-like receptors,TLR)均參與糖尿病腎病,腎小管上皮細胞上激肽釋放酶1(kallikrein 1,KLK1)[9],TLR2和TLR4[10]均表達升高。各種趨化因子、間質(zhì)的積累,共同導(dǎo)致腎小管上皮細胞周期停滯,細胞肥大、衰老,導(dǎo)致糖尿病腎病小管間質(zhì)纖維化的發(fā)生。
miRNAs是一類大小約為22個堿基的內(nèi)源性非編碼小RNA,是基因表達轉(zhuǎn)錄后重要的調(diào)節(jié)因子,近年來miRNAs已經(jīng)成為研究熱點。miRNA與RNA誘導(dǎo)的基因沉默復(fù)合物(RNA-Induced silencing complex,RISC)形成復(fù)合物[11]。RISC復(fù)合物通過促進mRNA降解或抑制mRNA翻譯,抑制其靶基因的表達,實現(xiàn)對靶基因的轉(zhuǎn)錄后調(diào)控。根據(jù)序列互補程度分類,當RISC復(fù)合物中的miRNA引導(dǎo)靶基因的識別,其作用機制有兩種方式:如果與靶基因完全互補,RISC會直接切割靶mRNA(經(jīng)典RNA干擾),引起mRNA的直接降解,這類miRNA的結(jié)合位點通常都在靶基因mRNA的編碼區(qū)或開放閱讀框中。如果與靶基因mRNA不完全互補,RISC則通過與靶基因mRNA的3’非翻譯區(qū)(3′UTR)不完全互補結(jié)合來抑制靶基因的翻譯,并可影響mRNA的穩(wěn)定性,絕大多數(shù)哺乳動物中的miRNA都通過這一方式發(fā)揮調(diào)控作用。miRNA參與許多生物過程,越來越多證據(jù)表明,miRNA在糖尿病及其并發(fā)癥的發(fā)病機制中扮演重要的角色。
轉(zhuǎn)化生長因子β(TGF-β)在糖尿病腎病過程中扮演著重要的角色,廣泛存在于各類上皮細胞的E-鈣黏素(E-cadherin)是一類介導(dǎo)同種細胞互相黏附的鈣依賴性跨膜糖蛋白,在保持腎小管上皮細胞完整性和極性中起重要作用,其表達缺失是腎小管上皮細胞轉(zhuǎn)分化(EMT)的標志之一。既往認為糖尿病主要引起腎小球病變,隨著研究深入,人們逐漸對糖尿病腎小管損傷重視起來。
促小管間質(zhì)纖維化的miRNA
miR-125b miR-125b為血管緊張素轉(zhuǎn)化酶2 (ACE2)的負調(diào)節(jié)因子。人腎小管上皮細胞(HK-2)中,高糖上調(diào)miR-125b表達,miR-125b通過抑制ACE2的表達,促進ROS堆積與細胞凋亡[12]。
抑制小管間質(zhì)纖維化的miRNA
miR-302a-3p 高糖狀態(tài)下,過表達miR-302a-3p可逆轉(zhuǎn)HK-2細胞轉(zhuǎn)分化,這一過程可能與E盒結(jié)合鋅指蛋白1(zinc finger E-box binding homeobox 1,ZEB1)相關(guān),即miR-302a-3p可能通過ZEB1對高糖誘導(dǎo)的HK-2細胞轉(zhuǎn)分化起保護作用[13]。
miR-153 體內(nèi)實驗發(fā)現(xiàn),與db/m相比,miR-153在db/db小鼠腎皮質(zhì)中表達顯著下調(diào),且miR-153與Snail表達水平負相關(guān)。高糖誘導(dǎo)的腎小管上皮細胞miR-153表達下調(diào),E-cadherin表達減少;過表達miR-153抑制HK2細胞表達Snail,而E-cadherin水平增加,提示MiR-153可能通過靶基因Snail參與調(diào)控高糖誘導(dǎo)的HK2細胞EMT[14]。
miR-30c miR-30c集中分布在腎小球和腎小管上皮細胞內(nèi)皮層。在kk-ay糖尿病小鼠模型中,下調(diào)的miR-30c可能通過增加結(jié)締組織生長因子(CTGF)的表達促進糖尿病腎病發(fā)生,同時增加Ⅳ型膠原(COL)、纖維連接蛋白(FN)等表達;增加miR-30c則可減少腎臟纖維化以改善腎臟結(jié)構(gòu)[15]。Zheng等[16]發(fā)現(xiàn),與miR-30c協(xié)同調(diào)控靶基因CTGF的還有miR-26a、miR-26a和 miR-30c可共同抑制CTGF表達,降低ERK1/2 和p38的磷酸化。同時,miR-30c還可抑制Snail1表達。在大鼠近端腎小管上皮細胞(Rat proximal-tubular epithelial cells,NRK52E)與自發(fā)性Ⅱ型糖尿病模型(OLETF)大鼠的腎皮質(zhì)中,TGFβ1通過抑制miR-26a和 miR-30c表達,激活ERK1/2 和p38通路,上調(diào)Snail1表達,協(xié)同導(dǎo)致腎臟纖維化。
