杜小強(qiáng),李黨偉,賀磊盈,武傳宇,林樂鵬
?
基于電子果實(shí)技術(shù)的機(jī)械振動(dòng)采收過程果實(shí)運(yùn)動(dòng)分析
杜小強(qiáng)1,2,李黨偉1,賀磊盈1,武傳宇1,林樂鵬1
(1.浙江理工大學(xué)機(jī)械與自動(dòng)控制學(xué)院,杭州 310018; 2.浙江省種植裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,杭州 310018)
為改善現(xiàn)有收獲設(shè)備的采收性能,降低傷果率,提高采摘率,必須對果實(shí)采收設(shè)備引起的果實(shí)運(yùn)動(dòng)情況進(jìn)行準(zhǔn)確評估,以確定導(dǎo)致果實(shí)損傷的主要階段和關(guān)鍵因素。該文建立和分析了果實(shí)—樹體的動(dòng)力學(xué)模型,通過試驗(yàn)和計(jì)算驗(yàn)證了果實(shí)脫落的理論條件是果實(shí)所受法向慣性力要大于果柄與果實(shí)間的結(jié)合力,并設(shè)計(jì)了一種扁球型電子果實(shí)(orange impact recording sensor,OIRS),利用它檢測記錄三維激振采收系統(tǒng)在收獲砂糖桔時(shí)所產(chǎn)生的機(jī)械沖擊,對該系統(tǒng)引起的果實(shí)運(yùn)動(dòng)進(jìn)行分析。在野外振動(dòng)采收試驗(yàn)記錄的數(shù)據(jù)中,電子果實(shí)記錄到振動(dòng)階段的最大機(jī)械沖擊加速度均值為217,平均沖擊加速度達(dá)到123;而下落階段的最大機(jī)械沖擊加速度均值為155,平均沖擊加速度僅為76。結(jié)果表明:在振動(dòng)階段果實(shí)損傷的可能性更高,可通過調(diào)整采收機(jī)的工作參數(shù),降低潛在的傷果風(fēng)險(xiǎn);而下落階段果實(shí)與地面接觸時(shí)產(chǎn)生的較高沖擊也會(huì)導(dǎo)致果實(shí)損傷,收獲設(shè)備表面可鋪設(shè)緩沖減震材料,以此降低果實(shí)的墜落損傷。研究結(jié)果表明利用電子果實(shí)能夠有效檢測三維激振采收系統(tǒng)在果實(shí)收獲過程中所產(chǎn)生的機(jī)械沖擊,用于機(jī)器系統(tǒng)的傷果評估。
機(jī)械化;振動(dòng);傳感器;電子果實(shí);沖擊
目前市場中的鮮果以人工采摘為主要收獲途徑[1],由于人力勞動(dòng)效率低﹑成本高,迫使果農(nóng)不斷尋求新的收獲方法以降低果品的生產(chǎn)費(fèi)用[2]。機(jī)械收獲對于果品采收來說是降低采收成本、提高收獲效率行之有效的手段[3-4]。根據(jù)以往田間試驗(yàn)研究的結(jié)果,機(jī)械采收會(huì)導(dǎo)致高比例的果實(shí)損傷[5]。盡管20世紀(jì)60年代美國在開發(fā)和設(shè)計(jì)果品收獲裝備方面做出了巨大的努力[6],但是采收機(jī)械對果品造成的損傷依然十分嚴(yán)重,例如,適用于甜櫻桃果園的便攜式振動(dòng)收獲機(jī)對果實(shí)的損傷率達(dá)23.9%~27.4%[7];藍(lán)莓旋轉(zhuǎn)振動(dòng)收獲機(jī)對藍(lán)莓造成的瘀青率高達(dá)55%[8]。高比例的果實(shí)損傷始終是制約采收機(jī)械發(fā)展和應(yīng)用的主要原因。
