王 陽,張家發(fā),胡喜軍,李保明
?
規(guī)?;u場飲水系統(tǒng)添加微酸性電解水殺菌效果試驗(yàn)
王 陽1,2,3,張家發(fā)1,2,3,胡喜軍4,李保明1,2,3※
(1. 中國農(nóng)業(yè)大學(xué)農(nóng)業(yè)部設(shè)施農(nóng)業(yè)工程重點(diǎn)實(shí)驗(yàn)室,北京 100083;2. 中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,北京 100083;3. 北京市畜禽健康養(yǎng)殖環(huán)境工程技術(shù)研究中心,北京 100083;4. 河南柳江生態(tài)牧業(yè)股份有限公司,濟(jì)源 459000)
重視飲水系統(tǒng)衛(wèi)生質(zhì)量安全是預(yù)防雞群發(fā)病的一個重要環(huán)節(jié)。規(guī)?;u場飲水管道全封閉、內(nèi)部清潔困難,而為提高飼料轉(zhuǎn)化率和抗應(yīng)激能力,普遍通過飲水系統(tǒng)添加多維等產(chǎn)品,加速了飲水系統(tǒng)污染、細(xì)菌超標(biāo)等。目前雞場飲水系統(tǒng)常用的反向沖洗水線、清潔劑洗滌清潔方式,存在殺菌不徹底、影響蛋雞腸道微生物和廢水過度排放等嚴(yán)重問題。該文研究了添加多維溶液對水線內(nèi)水質(zhì)影響變化規(guī)律,并對比研究了添加多維溶液后,沖洗水線、添加微酸性電解水2種方式對雞場飲水系統(tǒng)的殺菌規(guī)律。結(jié)果表明:飲水系統(tǒng)中添加多維溶液2、4、6、12、24、36、48、72 h后,水線內(nèi)細(xì)菌濃度總數(shù)的對數(shù)值分別增加9.96%、5.33%、6.04%、7.47%、4.98%、5.69%、4.27%、4.98 %;沖洗水線能沖洗掉飲水管壁附著沉積層,一定程度上減少飲水中細(xì)菌總數(shù),但飲水中細(xì)菌濃度總數(shù)仍高于中國飲水衛(wèi)生質(zhì)量標(biāo)準(zhǔn);添加余氯0.3 mg/L的微酸性電解水24 h后,飲水管線中細(xì)菌濃度降低34.7%,48 h后水線中細(xì)菌濃度的對數(shù)值維持為(1.83±0.05 lg(CFU/mL)),添加余氯0.3 mg/L微酸性電解水使水線內(nèi)細(xì)菌濃度總數(shù)顯著降低(<0.01),達(dá)到中國飲水衛(wèi)生標(biāo)準(zhǔn),且規(guī)?;u場飲水系統(tǒng)添加微酸性電解水作為殺菌消毒劑可減少廢水產(chǎn)生排放。該研究結(jié)果為雞場飲水系統(tǒng)選擇長期添加使用的消毒劑提供了參考依據(jù)。
消毒;殺菌;試驗(yàn);微酸性電解水;飲水系統(tǒng);規(guī)?;u場;水質(zhì)
飲水系統(tǒng)衛(wèi)生安全是影響蛋雞健康和生產(chǎn)性能的關(guān)鍵因素,誘發(fā)和感染雞群發(fā)病的許多病原體是通過飲水途徑傳播,重視飲水系統(tǒng)的衛(wèi)生質(zhì)量是預(yù)防雞群發(fā)病的一個重要環(huán)節(jié)[1]。但大部分規(guī)模化雞場飲水系統(tǒng)的水源為淺層地下井水,飲水水質(zhì)難以滿足飲用水衛(wèi)生標(biāo)準(zhǔn),規(guī)?;u場多選用乳頭式自動飲水系統(tǒng)作為飲水設(shè)備,乳頭式飲水系統(tǒng)可以滿足雞日常飲水需求并可減少系統(tǒng)漏水和人工投入成本等,但乳頭式自動飲水系統(tǒng)管道全封閉,內(nèi)部清潔較困難,且雞場為提高飼料轉(zhuǎn)化率,產(chǎn)蛋率和增強(qiáng)雞的免疫力、抗應(yīng)激能力等,通常通過飲水系統(tǒng)添加多維等產(chǎn)品,造成水線內(nèi)部附著淀粉類物質(zhì),易孳生微生物,進(jìn)而形成生物膜,致使雞場飲水系統(tǒng)污染、細(xì)菌超標(biāo)以及乳頭式飲水器堵塞等問題[2]。
目前,雞場飲水系統(tǒng)常用的清潔方式為反向沖洗水線(高壓水沖洗法)和清潔劑洗滌法[3],前者能清除水線內(nèi)部絮狀沉淀和懸浮物,但不能殺滅隱藏生物膜內(nèi)部微生物且存在廢水排放問題;后者在較高濃度下能殺滅水中的細(xì)菌和病毒,有效控制水中大腸桿菌、沙門氏菌、葡萄球菌等,但較高濃度清潔劑會影響蛋雞腸道內(nèi)微生物,也必須排放和沖洗水管,造成污水排放問題,是雞場生產(chǎn)過程中既費(fèi)工又費(fèi)水的一大難題。因此,雞場飼養(yǎng)管理過程中,如何改善雞群飲水系統(tǒng)衛(wèi)生指標(biāo)、實(shí)現(xiàn)飲水質(zhì)量達(dá)到中國衛(wèi)生標(biāo)準(zhǔn)(<100 CFU/mL)[4],是雞場飼養(yǎng)管理中減少用藥及廢水排放等實(shí)現(xiàn)雞群健康高效養(yǎng)殖需要亟待解決的關(guān)鍵問題。