miR-23b 高糖誘導(dǎo)的HK2細胞和db/db小鼠腎組織中miR-23b水平明顯降低。在HK2細胞,過表達miR-23b減輕高糖誘導(dǎo)的EMT。miR-23b通過靶向調(diào)控高遷移率族蛋白2(high mobility group A,HMGA2)抑制EMT,從而抑制PI3K-AKT信號通路激活。在db/db小鼠中,過表達miR-23b可減少EMT表達,減少EMT相關(guān)基因的表達水平。糖尿病腎病中,miR-23b通過靶向調(diào)控HMGA2抑制PI3K-AKT通路來抑制EMT[17]。
Let-7家族 在TGF-β1誘導(dǎo)的 NRK52E中,檢出腎臟纖維化指標升高,let-7b表達下降,這些變化在糖尿病腎病早期與晚期小鼠、非糖尿病腎臟纖維化的小鼠模型中均能驗證。而過表達的let-7b可通過結(jié)合TGF-β1受體的3′UTR抑制TGF-β1受體的表達,同時減少細胞外基質(zhì)蛋白的表達,減低Smad3活性,對抗TGF-β1誘導(dǎo)的的腎臟纖維化[18]。let-7d靶向調(diào)控HMGA2,在高糖聯(lián)合TGF-β1誘導(dǎo)的 NRK52E中,TGF-β1通過抑制let-7d上調(diào)HMGA2表達,導(dǎo)致腎臟纖維化,這些變化在單側(cè)輸尿管梗阻小鼠模型中也得到驗證[19]。
miR-29 在糖尿病大鼠模型中可檢測miR-29與血肌酐呈負相關(guān)。在體外實驗中,NF-κB通過直接結(jié)合到miR-29啟動子抑制miR-29表達,通過熒光素酶發(fā)現(xiàn)miR-29靶基因為Keap1。在高糖誘導(dǎo)腎小管上皮細胞中,SIRT1去乙?;富钚詼p弱,其負相關(guān)NF-κB活性升高,下調(diào)的miR-29通過促成KEAP1表達升高,最終Nrf2因泛素化含量降低,增強腎臟氧化應(yīng)激與亞硝化應(yīng)激。即高糖刺激的腎小管上皮細胞通過Sirt1/NF-κB/microR-29/Keap1通路導(dǎo)致細胞損傷,而過表達miR-29可增強小管上皮細胞活力[20]。同時,除了近端小管細胞,在系膜細胞與足細胞中均可見TGF-β1抑制miR-29a/b/c/家族導(dǎo)致細胞外基質(zhì)(extracellular matrix,ECM)的沉積與合成增加[21]。在非糖尿病腎病中,也發(fā)現(xiàn)TGF-β/Smad3通路通過抑制miR-29促進腎纖維化[22]。
作用存在爭議的miRNA
miR-21 miR-21是腎纖維化過程的關(guān)鍵因素之一,Wang等[23]通過原位雜交研究表明,在kk-ay小鼠模型中,miR-21主要是分布在皮質(zhì)腎小球和腎小管細胞,通過調(diào)節(jié)基質(zhì)金屬蛋白酶-9/組織抑制因子-1(matrix metalloproteinases-9,tissue inhibitors of metalloproteinase-1,MMP9/TIMP1)通路促纖維化。體內(nèi)體外實驗均表明miR-21負向調(diào)控Smad7,低水平Smad7與腎損傷相關(guān)。Zhong等[24]在2型糖尿病小鼠模型(db/db小鼠)中發(fā)現(xiàn),腎臟miR-21的表達與db/m(+)小鼠相比,增加了兩倍。而敲除小鼠的miR-21,可以恢復(fù)Smad7水平,尿蛋白與腎臟纖維化和炎癥明顯減輕。但林莉等[25]則通過體外實驗發(fā)現(xiàn),高糖培養(yǎng)的腎小管上皮細胞中miR-21表達降低,Smad7相應(yīng)升高。結(jié)合體內(nèi)體外實驗的區(qū)別,目前考慮miR-21在體內(nèi)可緩解大鼠的糖尿病腎病進展,除了通過對Smad7的調(diào)節(jié)[26],還能通過調(diào)節(jié)Smad2、PTEN、Smad3/PI3K-AKT[27]的表達來實現(xiàn)。其他研究表明,miR-21通過多種通路在非糖尿病腎病,如IgA腎病中,也起著促纖維化作用[28-29]。
