叢宏斌,姚宗路,趙立欣,賈吉秀,蘭 珊
?
生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)中試系統(tǒng)開發(fā)
叢宏斌,姚宗路,趙立欣※,賈吉秀,蘭 珊
(1. 農(nóng)業(yè)部規(guī)劃設(shè)計研究院,北京 100125;2.農(nóng)業(yè)部農(nóng)業(yè)廢棄物能源化利用重點實驗室,北京 100125)
針對目前多數(shù)生物質(zhì)炭化設(shè)備生產(chǎn)連續(xù)性差、能耗高、生產(chǎn)過程中存在焦油水洗二次污染等問題,結(jié)合生物質(zhì)炭化技術(shù)最新進(jìn)展和農(nóng)林剩余物原料特征,提出了生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)工藝方案,引入連續(xù)分段熱解、多級組合除塵脫焦和燃油/燃?xì)饣赜眉訜峁に嚪椒?。在此基礎(chǔ)上,重點突破了多線螺旋抄板物料均勻有序輸送、多腔旋流梯級高效換熱、保溫沉降密封出炭、系統(tǒng)壓力與氣體組分耦合預(yù)警等技術(shù),開發(fā)了生物質(zhì)連續(xù)熱解中試生產(chǎn)系統(tǒng)。運行檢測結(jié)果表明:系統(tǒng)運行穩(wěn)定可靠,溫度控制精度為±16 ℃,反應(yīng)室壓力控制精度為±25 Pa,以花生殼為原料,原料處理量為28.2 kg/h,生物炭得率為31.3%,熱解氣產(chǎn)率29.6%,液體產(chǎn)物產(chǎn)率19.8%,熱解氣低位熱值為16.3 MJ/m3,各項技術(shù)指標(biāo)均達(dá)到了系統(tǒng)設(shè)計目標(biāo)與要求。該中試系統(tǒng)的開發(fā)為設(shè)備放大及示范應(yīng)用奠定了重要基礎(chǔ)。
生物質(zhì);熱解;炭;多聯(lián)產(chǎn);中試系統(tǒng);開發(fā)
生物質(zhì)炭化技術(shù)指生物質(zhì)原料在絕氧或低氧環(huán)境中經(jīng)加熱升溫引起分子內(nèi)部分解形成生物炭、生物油和不可冷凝氣體產(chǎn)物的過程,是一種生物質(zhì)中低溫慢速熱解技術(shù)[1-3]。生物質(zhì)熱解多聯(lián)產(chǎn)技術(shù)以現(xiàn)代生物質(zhì)炭化技術(shù)為核心,通過熱解氣的氣液分離和凈化提質(zhì),生產(chǎn)生物炭、高品質(zhì)燃?xì)?、木焦油和木醋液等多種產(chǎn)品。該技術(shù)具有資源利用率高、產(chǎn)品形式多樣、二次污染少等優(yōu)點。生物炭可廣泛應(yīng)用于固碳減排、水源凈化、重金屬吸附和土壤改良等,生物炭的生產(chǎn)和應(yīng)用已引起國內(nèi)外科研人員的廣泛關(guān)注[4-7]。熱解氣作為一種清潔的高品質(zhì)燃?xì)猓哂兄匾_發(fā)利用價值,副產(chǎn)物木焦油與木醋液精制后可作為重要的能源和化工原料。生物質(zhì)熱解多聯(lián)產(chǎn)可進(jìn)一步提高生物質(zhì)資源的開發(fā)利用綜合效益,符合生物質(zhì)能源化資源化綜合利用戰(zhàn)略思路,具有良好的推廣應(yīng)用前景。
在生物質(zhì)炭化技術(shù)開發(fā)方面,國內(nèi)外已開發(fā)出多類反應(yīng)裝置,如上吸式固定床反應(yīng)器、下吸式固定床反應(yīng)器、循環(huán)流化床反應(yīng)器、真空移動床反應(yīng)器和旋轉(zhuǎn)錐反應(yīng)器等[8-11。生物質(zhì)熱裂解工藝不同,裂解氣、裂解油和生物炭生成比例存在很大差異。其中,連續(xù)式生物質(zhì)炭化技術(shù)具有生產(chǎn)連續(xù)性好、生產(chǎn)率高,過程控制方便、產(chǎn)品品質(zhì)相對穩(wěn)定等優(yōu)點,代表了生物質(zhì)炭化技術(shù)的未來發(fā)展方向[12-14]。