Ni等[5-15]對微酸性電解水(slightly acidic electrolyzed water, SAEW)的特性及其對不同菌種的殺菌規(guī)律進(jìn)行了大量研究,結(jié)果表明殺菌效果隨有效氯濃度、作用時間的增加而增強(qiáng);Miyke等[16]研究了微酸性電解水在雞舍衛(wèi)生防疫方面的應(yīng)用,發(fā)現(xiàn)微酸性電解水對蛋雞健康無害且具有較好應(yīng)用效果;Bügener等[17-18]認(rèn)為在飲水系統(tǒng)中添加3%電解水可以減少動物藥物使用量,且不會對動物的生產(chǎn)性能產(chǎn)生負(fù)面影響。微酸性電解水殺菌效果高效,在畜禽養(yǎng)殖方面主要應(yīng)用于畜禽場人員、車輛、物品以及空氣環(huán)境的消毒[19-23],但在畜禽場飲水系統(tǒng)殺菌消毒效果方面未有相關(guān)研究報(bào)道。
中國生活飲用水衛(wèi)生標(biāo)準(zhǔn)[4](GB5749-2006)規(guī)定:飲用水中消毒游離氯出廠水中余量大于0.3 mg/L、飲用水管網(wǎng)末梢水中余氯含量應(yīng)大于0.05 mg/L。本文研究添加多維溶液(multiplex vitamin solutions, MVS)后飲水管線內(nèi)部菌落總數(shù)變化規(guī)律,并對比研究沖洗水線和添加0.3 mg/L微酸性電解水對飲水系統(tǒng)水質(zhì)衛(wèi)生狀況改善情況,以及飲水系統(tǒng)添加0.3 mg/L微酸性電解水的余氯衰減規(guī)律,對規(guī)?;u場飲水添加微酸性電解水系統(tǒng)進(jìn)行設(shè)計(jì)并討論雞場飲水添加微酸性電解水的經(jīng)濟(jì)成本和污水排放減少量,以期為雞場養(yǎng)殖過程中飲水系統(tǒng)殺菌消毒方式的選擇提供參考依據(jù)。
1.1.1 試驗(yàn)雞舍
該試驗(yàn)在河南某大型蛋雞場進(jìn)行,試驗(yàn)雞舍飼養(yǎng)“農(nóng)大三號”商品蛋雞,單棟存欄5萬只,采用4層疊層籠養(yǎng)、四列五走道布局、全自動絞龍喂料、乳頭飲水器自動飲水、清糞帶自動清糞系統(tǒng)等。
1.1.2 試驗(yàn)設(shè)計(jì)
試驗(yàn)選取蛋雞舍3列雞籠水線(A、B、C列),先將A、B、C共3列雞籠水線內(nèi)添加多維溶液,研究添加多維溶液對水線水質(zhì)影響;后對B、C 2列蛋雞籠水線分別進(jìn)行反向沖洗、添加微酸性電解水2種不同方式的殺菌效果試驗(yàn)。每列共有38架雞籠,每列雞籠水線上等距選取5個采樣點(diǎn),分別從靠近進(jìn)水管的第1架、第10架、第20架、第30架、第38架雞籠的第一個乳頭飲水器位置取樣,代表樣品從“采樣點(diǎn)1”、“采樣點(diǎn)2”、“采樣點(diǎn)3”、“采樣點(diǎn)4”、“采樣點(diǎn)5”采樣,采樣點(diǎn)1、2、3、4、5距進(jìn)水立管的距離分別為0.6、18.6、36.6、54.6、69 m。每組試驗(yàn)重復(fù)3次,分別于試驗(yàn)前、試驗(yàn)2、4、6、12、24、36、48、72 h后進(jìn)行水質(zhì)采樣測定。
1.1.3 試驗(yàn)材料與設(shè)備
該試驗(yàn)的材料、設(shè)備分別為:氯化鈉(NaCl)和稀鹽酸(HCl)均為分析純;營養(yǎng)瓊脂培養(yǎng)基(BR,250 g)和一次性培養(yǎng)皿(90 mm)皆由北京奧博星生物技術(shù)有限責(zé)任公司生產(chǎn);余氯速測試劑(DPD)購買于上海昕瑞儀器儀表有限公司;有效氯測定儀(RC-2Z)購買于日本笠原理化工業(yè)株式會社;余氯儀(SYL-1B)購買于上海昕瑞儀器儀表有限公司;PH計(jì)與氧化還原電位計(jì)(HM-30R)皆購買于日本DKK-TOA公司;便攜式酸度計(jì)(PH-8414)購買于杭州盈傲儀器有限公司;微型螺旋混合儀(WH-2)來自上海滬西分析儀器廠有限公司;自動蒸汽滅菌鍋(D-1-70)來自北京發(fā)恩科貿(mào)有限公司;醫(yī)用超凈工作臺(DL-CJ-1DN)的廠家為北京東聯(lián)哈爾儀器制造有限公司;智能生化培養(yǎng)箱(DRP-9272),上海森信實(shí)驗(yàn)儀器有限公司;語音菌落計(jì)數(shù)器(TYJ-2B),由上海華光儀器儀表廠生產(chǎn);移液槍(0.1、1、5 mL),購買于德國Eppendorf公司。
本試驗(yàn)所用微酸性電解水制備裝置由中國農(nóng)業(yè)大學(xué)農(nóng)業(yè)部設(shè)施農(nóng)業(yè)工程重點(diǎn)實(shí)驗(yàn)室與睿安德環(huán)保設(shè)備(北京)有限公司聯(lián)合研制。微酸性電解水機(jī)外形尺寸為500 mm×400 mm×650 mm,每小時可生成微酸性電解水體積為100~250 L,所得微酸性電解水氧化還原電位值(oxidation-reduction potential, ORP)為800~1 150 mV、pH值為5.0~6.5、有效氯濃度值(available chlorine concentration, ACC)為80~250 mg/L之間。
1.2.1 微酸性電解水制備