miR-192、miR-215 Kato等[30]首先發(fā)現(xiàn),miR-192在STZ誘導(dǎo)的1型糖尿病小鼠和db/db小鼠的腎小球中明顯升高,伴隨膠原1α2的水平升高。Wang等[31]發(fā)現(xiàn)在TGF-β誘導(dǎo)的大鼠腎小管上皮細胞中,miR-192及miR-215表達下降,對ZEB2的抑制減弱,由于ZEB2是E-cadherin的抑制蛋白之一,因此ZEB2上調(diào),使E-cadherin表達降低,最終促進EMT。Krupa 等[32]在腎臟活檢中發(fā)現(xiàn)miR-192表達與腎小球濾過率下降及腎小管間質(zhì)纖維化呈負相關(guān)。體外實驗證明TGF-β誘導(dǎo)的人腎小管上皮細胞中,miR-192表達下降,而過表達miR-192則會抑制阻遏蛋白ZEB1、 ZEB2,對抗TGF-β調(diào)節(jié)的E-cadherin表達降低,從而減緩EMT的發(fā)生。同樣的,miR-192在其他腎病,如馬兜鈴酸腎病[33]的腎纖維化中扮演著重要的角色。
細胞外囊泡(EVs)的miRNA EVs根據(jù)其直徑分為兩類:微泡(100~1 000 nm)和外泌體(30~150 nm)[34]。EVs是由不同的細胞分泌,可從體液隔離,包括血漿、尿液、乳汁、和唾液中分離。EVs含有能反映其來源細胞生理狀態(tài)的多種蛋白質(zhì)、microRNAs及mRNAs。尿液EVs由腎單元釋放,反映腎損害的進展,可以作為“體液活檢”。正常及高糖培養(yǎng)下的腎小管上皮細胞分泌的EVs中的miR-192水平較高,可通過檢測EVs的miR-192可反映腎小管功能。糖尿病腎病患者尿液EVs中miR-192表達較正常對照、糖尿病對照組升高,同時亦在高糖條件下的腎小管上皮細胞的細胞上清液EVs中檢測到差異表達的miR-192。提示了尿液EVs的miR-192是早期糖尿病腎病的生物標志物[35]。
miRNA參與腎小管間質(zhì)纖維化,導(dǎo)致腎小管結(jié)構(gòu)改變、功能障礙。在糖尿病腎病的發(fā)生和發(fā)展過程中,miR-125b高表達, miR-302a-3p、miR-153、miR-30c、miR-23b低表達,miR-21、miR-192、miR-215表達水平仍需進一步驗證(表1)。同樣的,miRNA在不同細胞可能發(fā)揮不同或相反的作用,也有越來越多研究發(fā)現(xiàn)miRNA對糖尿病腎病多條信號通路都有調(diào)控作用。作為近年最熱門的生物小分子,越來越多的miRNA被鑒定,但仍有miRNA的功能及機制尚未明確,甚至存在爭議,還有大量miRNA的功能有待科學(xué)家們?nèi)ヌ剿鳌M瑫r,miRNA在糖尿病的發(fā)生發(fā)展,以及糖尿病其他并發(fā)癥都是重要參與因素,通過對糖尿病及其并發(fā)癥相關(guān)miRNA的研究將有助于診斷和理解糖尿病及其并發(fā)癥的發(fā)病機制,發(fā)現(xiàn)新的生物學(xué)標記物。
因此,miRNA是一種非常有前景診斷標志物。有助于糖尿病腎病及其他并發(fā)癥的早期診斷,成為預(yù)測靶標。同時,結(jié)合研究發(fā)現(xiàn),過表達保護腎臟的miRNA,或者抑制促腎纖維化的miRNA,可增強腎小管細胞活力,改善腎形態(tài)、糖原累積、纖維化反應(yīng)和改善腎臟功能。針對miRNA及其靶基因的調(diào)控的研究,在治療糖尿病腎病具有潛在的作用。
表1 miRNA在糖尿病腎病小管間質(zhì)纖維化中的作用
ACE2:血管緊張素轉(zhuǎn)換酶2;ROS:活性氧;ZEB1:E盒結(jié)合鋅指蛋白;ERK1/2:細胞外信號調(diào)節(jié)激酶1/2;HMGA2:高遷移率族蛋白2;NF-κB:核因子κB;TGF-β1:轉(zhuǎn)化生長因子β1;MMP9:基質(zhì)金屬蛋白酶9;TIMP1:組織抑制因子1;CTGF:結(jié)締組織生長因子;DN:糖尿病腎病