課題組結(jié)合生物質(zhì)炭化技術(shù)最新進(jìn)展和農(nóng)林剩余物原料特征[15],提出生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)工藝方案,并對相關(guān)關(guān)鍵技術(shù)問題進(jìn)行了深入研究,開發(fā)了生物質(zhì)連續(xù)熱解中試生產(chǎn)系統(tǒng),在此基礎(chǔ)上對系統(tǒng)進(jìn)行了性能測試。該中試系統(tǒng)的開發(fā)以期為生物質(zhì)炭化多聯(lián)產(chǎn)系統(tǒng)的放大和示范應(yīng)用奠定基礎(chǔ)。
連續(xù)熱解多聯(lián)產(chǎn)技術(shù)工藝主要包括連續(xù)熱解和熱解氣凈化分離2個工藝過程,其工藝流程如圖1所示。連續(xù)熱解工藝主要包括密封進(jìn)料、均勻布料、連續(xù)熱解、保溫炭化等工段,通過分段處理工藝,可有效提升產(chǎn)品品質(zhì)和設(shè)備生產(chǎn)率[16]。熱解氣凈化分離工藝主要包括除塵、多級組合冷凝、洗氣等。另外,通過燃?xì)?燃油回用燃燒,減少生產(chǎn)外部輸入性能源消耗并保障清潔生產(chǎn)。
1)密封進(jìn)料:是指將原料從料倉輸送至炭化設(shè)備料斗內(nèi),并采取必要措施保障進(jìn)料時系統(tǒng)的密封性[17]。物料喂入時要盡量減少空氣帶入量,保證反應(yīng)室內(nèi)的低氧和微正壓工作環(huán)境;物料喂入后,要通過適時啟停上料機(jī)構(gòu)將物料保持在一定的高度區(qū)間,達(dá)到設(shè)備進(jìn)料密封的目的。
2)均勻布料:指將料斗內(nèi)物料盡可能均勻的推送至炭化設(shè)備反應(yīng)室內(nèi)。原料喂入的均勻一致性,對連續(xù)熱解設(shè)備運行穩(wěn)定性和生物炭品質(zhì)均會產(chǎn)生重要影響。另外,均勻布料工序要求相應(yīng)機(jī)械輸送系統(tǒng)對不同類型和粒徑的原料具有比較廣泛的適應(yīng)性。
3)回轉(zhuǎn)熱解:是工藝系統(tǒng)的核心,在回轉(zhuǎn)反應(yīng)室內(nèi)物料翻轉(zhuǎn)前進(jìn),同時在外部熱源的作用下受熱分解,該過程中物料主要經(jīng)歷干燥脫水、受熱裂解2個過程,分段連續(xù)式的熱解過程,對于提升設(shè)備生產(chǎn)效率,改善生物炭品質(zhì)均有積極影響[18-20]。
4)保溫炭化:指受熱分解后的生物炭不直接排出,而是在系統(tǒng)內(nèi)繼續(xù)保溫熟化一段時間。保溫熟化的生物炭一般經(jīng)過序批的形式輸送至冷卻出炭系統(tǒng)。另外,保溫炭化工藝使回轉(zhuǎn)熱解與冷卻出炭工藝分開,可避免或減少因焦油驟然冷卻而附著在生物炭上。
5)冷卻出炭:經(jīng)保溫炭化后產(chǎn)出的高溫生物炭需要適當(dāng)冷卻,以防止出炭后與空氣接觸而自燃;此外,出料時一般需采取必要的密封措施,盡量減少空氣從出炭口混入熱解系統(tǒng),影響系統(tǒng)運行安全性和產(chǎn)品品質(zhì)。
6)凈化分離:熱解氣凈化分離部分可采用旋風(fēng)除塵、多級冷凝和洗氣等組合除塵脫焦技術(shù)工藝,對熱解原始?xì)膺M(jìn)行凈化分離,可有效避免傳統(tǒng)水洗工藝造成的焦油二次污染問題。
7)回用加熱:經(jīng)凈化除塵與油水分離后,熱解副產(chǎn)品主要包括可燃?xì)怏w、木焦油、木醋液等?;剞D(zhuǎn)熱解采用的外部熱源由木焦油和部分熱解氣回用燃燒提供,或由熱解原始?xì)庵苯尤紵峁21-23]。
圖1 生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)工藝流程