本試驗(yàn)配制NaCl質(zhì)量分?jǐn)?shù)5%和HCl質(zhì)量分?jǐn)?shù)1%的混合溶液,用微酸性電解水機(jī)經(jīng)過循環(huán)電解,得到有效氯濃度為150 mg/L、pH值為6.0左右的微酸性電解水;加水稀釋,配制余氯濃度為0.3 mg/L的微酸性電解水;現(xiàn)場配制使用。
1.2.2 添加多維對飲水系統(tǒng)水質(zhì)影響試驗(yàn)
試驗(yàn)配制1:100的多維(濃縮魚肝油粉,每千克濃縮魚肝油粉含維生素A 2500 000 IU、維生素D3500 000 IU、維生素E 1 000 mg、水分≤10%,某生物藥業(yè)有限公司)濃縮液于加藥桶內(nèi),設(shè)置加藥器加藥比例為1:100,水線中多維溶液質(zhì)量濃度為0.1 mg/L。分別添加到A、B、C 共3列雞籠水線中,于加藥桶內(nèi)、添加多維溶液前、添加多維溶液2、4、6、12、24、36、48、72 h后對3列雞籠水線中水進(jìn)行采樣研究。
1.2.3 反向沖洗水線與添加微酸性電解水對比試驗(yàn)
將舍內(nèi)B列水線的壓力調(diào)節(jié)器、球槽沖洗系統(tǒng)轉(zhuǎn)換閥門調(diào)節(jié)至沖洗模式,對水線進(jìn)行反向沖洗操作30 min,廢水從雞舍末端排污管道排出;舍內(nèi)C列水線中添加余氯濃度為0.3 mg/L微酸性電解水,分別于試驗(yàn)前、試驗(yàn)2、4、6、12、24、36、48、72 h后進(jìn)行水線中水質(zhì)采樣。
1.2.4 菌落培養(yǎng)
用滅菌離心管于每個采樣點(diǎn)處采集5 mL水樣,將所有采集的樣品立即送至實(shí)驗(yàn)室。在無菌操作臺進(jìn)行無菌操作試驗(yàn),每個樣品取0.1 mL溶液,采用平板涂布法均勻涂抹于營養(yǎng)瓊脂制成的平板上,置于恒溫培養(yǎng)箱中37 ℃恒溫培養(yǎng)24 h后計(jì)數(shù),記錄每個平板上的菌落數(shù),計(jì)算飲水系統(tǒng)水線中細(xì)菌濃度總數(shù)。
1.2.5 數(shù)據(jù)處理
應(yīng)用Origin 軟件(Ver.8,Origin Lab)進(jìn)行分析,結(jié)果以平均值±標(biāo)準(zhǔn)差表示。
對盛裝多維濃縮液的加藥桶內(nèi)溶液、未添加多維溶液前水線取樣,測得加藥桶內(nèi)、水線內(nèi)細(xì)菌濃度總數(shù)的對數(shù)值分別為:(6.01±0.05)、(2.81±0.06)lg(CFU/mL)。加藥桶內(nèi)溶液細(xì)菌濃度總數(shù)的對數(shù)值是水線內(nèi)細(xì)菌濃度總數(shù)對數(shù)值的2.13倍,其原因可能是雞場飼養(yǎng)員使用無蓋水桶作為配制和盛裝濃縮液的容器(如圖1),并置于雞舍內(nèi)部,藥液表面與舍內(nèi)空氣接觸,導(dǎo)致舍內(nèi)灰塵、細(xì)菌等在藥液表面聚集,致使加藥桶內(nèi)溶液污染,盛裝藥液的開放式容器成為水線污染的源頭[24]。因此,規(guī)?;u場養(yǎng)殖生產(chǎn)過程中,通過飲水系統(tǒng)添加藥物、多維溶液時,建議使用可封閉式的容器進(jìn)行配置、存儲,以減少或防止對雞場飲水系統(tǒng)中水質(zhì)的污染。
圖1 試驗(yàn)雞舍儲存多維溶液的開放式容器
蛋雞舍水線添加多維溶液2、4、6、12、24、36、48、72 h后,取樣測定水線內(nèi)細(xì)菌濃度總數(shù)對數(shù)值的變化,結(jié)果如表1所示:添加多維溶液2、4、6、12、24、36、48、72 h后,水線內(nèi)細(xì)菌濃度總數(shù)的對數(shù)值較未添加多維溶液前水線內(nèi)細(xì)菌濃度總數(shù)的對數(shù)值分別增加9.96%、5.33%、6.04%、7.47%、4.98%、5.69%、4.27%、4.98%。從影響趨勢來看,添加多維溶液后水線內(nèi)細(xì)菌濃度總數(shù)的對數(shù)值高于未添加多維溶液前水線內(nèi)細(xì)菌濃度總數(shù)的對數(shù)值(2.81±0.06)lg(CFU/mL)。水線內(nèi)添加多維溶液后多維溶液中的維生素等促使細(xì)菌繁殖,使水線內(nèi)細(xì)菌濃度總數(shù)升高,但飲水管中水流不斷流動迫使細(xì)菌濃度趨于相對穩(wěn)定狀態(tài)。
表1 添加多維溶液對飲水水線內(nèi)細(xì)菌濃度總數(shù)的影響
注:同行大寫字母不同表示差異極顯著(<0.01),小寫字母不同表示差異顯著(<0.05),下同。
Note: Same row marked with the difference capital letters indicated that the difference between groups was extremely significant (<0.01), and with different letters indicated significant differences between groups (<0.05), the same below.