1 Zhang L,Long J,Jiang W,et al.Trends in Chronic Kidney Disease in China.N Engl J Med,2016,375(9):905-906.
2 中華醫(yī)學(xué)會內(nèi)分泌學(xué)分會.中國成人糖尿病腎臟病臨床診斷的專家共識.中華內(nèi)分泌代謝雜志,2015,31(5):379-385.
3 Fioretto P,Mauer M.Histopathology of diabetic nephropathy.Semin Nephrol,2007,27(2):195-207.
4 Mason RM,Wahab NA.Extracellular Matrix Metabolism in Diabetic Nephropathy.J Am Soc Nephrol,2003,14(5):1358-1373.
5 Tang S,Leung JC,Abe K,et al.Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo.J Clin Invest,2003,111(4):515-527.
6 Takaya K,Koya D,Isono M,et al.Involvement of ERK pathway in albumin-induced MCP-1 expression in mouse proximal tubular cells.Am J Physiol Renal Physiol,2003,284(5):F1037-F1045.
7 Donadelli R,Zanchi C,Morigi M,et al.Protein overload induces fractalkine upregulation in proximal tubular cells through nuclear factor kappaB- and p38 mitogen-activated protein kinase-dependent pathways.J Am Soc Nephrol,2003,14(10):2436-2446.
8 Nakajima H,Takenaka M,Kaimori JY,et al.Activation of the signal transducer and activator of transcription signaling pathway in renal proximal tubular cells by albumin.J Am Soc Nephrol,2004,15(2):276-285.
9 Tang S,Lai KN,Chan TM,et al.Transferrin but not albumin mediates stimulation of complement C3 biosynthesis in human proximal tubular epithelial cells.Am J Kidney Dis,2001,37(1):94-103.
10 Devaraj S,Dasu MR,Park SH,et al.Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes.Diabetologia,2009,52(8):1665-1668.
11 Carthew RW,Sontheimer EJ.Origins and Mechanisms of miRNAs and siRNAs.Cell,2009,136(4):642-655.
12 Huang YF,Zhang Y,Liu CX,et al.microRNA-125b contributes to high glucose-induced reactive oxygen species generation and apoptosis in HK-2 renal tubular epithelial cells by targeting angiotensin-converting enzyme 2.Eur Rev Med Pharmacol Sci,2016,20(19):4055-4062.
13 Tang WT,Zheng LZ,Yan RY,et al.MiR302a-3p modulates renal epithelial-mesenchymal transition in DKD by targeting ZEB1.Hong Kong Journal of Nephrology,2015,17(2):S3.
14 王筱霞,姜珍珍,汪年松,等.下調(diào)miR-153促進高糖誘導(dǎo)的腎小管上皮細胞-間充質(zhì)轉(zhuǎn)化.中國中西醫(yī)結(jié)合腎病雜志,2013,14(10):850-854.
15 Wang J,Duan L,Guo T,et al.Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy.J Diabetes Complications,2016,30(3):406-414.
16 Zheng Z,Guan M,Jia Y,et al.The coordinated roles of miR-26a and miR-30c in regulating TGFbeta1-induced epithelial-to-mesenchymal transition in diabetic nephropathy.Sci Rep,2016,6:37492.