生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)系統(tǒng)主要由生物質(zhì)連續(xù)熱解系統(tǒng)、熱解氣多級凈化分離系統(tǒng)、燃?xì)?燃油回用燃燒系統(tǒng)、序批密封上料系統(tǒng)、保溫密封出炭系統(tǒng),以及在線監(jiān)測與安全預(yù)警系統(tǒng)等組成。其系統(tǒng)方案如圖2所示。
設(shè)備作業(yè)時,原料經(jīng)上料系統(tǒng)進(jìn)入連續(xù)熱解炭化系統(tǒng)反應(yīng)室內(nèi),隨著回轉(zhuǎn)連續(xù)熱解反應(yīng)管的轉(zhuǎn)動,物料有序翻轉(zhuǎn)后移,在此過程中,逐步受熱脫水、析出揮發(fā)分和裂解,然后物料繼續(xù)下行,熱解氣與生物炭分離,其中生物炭進(jìn)入保溫炭化裝置,在絕氧與保溫環(huán)境中進(jìn)一步熟化,炭化完成后,高溫生物炭在螺旋輸送器中適當(dāng)冷卻并以序批的方式從系統(tǒng)輸出。熱解氣進(jìn)入凈化分離系統(tǒng),依次進(jìn)行除塵、多級冷凝和洗氣,最后由增壓泵打入高壓儲氣裝置中。通過壓力信號的反饋,系統(tǒng)實時控制引風(fēng)量,使反應(yīng)室形成微正壓炭化環(huán)境。
1.上料機(jī) 2.螺旋喂料機(jī) 3.炭化設(shè)備 4.熱風(fēng)爐 5.冷卻出炭裝置 6.防爆裝置 7.金屬阻火器 8.除塵器 9.一級冷凝器 10.二級冷凝器 11.電捕焦油器 12.洗氣裝置 13.鼓風(fēng)機(jī) 14.水封阻火器
根據(jù)中試設(shè)備生產(chǎn)與工藝試驗需要,生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)系統(tǒng)主要技術(shù)參數(shù)與性能指標(biāo)設(shè)計如表1所示。
表1 中試系統(tǒng)主要技術(shù)參數(shù)
回轉(zhuǎn)連續(xù)式熱解設(shè)備主要由多線螺旋板輸送機(jī)構(gòu)、多室旋流梯級換熱系統(tǒng)、粉塵沉降出炭裝置、傳動系統(tǒng)和保溫層等組成。多線螺旋板輸送機(jī)構(gòu)安裝在反應(yīng)室內(nèi)壁,采用四線螺旋抄板主動輸送物料,使物料整體向前推送過程中適度抄翻,提高物料輸送的穩(wěn)定性與有序性,可兼顧系統(tǒng)換熱效率與炭化均勻性[24-25];多室旋流梯級換熱系統(tǒng)將加熱室分成4個腔,熱煙氣從各腔底部流過,受熱氣流自行上升與強(qiáng)制下沉組合影響,形成旋轉(zhuǎn)流動過程,增強(qiáng)反應(yīng)室換熱效果。安全防爆裝置采用U形水封或防爆閥門,用于因系統(tǒng)異常進(jìn)入大量空氣后出現(xiàn)局部爆燃或爆炸時的緊急泄壓。
1.安全防爆裝置 2.排煙通道 3.多室旋流梯級換熱系統(tǒng) 4.保溫層 5.粉塵沉降出炭裝置 6.出氣口 7.燃燒器 8.多線螺旋板抄送機(jī)構(gòu) 9.傳動系統(tǒng)
螺旋板輸送機(jī)構(gòu)物料輸送能力與螺旋板螺距、回轉(zhuǎn)反應(yīng)室內(nèi)徑、螺旋板高度和物料填充系數(shù)等均有關(guān)系。螺旋板輸送物料運動分析示意圖如圖4所示,物料前進(jìn)速度為
式中為螺距,mm;為回轉(zhuǎn)反應(yīng)器內(nèi)徑,mm。
式中V為螺旋法線方向速度,m/s。
式中為物料牽連運行速度,m/s。
式中為回轉(zhuǎn)反應(yīng)器轉(zhuǎn)動角速度,rad/s;為螺旋抄板回轉(zhuǎn)半徑,mm。為回轉(zhuǎn)反應(yīng)轉(zhuǎn)速,r/min。
由式(1)-(5)可知,物料軸向輸送速度為
物料能夠向前輸送的條件
式中為物料與螺旋板的摩擦系數(shù)。
由式(6)知,物料輸送速度最大,即設(shè)備輸送能力最強(qiáng)時,應(yīng)滿足
由于螺旋抄板具有一定的高度,在徑向方向上不同位置其回轉(zhuǎn)半徑不同,在整個輸料截面上,物料沿軸向的平均運動速度為
式中V為物料的平均軸向輸送速度,m/s;1為螺旋抄板頂部回轉(zhuǎn)半徑,mm;2為螺旋抄板底部回轉(zhuǎn)半徑,mm。