從表2中可以看出,在反向沖洗水線結(jié)束后靜置24 h內(nèi),水線內(nèi)細(xì)菌濃度總數(shù)對數(shù)值大于添加多維溶液后水線內(nèi)細(xì)菌濃度總數(shù)的對數(shù)值,但反向沖洗水線結(jié)束后靜止2~36 h內(nèi),水線內(nèi)細(xì)菌濃度總數(shù)呈逐漸降低趨勢,且反向沖洗水線結(jié)束靜止36 h后,水線內(nèi)細(xì)菌濃度總數(shù)達(dá)到穩(wěn)定值并在反向沖洗水線結(jié)束靜止36~72 h內(nèi)維持此濃度水平。雞場飲水系統(tǒng)管道內(nèi)壁附著物中含有大量雜質(zhì)以及微生物,反向沖洗水線管內(nèi)高壓湍流脈動渦旋作用下,管壁附著物進(jìn)入水流中,致使反向沖洗水線過程中細(xì)菌濃度總數(shù)驟增,沖洗一段時間靜置后水流穩(wěn)定,細(xì)菌濃度總數(shù)也趨于原水線內(nèi)細(xì)菌濃度狀態(tài),但飲水系統(tǒng)中細(xì)菌濃度總數(shù)的對數(shù)值仍高于中國的飲水衛(wèi)生標(biāo)準(zhǔn)( 表2 不同處理方式對飲水水線內(nèi)細(xì)菌濃度的影響 a. 沖洗前a. Before cleaningb. 沖洗后b. After cleaning 圖2 水線沖洗前后蛋雞飲水管道內(nèi)壁 Fig.2 Image of pipe inner surface before and after cleaning nipple drinking system 從影響趨勢來看(表2),飲水系統(tǒng)中添加余氯濃度0.3 mg/L 微酸性電解水后靜置2~48 h內(nèi),水線內(nèi)細(xì)菌濃度總數(shù)對數(shù)值一直降低;添加微酸性電解水后48 ~72 h內(nèi),水線中細(xì)菌濃度的對數(shù)值維持在1.83 lg(CFU/mL),小于中國飲水衛(wèi)生標(biāo)準(zhǔn)水線中細(xì)菌濃度對數(shù)值2;添加余氯濃度0.3 mg/L微酸性電解水24 h后水線中細(xì)菌濃度對數(shù)值較未添加前水線(2.96±0.02)lg(CFU/mL)降低了34.7%;添加余氯濃度0.3 mg/L微酸性電解水與未處理水線中細(xì)菌濃度總數(shù)具有顯著性差異(<0.01,見表2)。 Zang等[25-29]研究微酸性電解水有效氯的存在形式和殺菌效果,發(fā)現(xiàn)微酸性電解水的有效氯濃度(包括HClO, ClO-1, Cl2)是主要?dú)⒕蜃?。本試?yàn)添加余氯濃度為0.3 mg/L的微酸性電解水使水線內(nèi)細(xì)菌濃度總數(shù)顯著降低(<0.01),且乳頭飲水器末端余氯含量達(dá)到中國飲水質(zhì)量標(biāo)準(zhǔn)(≥0.05 mg/L)[4]。試驗(yàn)結(jié)果表明,添加余氯濃度0.3 mg/L微酸性電解水一定時間,可使水線中細(xì)菌濃度總數(shù)逐漸降低至達(dá)到中國飲水衛(wèi)生質(zhì)量標(biāo)準(zhǔn),且微酸性電解水對水線殺菌效果顯著(<0.01),可作為雞舍飲水系統(tǒng)長期添加使用的飲水消毒劑。 如表3所示,8:00~10:00、14:00~16:00水線中余氯濃度分別為0.11~0.14 mg/L、0.06~0.12 mg/L,14:00~16:00飲水水線內(nèi)取樣點(diǎn)余氯濃度變化范圍大于8:00~10:00。8:00~10:00飲水水線中余氯濃度偏高,10:00后水線中各取樣點(diǎn)余氯濃度沿水線各取樣點(diǎn)離送水立管距離的增大而逐漸減小,且變化幅度較大,其原因可能為儲水箱經(jīng)過太陽輻射,蛋雞飲水管道內(nèi)水溫增高,水線中余氯濃度衰減的幅度增大且殺菌過程中需要消耗有效氯成分的結(jié)果[10],但水線中余氯濃度均大于0.05 mg/L,達(dá)到飲用水管網(wǎng)末梢水中余氯含量標(biāo)準(zhǔn)[4,30]。 表3 添加微酸性電解水后不同時刻余氯衰減變化 注:采樣點(diǎn)1、2、3、4、5距進(jìn)水立管的距離分別為0.6、18.6、36.6、54.6、69 m。 Note: The distance between water inlet pipe and sampling points 1, 2, 3, 4 and 5 were 0.6、18.6、36.6、54.6、69 m, respectively. 試驗(yàn)結(jié)果表明8:00水線內(nèi)余氯濃度沿水線各取樣點(diǎn)呈先逐漸升高后降低的趨勢,且中間架雞籠采樣點(diǎn)余氯濃度最高,其原因可能與蛋雞生理習(xí)性相關(guān),試驗(yàn)蛋雞舍為降低風(fēng)機(jī)及門開啟形成的較高光照強(qiáng)度對蛋雞產(chǎn)蛋、啄羽的影響,對雞舍前、后端蛋雞籠進(jìn)行了局部遮光處理,上午8:00左右為雞的產(chǎn)蛋高峰時間段,大部分蛋雞積聚在遮光幕布較隱蔽環(huán)境下產(chǎn)蛋(如圖3),致使采樣點(diǎn)1、2、4、5處飲水乳頭不能正常使用,第1架與第38架雞籠內(nèi)隱蔽環(huán)境下產(chǎn)蛋雞分布較多,采樣點(diǎn)1、2、4、5處的采樣水為存儲在乳頭飲水器內(nèi)一定時間的水,微酸性電解水中余氯會隨存儲時間的延長不斷降低,這與和勁松等[10,30]對微酸性電解水儲藏和殺菌過程中有效氯衰減的動力學(xué)模型研究結(jié)果一致。 圖3 蛋雞聚集隱蔽環(huán)境下產(chǎn)蛋行為示例 雞場飲水添加微酸性電解水系統(tǒng)如圖4所示,由水預(yù)處理、循環(huán)電解、電解后添加3個過程組成。雞場水源供水一般為淺層地下井水或自來水,先經(jīng)物理、化學(xué)方式凈化預(yù)處理,降低硬度,避免高硬度水損傷電解設(shè)備,從而延長電解設(shè)備的使用壽命;凈化后的水與稀鹽酸、氯化鈉按一定比例配制成電解溶液;在循環(huán)電解過程中,凈化后的水、電解溶液按預(yù)先設(shè)定的比例分別從設(shè)備進(jìn)水口和泵鹽口,泵入微酸性電解水制備機(jī)的電解槽內(nèi)進(jìn)行循環(huán)電解,通過調(diào)節(jié)電解設(shè)備控制面板上的“電解時間”、“泵鹽時間”、“注水時間”按鈕,生成不同有效氯濃度、pH值、氧化還原電位值的微酸性電解水溶液,將生成的微酸性電解水儲存于儲存桶內(nèi)儲存;儲存桶內(nèi)微酸性電解水由輸送泵泵入雞舍飲水管路中殺菌消毒使用,電磁計(jì)量泵控制泵入微酸性電解水的體積。清洗箱用于定期清理電解槽內(nèi)部,防止微酸性電解水制備機(jī)電解槽內(nèi)電極結(jié)垢以及管路堵塞。 圖4 規(guī)模化雞場飲用添加微酸性電解水系統(tǒng)流程圖 中國畜禽養(yǎng)殖有關(guān)法規(guī)、標(biāo)準(zhǔn)已限制了蛋雞場廢水排放量以及水質(zhì)排放標(biāo)準(zhǔn)等[31]。蛋雞場沖洗水線周期為3~10 d一次,甚至周期更短[32]。以反向沖洗一棟長度為100 m的蛋雞舍為例,雞舍采用四列五走道、4層疊層籠養(yǎng)系統(tǒng),每條水線存水容量為50~65 L,每月沖洗3~10次,每次反向沖洗至少沖洗水線2遍,即雞舍每月定期反向沖洗水線造成的污水排放量至少為4 800~20 800 L。反向沖洗水線造成的污水雖由排污管道排放至排污溝,但產(chǎn)生污水量隨飼養(yǎng)規(guī)模的增大而擴(kuò)大,污水重復(fù)利用率較低,不僅增加了蛋雞場養(yǎng)殖的運(yùn)行成本,也造成水資源的嚴(yán)重浪費(fèi),且反向沖洗水線不能使雞場飲水系統(tǒng)細(xì)菌濃度指標(biāo)達(dá)到中國飲用水衛(wèi)生標(biāo)準(zhǔn)。