17 Liu H,Wang X,Liu S,et al.Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy.Int J Biochem Cell Biol,2016,70:149-160.
18 Wang B,Jha JC,Hagiwara S,et al.Transforming growth factor-beta1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b.Kidney Int,2014,85(2):352-361.
19 Wang Y,Le Y,Xue JY,et al.Let-7d miRNA prevents TGF-beta1-induced EMT and renal fibrogenesis through regulation of HMGA2 expression.Biochem Biophys Res Commun,2016,479(4):676-682.
20 Zhou L,Xu DY,Sha WG,et al.High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway.J Transl Med,2015,13:352.
21 Wang B,Komers R,Carew R,et al.Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis.J Am Soc Nephrol,2012,23(2):252-265.
22 Qin W,Chung AC,Huang XR,et al.TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29.J Am Soc Nephrol,2011,22(8):1462-1474.
23 Wang J,Gao Y,Ma M,et al.Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice.Cell Biochem Biophys,2013,67(2):537-546.
24 Zhong X,Chung AC,Chen HY,et al.miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes.Diabetologia,2013,56(3):663-674.
25 林莉.miRNA-21對大鼠糖尿病腎病TGF-β/Smad信號通路的調(diào)控機制研究.重慶醫(yī)科大學(xué),2014.
26 Lin L,Gan H,Zhang H,et al.MicroRNA21 inhibits SMAD7 expression through a target sequence in the 3' untranslated region and inhibits proliferation of renal tubular epithelial cells.Mol Med Rep,2014,10(2):707-712.
27 McClelland AD,Herman-Edelstein M,Komers R,et al.miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7.Clin Sci (Lond),2015,129(12):1237-1249.
28 Liu XJ,Hong Q,Wang Z,et al.MicroRNA21 promotes interstitial fibrosis via targeting DDAH1: a potential role in renal fibrosis.Mol Cell Biochem,2016,411(1-2):181-189.
29 Bao H,Hu S,Zhang C,et al.Inhibition of miRNA-21 prevents fibrogenic activation in podocytes and tubular cells in IgA nephropathy.Biochem Biophys Res Commun,2014,444(4):455-460.
30 Kato M,Zhang J,Wang M,et al.MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors.Proc Natl Acad Sci U S A,2007,104(9):3432-3437.
31 Wang B,Herman-Edelstein M,Koh P,et al.E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-beta.Diabetes,2010,59(7):1794-1802.
32 Krupa A,Jenkins R,Luo DD,et al.Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy.J Am Soc Nephrol,2010,21(3):438-447.
33 Jenkins RH,Davies LC,Taylor PR,et al.miR-192 induces G2/M growth arrest in aristolochic acid nephropathy.Am J Pathol,2014,184(4):996-1009.
34 Perez-Hernandez J,Cortes R.Extracellular Vesicles as Biomarkers of Systemic Lupus Erythematosus.Dis Markers,2015,2015:613536.
35 Jia Y,Guan M,Zheng Z,et al.miRNAs in Urine Extracellular Vesicles as Predictors of Early-Stage Diabetic Nephropathy.J Diabetes Res,2016,2016:7932765.
microRNAonrenaltubularinterstitialfibrosisindiabeticnephropathy
XIEYijun,ZHANGQian,XUEYaoming
SouthernMedicalUniversityNanfangHospital,DepartmentofEndocrinologyandMetabolism,Guangzhou,510515
Diabetic kidney disease is a major microvascular complication in diabetes, and the clinical features is persistent proteinuria and (or) decline of glomerular filtration rate. It was found that compared to glomerular disease, the correlation between renal tubular injury and renal function deterioration of diabetic kidney disease is higher. microRNA (miRNA) is a group of short noncoding RNAs, which has become a new direction in the research field of diabetic kidney disease, and it has been proved to be related to the occurrence and development of diabetic kidney disease. miRNA is involved in tubule-interstitial fibrosis, leading to renal tubular injury and dysfunction. The purpose of this review is to summarize the research achievements about the mechanism of miRNA involved in the pathological and physiological processes of diabetic kidney disease.
diabetic kidney disease microRNA renal tubular interstitial fibrosis extracellular vesicles
2016-12-21
(本文編輯 加 則 子 慕)
10.3969/j.issn.1006-298X.2017.05.014
南方醫(yī)科大學(xué)南方醫(yī)院內(nèi)分泌代謝科(廣州,510515)