因此,設(shè)備原料處理能力和在反應(yīng)室的平均滯留時間可表述為
式中為物料的處理能力,kg/h;為回轉(zhuǎn)反應(yīng)器內(nèi)徑,m;為物料填充系數(shù);為物料堆積密度,kg/m3。
注:α為螺旋角,Ve為牽連速度,Vr為相對速度,Va為絕對速度,Vn為螺旋切線速度,VZ為物料水平移動速度,φ為摩擦角,ω為回轉(zhuǎn)筒轉(zhuǎn)速。
對于農(nóng)作物秸稈類原料設(shè)計處理能力為40 kg/h,物料在反應(yīng)室的平均滯留時間為30 min,輸送機(jī)構(gòu)采用四線螺旋抄板設(shè)計,物料堆積密度為120 kg/m3,反應(yīng)室長度為4 m,物料填充系數(shù)0.2,代入式(1)-式(11),可知反應(yīng)室內(nèi)徑為0.4 m,螺旋抄板螺距360 mm,螺旋抄板高度為72 mm。
由于炭化(干餾)技術(shù)是生物質(zhì)原料在絕氧或低氧環(huán)境中受熱升溫引起分子內(nèi)部分解的過程。因此系統(tǒng)需要良好的密封性。進(jìn)料系統(tǒng)基本要求是進(jìn)料的均勻性與良好的密封性。密封進(jìn)料系統(tǒng)結(jié)構(gòu)示意圖如圖5所示,主要包括上料倉、上料裝置、喂料倉、喂料裝置、擾動器,以及用于料位控制的上料位計、下料位計等組成。
1.上料倉 2.上料裝置 3.喂料倉 4.上料位計 5.擾動器 6.下料位計 7.喂料裝置
工作時物料經(jīng)上料裝置進(jìn)入喂料倉內(nèi),上料機(jī)的啟停受上料位計與下料位計實時信號的控制,使喂料倉內(nèi)物料高度始終維持在上料位計與下料位計之間,一方面,喂料系統(tǒng)利用物料進(jìn)行了有效密封,另一方面也避免了物料從料倉內(nèi)溢出。一組擾動機(jī)構(gòu)安裝在喂料倉上,通過撥打物料,防止其搭橋、結(jié)拱,提高原料喂入的穩(wěn)定性。另外,喂料裝置轉(zhuǎn)速可調(diào),采用變螺距螺旋輸送機(jī)構(gòu)[26-27],提高了物料進(jìn)入系統(tǒng)的均勻性和運行可靠性。
工藝設(shè)計中,受熱分解產(chǎn)生的生物炭不直接排出,而是在熱解系統(tǒng)中繼續(xù)保溫熟化一定的時間。熟化后的生物炭經(jīng)冷卻裝置從系統(tǒng)排出。保溫炭化與冷卻出炭系統(tǒng)結(jié)構(gòu)示意圖如圖6所示,主要由沉降分離倉、保溫炭化裝置、冷卻出炭裝置、擾動器,以及用于料位控制的上料位計、下料位計等組成。
工作時,生物炭經(jīng)沉降分離倉進(jìn)入保溫炭化裝置中,冷卻出炭裝置的啟停受上料位計與下料位計實時信號的控制,使保溫炭化裝置內(nèi)的物料高度始終維持在上料位與下料位計之間,一方面,出炭系統(tǒng)利用物料進(jìn)行了有效密封,另一方面也避免了生物炭料位過高溢出至沉降分離倉。一組擾動機(jī)構(gòu)安裝在保溫炭化裝置上,通過撥打生物炭,防止其搭橋、結(jié)拱,提高生物炭下行的穩(wěn)定性。另外,冷卻出炭裝置采用間壁式循環(huán)水冷的方式將生物炭冷卻到室溫,防止其接觸空氣后自燃。
1.沉降分離倉 2.保溫炭化裝置 3.上料位計 4.擾動器 5.下料位計 6.生物炭水冷裝置 7.出炭口 8.動力系統(tǒng)
熱解氣凈化分離系統(tǒng)主要包括旋風(fēng)除塵裝置、多級冷凝裝置、洗氣裝置、阻火裝置和鼓風(fēng)裝置等,將熱解氣經(jīng)多級組合除塵脫焦后,打入儲氣裝置[28]。另外,在凈化除塵系統(tǒng)中安裝CO、O2、H2、CH4等在線檢測裝置[29],當(dāng)O2含量超過設(shè)定上限時,熱解氣通過燃燒火炬直接排空。整個處理系統(tǒng)采用微正壓設(shè)計,系統(tǒng)壓力采用多點監(jiān)測,根據(jù)壓力信號實時控制鼓風(fēng)機(jī)轉(zhuǎn)速和管路中的閥門開度,使系統(tǒng)壓力維持在設(shè)定區(qū)間。當(dāng)系統(tǒng)壓力或O2含量異常時,系統(tǒng)會發(fā)出預(yù)警信息,同時,燃?xì)鈨艋蛛x系統(tǒng)中裝有安全防爆與緊急泄壓等裝置。