然而Zheng等[28-29]研究表明,微酸性電解水對細(xì)菌、真菌、病毒、生物膜等都具有較好的殺菌效果,如大腸桿菌、腸炎沙門氏菌、金黃色葡萄糖菌、白色念球菌等都具有較強(qiáng)的殺滅作用。本試驗(yàn)結(jié)果也表明,添加余氯濃度0.3 mg/L微酸性電解水一定時間,可使水線中細(xì)菌濃度總數(shù)逐漸降低至達(dá)到中國飲水衛(wèi)生質(zhì)量標(biāo)準(zhǔn),且殺菌效果顯著(<0.01)。微酸性電解水是瞬時、高效殺菌的安全綠色環(huán)保型消毒劑,且殺菌后可還原成普通水,無任何廢水排放[33-37]。規(guī)?;u場飲水系統(tǒng)殺菌消毒使用微酸性電解水的經(jīng)濟(jì)成本主要包括電費(fèi)、鹽酸與氯化鈉購買費(fèi),配制1 000 L有效率濃度為150 mg/L殺菌消毒液,使用微酸性電解水需氯化鈉600 g、電量1.3(kW·h),總成本為2.5元;使用最便宜的二氯異氰脲酸鈉配制成本為6.9元;使用進(jìn)口衛(wèi)可消毒粉配制成本為15元。同使用常規(guī)化學(xué)消毒劑(二氯異氰脲酸鈉、衛(wèi)可)經(jīng)濟(jì)成本比較可看出:使用微酸性電解水可減少成本2.7~6倍。規(guī)模·化雞場添加微酸性電解水作為飲水系統(tǒng)殺菌消毒劑,對蛋雞舍飲水系統(tǒng)殺菌消毒的同時,不產(chǎn)生廢水,無污染,可以減少蛋雞場污水排放量,且可減少投入成本及廢水處理運(yùn)行費(fèi)用,可作為雞舍飲水系統(tǒng)長期添加使用的飲水消毒劑。 本文對比研究添加多維溶液后,沖洗水線、添加余氯濃度0.3 mg/L微酸性電解水2種方式對雞場飲水系統(tǒng)的殺菌效果,以期為雞場飲水系統(tǒng)選擇長期添加使用的消毒劑提供參考依據(jù)。主要結(jié)論如下: 1)添加多維溶液使水線內(nèi)細(xì)菌濃度總數(shù)顯著升高(<0.05); 2)沖洗水線一定程度上改善水質(zhì)衛(wèi)生狀況,但不能實(shí)現(xiàn)雞場飲水水質(zhì)達(dá)到衛(wèi)生質(zhì)量標(biāo)準(zhǔn)要求; 3)添加余氯濃度0.3 mg/L微酸性電解水,可有效降低飲水水線內(nèi)細(xì)菌濃度總數(shù),殺菌效果顯著(<0.01),且水線末端余氯濃度大于0.05 mg/L,達(dá)到飲用水管網(wǎng)末梢水中余氯含量及水質(zhì)衛(wèi)生標(biāo)準(zhǔn); 4)添加微酸性電解水作為蛋雞場飲水系統(tǒng)殺菌消毒劑,可以減少蛋雞場污水排放量和投入成本。 [1] 劉瑞磊,趙玉春. 蛋雞場飲用水管理要點(diǎn)[J]. 中國禽業(yè)導(dǎo)刊,2010(19):50-50. [2] 羅雪剛,王秀禎,李繼祥. 不正確的飲水系統(tǒng)導(dǎo)致產(chǎn)蛋雞單純性口腔潰瘍[J]. 中國獸醫(yī)雜志,2014,50(7):96-97. [3] 劉瑞磊,趙玉春. 淺談蛋雞場飲用水管理[J]. 中國畜牧雜志,2010,46(20):61-62. [4] 中華人民共和國衛(wèi)生部. GB 5749-2006.生活飲用水衛(wèi)生標(biāo)準(zhǔn)[S]. 北京:中國標(biāo)準(zhǔn)出版社,2006. [5] Ni L, Cao W, Zheng W C, et al. Reduction of microbial contamination on the surfaces of layer houses using slightly acidic electrolyzed water[J]. Poultry Science,2015,94(11): 2838-2848. [6] Zheng W C, Ni L, Hui X, et al. Optimization of slightly acidic electrolyzed water spray for airborne culturable bacteria reduction in animal housing[J]. International Journal of Agricultural and Biological Engineering,2016,9(4):185-191. [7] Issa-Zacharia A, Kamitani Y, Tiisekwa A, et al. In vitro inactivation of,and. using slightly acidic electrolyzed water[J]. Journal of Bioscience and Bioengineering,2010,110(3): 308-313. [8] Quan Y, Choi K, Chung D, et al. Evaluation of bactericidal activity of weakly acidic electrolyzed water (WAEW) againstand[J]. International Journal of Food Microbiology, 2010, 136(3): 255-260. [9] 謝軍,孫曉紅,潘迎捷,等. 電解水的保存特性及殺菌效果[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2010,26(5):1053-1059. Xie Jun, Sun Xiaohong, Pan Yingjie, et al. Physicochemical properties of electrolyzed water during storage and its bactericidal effect on shrimp[J]. Jiangsu Journal of Agricultural Science, 2010, 26(5): 1053-1059. (in Chinese with English abstract) [10] 和勁松,祁凡雨,葉章穎,等.微酸性電解水儲藏和殺菌過程中有效氯衰減的動力學(xué)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(15):263-270. He Jinsong, Qi Fanyu, Ye Zhangying, et al. Decay kinetics model of available chlorine in slightly acidic electrolyzed water in storage and disinfection process[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2013, 29(15): 263-270. (in Chinese with English abstract) [11] 曹薇,施正香,朱志偉,等. 電解功能水在養(yǎng)殖業(yè)的應(yīng)用展望[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(增刊2):150-154. Cao Wei, Shi Zhengxiang, Zhu Zhiwei, et al. Prospect on application of electrolyzed functional water in animal raising industry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(Supp.2): 150-154. (in Chinese with English abstract) [12] 臧一天,李星爍,李保明,等. 微酸性電解水對污染輪胎表面的模擬消毒優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(20):199-204. Zang Yitian, Li Xingshuo, Li Baoming, et al. Simulation of disinfection optimization of vehicle tire surface using slightly acidic electrolyzed water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 199-204. (in Chinese with English abstract) [13] Kim C, Hung Y C, Russell S M. Efficacy of electrolyzed water in the prevention and removal of fecal material attachment and its microbicidal effectiveness during simulated industrial poultry processing[J]. Poultry Science, 2005, 84(11): 1778-1784. [14] 鄭煒超,李保明,尚宇超,等. 蛋種雞場中性電解水帶雞噴霧消毒試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(9):270-273. Zheng Weichao, Li Baoming, Shang Yuchao, et al. Experimental study on spraying disinfection with neutral electrolyzed water in a layer breeding farm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 270-273. (in Chinese with English abstract) [15] 曹薇,張春玲,李保明,等. 噴灑微酸性電解水對蕎麥芽菜生長的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(9):159-164. Cao Wei, Zhang Chunling, Li Baoming, et al. Effect of spraying subacidic electrolyzed water on buckwheat sprouts growth[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2012, 28(9): 159-164. (in Chinese with English abstract) [16] Miyke M, Huang K J. Weak acid hypochlorous solution used for hygienic control in the laboratory animals facilities and the poultry farms[J]. Experimental Animals, 2006, 55(3): 1341-1357. [17] Bügener E, Kump A W, Casteel M, et al. Benefits of neutral electrolyzed oxidizing water as a drinking water additive for broiler chickens[J]. Poultry Science, 2014,93(9):2320-2326. [18] Bodas R, Bartolomé D J, De Paz M J T, et al. Electrolyzed water as novel technology to improve hygiene of drinking water for dairy ewes[J]. Research in Veterinary Science, 2013, 95(3): 1169-1170. [19] Hao X X, Li B M, Wang C Y, et al. Application of slightly acidic electrolyzed water for inactivating microbes in a layer breeding house[J]. Poultry Science, 2013, 92(10): 2560-2566. [20] Hao J X, Qiu S A, Li H Y, et al. Roles of hydroxyl radicals in electrolyze oxidizing water (EOW) for the inactivation of[J]. International Journal of Food Microbiology, 2012, 155(3): 99-104. [21] Koide S, Takeda J, Shi J, et al. Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage[J]. Food Control, 2009, 20(3): 294-297. [22] Cao W, Zhu Z W, Shi Zh X, et al. Efficiency of slightly acidic electrolyzed water for inactivation ofenteritidis and its contaminated shell eggs[J]. International Journal of Food Microbiology,2009,130(2): 88-93. [23] Zhang C L, Lu Z H, Li Y Y, et al. Reduction ofO157:H7andon mung bean seeds and sprouts by slightly acidic electrolyzed water[J]. Food Control, 2011, 22(5): 792-796. [24] 郭均. 供水系統(tǒng)的檢查及其清潔消毒[J]. 中國家禽,2008,30(21):37-38. [25] Zang Y T, Li B M, Bing S, et al. Modeling disinfection of plastic poultry transport cages inoculated withenteritids by slightly acidic electrolyzed water using response surface methodology[J]. Poultry science, 2015, 94(9): 2059-2065. [26] 朱志偉,李保明,李永玉,等. 中性電解水對雞蛋表面的清洗滅菌效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(3):358-362. Zhu Zhiwei, Li Baoming, Li Yongyu, et al. Disinfection effect of neutral electrolyzed water for shell egg washing [J]. Journal of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 358-362. (in Chinese with English abstract) [27] Tamaki S, Bui V N, Lai H N, et al. Virucidal effect of acidic electrolyzed water and neutral electrolyzed water on avian influenza viruses[J]. Archives of Virology, 2014, 159(3): 405-412. [28] Zheng W C, Cao W, Li B M, et al. Bactericidal activity of slightly acidic electrolyzed water produced by different methods analyzed with ultraviolet spectrophotometric[J]. International Journal of Food Engineering, 2012, 8(3): 1039-1058. [29] 倪莉. 