在對系統(tǒng)硬件設(shè)計制造和監(jiān)控軟件設(shè)計開發(fā)的基礎(chǔ)上,對生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)中試系統(tǒng)進(jìn)行了運行調(diào)試,現(xiàn)場照片如圖7所示。冷態(tài)測試結(jié)果表明,中試生產(chǎn)系統(tǒng)各運行參數(shù)均達(dá)到了設(shè)備設(shè)計要求,上料系統(tǒng)、出炭系統(tǒng)可按照設(shè)定的控制邏輯正常啟停,系統(tǒng)運行穩(wěn)定。在此基礎(chǔ)上,對系統(tǒng)進(jìn)行了生產(chǎn)性運行測試。
圖7 系統(tǒng)調(diào)試運行現(xiàn)場
以花生殼(含水率15.9%)為原料,回轉(zhuǎn)反應(yīng)器轉(zhuǎn)速2.2 r/min,炭化溫度600 ℃時[30],對設(shè)備性能進(jìn)行連續(xù)性生產(chǎn)測試,點火時使用的燃料為柴油,系統(tǒng)穩(wěn)定運行后通過凈化分離后的熱解氣回用燃燒提供熱解所需熱量。試驗過程中系統(tǒng)運行穩(wěn)定,設(shè)備的密封效果良好,系統(tǒng)壓力多點監(jiān)測,通過管路閥門開度和鼓風(fēng)機(jī)轉(zhuǎn)速的適時反饋控制系統(tǒng)壓力,系統(tǒng)壓力可穩(wěn)定維持在設(shè)定的控制區(qū)間。
對設(shè)備主要技術(shù)指標(biāo)進(jìn)行了測試。3次連續(xù)性生產(chǎn)時間均為5 h,取3次平均值得到的設(shè)備技術(shù)指標(biāo)如表2所示。從表中可以看出,各項技術(shù)指標(biāo)均達(dá)到了系統(tǒng)設(shè)計目標(biāo)與要求。原料類型、粒徑以及設(shè)備技術(shù)工藝參數(shù)對測試指標(biāo)均有影響,不同工藝參數(shù)下的性能測試分析還需進(jìn)一步試驗研究。
表2 中試系統(tǒng)性能指標(biāo)
1)生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)中試系統(tǒng)采用連續(xù)熱解、熱解氣組合凈化分離、熱解油和熱解氣回用加熱等技術(shù)工藝,可有效減小外部能源輸入,并實現(xiàn)生物質(zhì)連續(xù)清潔多聯(lián)產(chǎn),為建立適宜中國農(nóng)村應(yīng)用的生物質(zhì)熱解多聯(lián)產(chǎn)輕簡化系統(tǒng)提供了技術(shù)支撐。
2)生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)中試系統(tǒng)突破了多線螺旋抄板物料均勻有序輸送、多腔旋流梯級高效換熱、保溫沉降密封出炭、系統(tǒng)壓力與氣體組分耦合預(yù)警等技術(shù),開發(fā)的生物質(zhì)連續(xù)熱解中試生產(chǎn)系統(tǒng)運行穩(wěn)定、工作可靠,達(dá)到了設(shè)計目標(biāo)要求。
3)運行測試結(jié)果表明:生物質(zhì)連續(xù)熱解炭氣油聯(lián)產(chǎn)中試系統(tǒng)原料處理能力為28.2 kg/h,生物炭得率為31.3%,燃?xì)鉄嶂禐?6.3 MJ/m3,溫度控制精度為±10 ℃,壓力控制精度±10 Pa,各項技術(shù)指標(biāo)均達(dá)到了系統(tǒng)設(shè)計目標(biāo)與要求,為中試設(shè)備的放大設(shè)計及示范應(yīng)用奠定了基礎(chǔ)。
[1] 李飛躍,汪建飛. 中國糧食作物秸稈焚燒排碳量及轉(zhuǎn)化生物炭固碳量的估算[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(14):1-7.
Li Feiyue, Wang Jianfei. Estimation of carbon emission from burning and carbon sequestration from biocharproducingusing crop straw in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 1-7. (in Chinese with English abstract)
[2] Shrestha G, Traina S J, Swanston C W. Black carbon’s properties and role in the environment: A comprehensive review[J]. Sustainability, 2010, 2(1): 294-320.
[3] Ma?ek O, Brownsort P, Cross A, et al. Influence of production conditions on the yield and environmental stability of biochar[J]. Fuel, 2013, 103(1): 151-155.
[4] 趙建寧,張貴龍,楊殿林. 中國糧食作物秸稈焚燒碳釋放量的估算[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2011,30(4):812-816.
Zhao Jianning, Zhang Guilong, Yang Dianlin. Estimation of carbon emission from burning of grain crop residues in China[J]. Journal of Agro-Environment Science, 2011, 30(4): 812-816. (in Chinese with English abstract)
[5] 劉標(biāo),陳應(yīng)泉,何濤,等. 農(nóng)作物秸稈熱解多聯(lián)產(chǎn)技術(shù)的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(16):213-219.
Liu Biao, Chen Yingquan, He Tao, et al. Application of cogeneration technology of gas-liquid-solid products pyrolyzed from crop straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(16): 213-219. (in Chinese with English abstract)
[6] Young Nam Chun, Seong Cheon Kim, Kunio Yoshikawa. Pyrolysis gasification of dried sewage sludge in a combined screw and rotary[J]. Applied Energy, 2011, 88: 105-1112.
[7] Park S W, Jang C H, Baek K R, et al. Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products[J]. Energy, 2012, 45(1): 676-685.
[8] 潘根興,張阿鳳,鄒建文,等. 農(nóng)業(yè)廢棄物生物黑炭轉(zhuǎn)化還田作為低碳農(nóng)業(yè)途徑的探討[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報,2010,26(4):394-400.
Pan Genxing, Zhang Afeng, Zou Jianwen, et al. Biochar from agro-byproducts used as amendment to cropland: An option of low carbon agriculture[J]. Journal of Ecologyand Rural Environment, 2010, 26(4): 394-400. (in Chinese with English abstract)
[9] Novak J M, Busscher W J, Laird D. L, et al. Impact of Biochar amendment onertility of a southeastern coastal plain soil[J]. Soil Science, 2009, 174(2): 105-112.
[10] 韓魯佳,閆巧娟,劉向陽,等. 中國農(nóng)作物秸稈資源及其利用現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報,2002,18(3):87-91.
Han Lujia, Yan Qiaojuan, Liu Xiangyang, et al. Straw resources and their utilization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(3): 87-91. (in Chinese with English abstract)
[11] 朱華炳,胡孔元,陳天虎,等. 內(nèi)燃加熱式生物質(zhì)氣化爐設(shè)計[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2009,40(2):96-101.
Zhu Huabing, Hu Kongyuan, Chen Tianhu, et al. Design of an internal combustion type heating biomass gasifier[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(2): 96-101. (in Chinese with English abstract)
[12] 李斌,陳漢平,楊海平,等. 上吸式生物質(zhì)氣化爐的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(7):270-273.
Li Bin, Chen Hanping, Yang Haiping, et al. Design and experiment on updraft biomass gasifier[J]. Transactions of the Chinese Society of Agricultural Engineering (ransactions of the CSAE) 2011, 27(7): 270-273. (in Chinese with English abstract)
[13] 何緒生,耿增超,佘雕,等. 生物炭生產(chǎn)與農(nóng)用的意義及國內(nèi)外動態(tài)[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(2):1-7.
He Xusheng, Geng Zengchao, She Diao, et al. Implications of production and agricultural utilization of biochar and its international dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 1-7. ((in Chinese with English abstract)
[14] 張旭東,梁超,諸葛玉平,等. 黑碳在土壤有機(jī)碳生物地球化學(xué)循環(huán)中的作用[J].土壤通報,2003,34(4):349-355.
Zhang Xudong, Liang Chao, Zhuge Yuping, et al. Roles of black carbon in the biogeochemical cycles of soil organic carbon[J]. Chinese Journal of Soil Science, 2003, 34(4): 349-355. (in Chinese with English abstract)
[15] Zhao Ling, Cao Xinde, Ma?ek O, et al. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J]. Journal of Hazardous Materials, 2013, 256/257: 1-9.
[16] 袁振宏,吳創(chuàng)之,馬隆龍,等. 生物質(zhì)能利用原理與技術(shù)[M]. 北京:化學(xué)工業(yè)出版社,2004.