微酸性電解水對蛋雞場沙門氏菌的殺菌規(guī)律研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2016. Ni Li. Bactericidal Efficiency of Slightly Acidic Electrolyzed Water Againstin Layer Houses [D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract) [30] 張家發(fā). 蛋雞舍飲水系統(tǒng)的電解處理與飲用效果研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2016. Zhang Jiafa. Study on Effect of Electrolytic Process and Drinking in Laying Hens’ Drinking Water System[D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract) [31] 國家環(huán)境保護(hù)總局. GB 18596-2001. 畜禽養(yǎng)殖業(yè)污染物排放標(biāo)準(zhǔn)[S]. 北京:中國環(huán)境科學(xué)出版社,2001. [32] 楊廣平,王建國,高彩虹,等. 現(xiàn)代化禽場清洗水線的重要性及操作方法[J]. 中國禽業(yè)導(dǎo)刊,2012(5):39-39. [33] Ana G, Maribel A, Miguel S, et al. The use of electrolyzed water as a disinfectant for minimally processed apples[J]. Postharvest Biology and Technology, 2011, 61(2): 172-177. [34] Tagawa M, Yamaguchi T, Yokosuka O, et al. Inactivation ofby electrolyzed acid water[J]. Journal of Antimicrobial Chemotherapy, 2000, 46(3): 363-368. [35] Hao X X, Cao W, Li B M, et al. Slightly acidic electrolyzed water for reducing airborne microorganisms in a layer breeding house[J]. Journal of the Air & Waste Management Association, 2013, 64(4): 494-500. [36] Zheng W C, Li B M, Cao W, et al. Application of neutral electrolyzed water spray for reducing dust levels in a layer breeding house[J]. Journal of the Air & Waste Management Association, 2012, 62(11): 1329-1334. [37] Hricova D, Stephan R, Zweifel C. Electrolyzed water and its application in the food industry[J]. Journal of Food Protection, 2008, 71(9): 1934-1947. Experiment on bactericidal efficacy in drinking system using slightly acidic electrolyzed water in large-scale poultry houses Wang Yang1,2,3, Zhang Jiafa1,2,3, Hu Xijun4, Li Baoming1,2,3※ (1.,,100083,; 2.100083,; 3.100083,; 4.,459000,) The quality of drinking water system has a significant impact on health and performance of poultry. The drinking water system quality has been considered an important factor for pathogens and epidemic infection entry into poultry buildings. It is critical therefore to control the bacteria concentration to ensure the bird’s well-being and reduce the mortality. The nipple drinking system has been mechanization in large-scale, which has reduced the need for manual labor and decreased the water leakage. However, it is difficult to clean the nipple drinkers and water pipes because the nipple drinking system is a closed system. Also, it is hard to prevent and control the biofilm of water pipe, due to there are a wide variety of bacterial transmission routes. It is a common practice that multiplex vitamin solution, vaccine and drug are added in the water drinking system. However, such practice could cause the high level of bacteria and microorganisms in the system, polluted water, and clogged up nipple drinkers. Thus, we need to find solutions to solve issue of how to control the bacterial concentrations of nipple drinking system to ensure a safe drinking water for birds so that the health of birds can be improved and the use of drugs in production can be reduced. Slightly acidic electrolyzed water (SAEW) has been widely used in agricultural production fields, including disinfection of the vehicle tire surface, human, eggs, spraying layer farm, etc., and has the advantages of possessing broad-spectrum antimicrobial activity. Slightly acidic electrolyzed water is generated through electrolysis of dilute salt solution and hydrochloric acid. But there is no information found in literatures about research on its bactericidal efficacy of drinking system using slightly acidic electrolyzed water in layer houses. In this paper, we studied effect of the washing drinking system, adding multiplex vitamin solution and slightly acidic electrolyzed water on the logarithm of bacterial concentrations in drinking water system. As well, variation of slightly acidic electrolyzed water residue chlorine during test period and the schematic diagram of adding slightly acidic electrolyzed for drinking water system in laying hen house was studied. The experiment was conducted in a large-scale layer hen poultry house located at Henan province. The results showed: 1) Before adding multiplex vitamin solution, the logarithm of bacterial concentrations in drinking water system was (2.81±0.06) lg(CFU/mL). For 4、6、12、24、36、48、72 h after adding multiplex vitamin solution, the logarithm of bacterial concentrations in drinking water system were respectively (3.09±0.06)、(2.96±0.04)、(2.98±0.05)、(3.02±0.06)、( 2.95±0.03)、(2.97±0.11)、( 2.93±0.04)、and (2.95±0.06) lg(CFU/mL). The logarithm of bacterial concentrations were respectively increased by 9.96 %、5.33 %、6.04 %、7.47 %、4.98 %、5.69 %、4.27 %、4.98 %. Adding multiplex vitamin solution led to the bacterial concentrations decrease;2) By conventional method of cleaning nipple drinking system can reduce the bacterial concentration to a certain degree and decrease the suspended matter, but cannot make bacterial concentrations reached the national standard.3) Before adding slightly acidic electrolyzed water, the bacterial concentrations was far higher than the bacterial concentrations standard for drinking water in China. After addition of the 0.3 mg/L slightly acidic electrolyzed water for 24 hours, the bacterial concentrations were reduced to below national standard and decreased by 34.7%, and the logarithm of bacterial concentrations in drinking water system were (1.83±0.05) lg(CFU/mL) . The results indicated that SAEW has a great potential to be used as effective disinfection method for the drinking water system of layer hen houses. Results of this study provide an effective measure to reduce bacterial concentrations of poultry drinking water system and the study contributes to ensuring the bird’s well-being and reducing the mortality. disinfection; sterilization; experiments; slightly acidic electrolyzed water; drinking water system; large-scale poultry house; water quality 10.11975/j.issn.1002-6819.2017.18.030 S831.7 A 1002-6819(2017)-18-0230-07 2017-02-04 2017-07-24 國家蛋雞產(chǎn)業(yè)技術(shù)體系(CARS-41);國家自然科學(xué)基金面上項(xiàng)目(31372350)。 王 陽,女,博士生,山東濰坊人,研究方向?yàn)樾笄萁】淡h(huán)境及其控制技術(shù)。北京 中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,100083。Email:wangyang512@cau.edu.cn 李保明,男,教授,浙江縉云人,博士生導(dǎo)師,主要從事畜禽設(shè)施養(yǎng)殖工藝與環(huán)境研究。北京 中國農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院,100083。Email:libm@cau.edu.cn2.3 添加微酸性電解水對飲水系統(tǒng)水線內(nèi)細(xì)菌濃度的變化規(guī)律
2.4 雞場飲水系統(tǒng)添加微酸性電解水余氯衰減規(guī)律
2.5 雞場飲水添加微酸性電解水系統(tǒng)設(shè)計(jì)
3 討 論
4 結(jié) 論