[17] 徐佳,劉榮厚,王燕. 基于能量得率的棉稈熱裂解炭化工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(3):241-246.
Xu Jia, Liu Ronghou, Wang Yan. Optimization of pyrolysis carbonization conditions based on energy efficiency for cotton stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 241-246. (in Chinese with English abstract)
[18] 朱錫鋒. 生物質(zhì)熱解原理與技術(shù)[M]. 合肥:中國科學(xué)技術(shù)大學(xué)出版社,2006.
[19] Foscolo P U, Germanà A, Jand N, et al. Design and cold model testing of a biomass g asifier consisting of two inter connected fluidized beds[J]. Powder Technology, 2007, 173(3): 179-188.
[20] 張春梅,劉榮厚,易維明,等. 玉米秸稈等離子體熱裂解液化實驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2009,40(8):96-99.
Zhang Chunmei, Liu Ronghou, Yi Weiming, et al. Experiment on plasma pyrolysis of corn stalk for liquid Fuel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 96-99. (in Chinese with English abstract)
[21] 易維明,柳善建,畢冬梅,等. 溫度及流化床床料對生物質(zhì)熱裂解產(chǎn)物分布的影響[J]. 太陽能學(xué)報,2011,32(1):25-29.
Yi Weiming, Liu Shanjian, Bi Dongmei, et al. Infuence of temperature and bed materials on biomass pyrolysis product distribution[J]. Acta Energiae Solaris Sinica, 2011, 32(1): 25-29. (in Chinese with English abstract)
[22] 袁艷文,田宜水,趙立欣,等. 臥式連續(xù)生物炭炭化設(shè)備研制[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(13):203-210.
Yuan Yanwen, Tian Yishui, Zhao Lixin, et al. Design and manufacture of horizontal continuous biomass carbonization equipment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(13): 203-210. (in Chinese with English abstract)
[23] 胡艷霞,周連第,李紅,等. 北京郊區(qū)生物質(zhì)兩種氣站凈產(chǎn)能評估與分析[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(8):200-203.
Hu Yanxia, Zhou Liandi, Li Hong, et al. Evaluation and analysis of net energy yield of two bio-energy stations in Beijing suburb[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(8): 200-203. (in Chinese with English abstract)
[24] 李定凱,孫立,崔遠(yuǎn)勃. 秸稈氣化集中供氣系統(tǒng)技術(shù)評價[J]. 農(nóng)業(yè)工程學(xué)報,1999,1(1):170-174.
Li Dingkai, Sun Li, Cui Yuanbo. Technical assessment on rural cooking gas supply system straw gasification technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 1(1): 170-174. (in Chinese with English abstract)
[25] 烏蘭圖雅,王春光,祁少華,等. 揉碎玉米秸稈螺旋輸送性能試驗分析[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(21):51-59.
Wulantuya, Wang Chunguang, Qi Shaohua, et al. Test and analysis of performance of screw conveyor for rubbing and breaking corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 51-59. (in Chinese with English abstract)
[26] 蔣恩臣,蘇旭林,王明峰,等. 生物質(zhì)連續(xù)熱解反應(yīng)裝置的變螺距螺旋輸送器設(shè)計[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2013,44(2):121-124
Jiang Enchen, Su Xulin, Wang Mingfeng, et al. Design of variable pitch spiral conveyor for biomass continual pyrolysis reactor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 121-124. (in Chinese with English abstract)
[27] 王明峰,徐強(qiáng),蔣恩臣,等. 生物質(zhì)無軸螺旋連續(xù)熱解裝置送料器設(shè)計及中試[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(4):83-88.
Wang Mingfeng, Xu Qiang, Jiang Enchen, et al. Design and pilot test for feeder of biomass shaftless screw continuous pyrolysis device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 83-88. (in Chinese with English abstract)
[28] 叢宏斌,姚宗路,趙立欣,等. 自燃連續(xù)式生物質(zhì)熱解炭氣油聯(lián)產(chǎn)系統(tǒng)燃?xì)鈨艋蛛x技術(shù)工藝研究[J].可再生能源,2015,33(9):1393-1397.
Cong Hongbin, Yao Zonglu, Zhao Lixin, et al. Research on gas separation and purification technology for continuous pyrolysis system with biomass spontaneous combustion[J]. Renewabl Energy Resources, 2015, 33(9): 1393-1397. (in Chinese with English abstract)
[29] 姚錫文,許開立. 玉米芯的熱解特性及氣相產(chǎn)物的釋放規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(3):275-282.
Yao Xiwen, Xu Kaili. Pyrolysis characteristics of corn cob and release rule of gas products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 275-282. (in Chinese with English abstract)
[30] 叢宏斌,姚宗路,趙立欣,等. 內(nèi)加熱連續(xù)式生物質(zhì)炭化中試設(shè)備炭化溫度優(yōu)化試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(16):235-240.
Cong Hongbin, Yao Zonglu, Zhao Lixin, et al. Carbonization temperature optimization experiment of pilot-scale continuous biomass carbonization equipment with internal heating[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 235-240. (in Chinese with English abstract)
Development of carbon, gas and oil poly-generation pilot system based on biomass continuous pyrolysis
Cong Hongbin, Yao Zonglu, Zhao Lixin※, Jia Jixiu, Lan Shan
(1.,100125,; 2.,,100125,)
Biomass carbonization technology refers to the process of biochar, bio-oil, and non-condensable gas products’ formation from raw biomass material. This process occurs in the anaerobic or hypoxic environment, which is a low-temperature slow pyrolysis technology. Biomass pyrolysis and multi-generation technology uses modern biomass carbonization technology as the core. Bio-carbon, high-quality gas, wood tar and wood vinegar and other products are produced through the separation and purification of pyrolysis gas. Biochar can be widely used in carbon sequestration, water purification, heavy metal adsorption and soil improvement. Thus, biochar production and application have attracted wide attention of domestic and foreign researchers. Pyrolysis gas has an important development and utilization value as a high-quality clean gas. With the advantages of high utilization rate of resources, diversified product forms and less secondary pollution, this technology can further improve the development and utilization of comprehensive benefits. It also meets the strategic thinking on comprehensive utilization of biomass energy resources, and has a good prospect of popularization and application. Continuous biomass carbonization technology represents the future development direction of biomass carbonization technology, with the advantages of good production continuity, high productivity, convenient process controlling and relatively stable product quality. In view of the fact that most of the biomass carbonization equipment has poor continuity, high energy consumption and secondary tar pollution, the carbon, gas, and oil co-production process scheme was put forward. Combined with the latest development in the biomass carbonization technology and the raw material characteristics of agricultural and forestry residues, continuous segmentation pyrolysis, multi-stage combined dust removal and fuel/gas reuse heating process methods were used. Based on it, the technologies of evenly and orderly multi-level screw board material delivering, efficient multi-cavity swirl cascade heat transferring, insulated settled and sealed char launching, with system pressure and gas component coupling early warning obtained the breakthrough. In addition, biomass continuous pyrolysis test production system was also developed. When this equipment worked, the raw material was orderly reversed with the rotation of continuous pyrolysis reaction tube in the reaction chamber. Dehydration, volatile precipitation and cracking reaction occurred during this process. As the material fell down, the biochar was separated from the gas. The biochar entered into thermal insulation device and was further carbonized in the oxygen and heat insulation environment. After being cooled down, the production was sequentially output through the screw conveyor. As for the pyrolysis gas, it was transferred to the high-pressure gas storage device using the booster pump after the steps of dust removal, multi-stage condensation, and scrubbing. To form a micro-positive pressure carbonization environment in the reaction chamber, this system would control the air volume in real time with the help of pressure signal feedback. The result showed that the system was stable and reliable. Using the peanut shell as the raw material, its treatment capacity was 28.2 kg/h, the biochar yield was 31.3%, the gas calorific value was 16.3 MJ/m3, and the temperature control precision was ±10 ℃. All of the technical indicators reached the system design goals and requirements. In this way, the pilot system development provided the foundation for equipment amplification and demonstration applications. Biomass pyrolysis and polygeneration can further improve the comprehensive development and utilization benefits of biomass resources, in line with the comprehensive utilization strategic thinking of biomass energy, which has a good application prospect.
biomass; pyrolysis; charcoal; poly-generation; pilot system; development
10.11975/j.issn.1002-6819.2017.18.023
TK6; S216.2
A
1002-6819(2017)-18-0173-07
2017-06-27
2017-08-17
引進(jìn)國際先進(jìn)農(nóng)業(yè)科學(xué)技術(shù)計劃(948計劃)“連續(xù)式生物質(zhì)分段均勻炭化技術(shù)系統(tǒng)引進(jìn)研究”(2016-X55)
叢宏斌,博士,主要從事生物質(zhì)能利用技術(shù)與裝備方面的研究。Email:dabinc123@163.com
趙立欣,研究員,主要從事生物質(zhì)資源利用技術(shù)與政策研究。Email:zhaolixin5092@163.com