大多數(shù)鮮果的振動(dòng)采收都要經(jīng)歷分離和收集兩個(gè)階段[9]。分離階段指果實(shí)從樹體脫落的過程,在此期間果實(shí)與果實(shí)、果實(shí)與樹體的相互碰撞極易造成果品損傷[10-12]。收集階段是指果實(shí)掉落到收獲設(shè)備被統(tǒng)一收集的過程,在這個(gè)過程中,果實(shí)與收集裝置各部分的接觸是造成此階段損傷的主要原因[13-14]。當(dāng)前,檢測采后果實(shí)的受損情況是評估采收效果的主要手段,但是檢測工作量較大,且無法確定導(dǎo)致果品損傷的主要階段和因素。構(gòu)建果實(shí)—樹體系統(tǒng)理論模型雖然有助于了解在具體參數(shù)條件下的果實(shí)受損情況[15-16],但是這些理論模型[17-18](如巴旦杏與樹體分離模型、番茄貯運(yùn)振動(dòng)力學(xué)模型等)不可能涵蓋所有情況。國外農(nóng)業(yè)發(fā)達(dá)國家多采用“電子果實(shí)”來模擬果實(shí)的實(shí)際收獲狀態(tài),通過電子果實(shí)記錄的數(shù)據(jù)來分析果實(shí)在不同階段的動(dòng)態(tài)信息[19-20]。
“電子果實(shí)”誕生于20世紀(jì)70年代[21-22],是采用微型傳感器來檢測采收設(shè)備對果實(shí)的沖擊作用,通常被做成各種類似于蘋果、櫻桃、藍(lán)莓等真實(shí)水果的形狀。根據(jù)檢測方式不同大致可分為加速度檢測傳感器和壓力檢測傳感器兩類。IS100是第一個(gè)采用三軸加速度計(jì)檢測動(dòng)態(tài)沖擊的電子果實(shí)[23],用于蘋果收獲機(jī)的沖擊測量,最初的設(shè)計(jì)尺寸為直徑140 mm的球體,IS100經(jīng)過不斷改進(jìn)和創(chuàng)新形成的IRD(impact recording device)電子果實(shí),其精度更加準(zhǔn)確,尺寸更加合理,主要用于評估番茄采收設(shè)備、檢測采收過程中的沖擊關(guān)鍵點(diǎn)。另一種比較經(jīng)典的加速度傳感器PTR100/200[24]和Smart Spud[25],常被用來檢測和評估土豆收獲過程中的損傷。BIRD(berry impact recording device)是極具代表性的小型電子果實(shí)[26],尺寸僅有25.4 mm,主要對藍(lán)莓等小型果實(shí)采收過程的損傷檢測。PMS是一種壓力檢測型電子果實(shí)[27],廣泛用于檢測蘋果、圓蔥等果蔬所受的靜態(tài)載荷。而中國在電子果實(shí)方面的研究尚處于空白,鮮有關(guān)于電子果實(shí)的研究報(bào)道。
浙江理工大學(xué)農(nóng)業(yè)機(jī)械研究所長期從事果品機(jī)械化采收技術(shù)的研究,至今已設(shè)計(jì)開發(fā)了多種振動(dòng)采收設(shè)備[28-31]。為了評估這些采收設(shè)備的工作效果,基于微型單片機(jī)數(shù)據(jù)采集技術(shù)設(shè)計(jì)了一款模擬砂糖桔的球型記錄儀(orange impact recording sensor,OIRS),并利用所開發(fā)的OIRS電子果實(shí)對三維激振采收機(jī)的工作效果和果實(shí)運(yùn)動(dòng)情況進(jìn)行分析,提出針對三維激振采收機(jī)的改進(jìn)措施。
果柄連接著果實(shí)和樹體,不同林果果柄的具體形狀和尺寸也不同。砂糖桔屬于無柄果實(shí),在動(dòng)力學(xué)的研究中由于較短果柄長度,對于分析結(jié)果影響不大,其質(zhì)量及果柄、果實(shí)連接點(diǎn)由于彎曲產(chǎn)生的黏性阻尼可以忽略不計(jì),可建立無柄果實(shí)的果實(shí)-樹體動(dòng)力學(xué)模型。此模型可簡化為果實(shí)在穩(wěn)定狀態(tài)下的單擺動(dòng)模型而進(jìn)行分析。以靜止時(shí)的果柄與果實(shí)結(jié)合點(diǎn)為原點(diǎn),建立絕對坐標(biāo)系,外加振動(dòng)后點(diǎn)移動(dòng)到′點(diǎn),以′為原點(diǎn),建立坐標(biāo)系′′′,如圖1所示。
注:p為果實(shí)的質(zhì)心,O′p為果柄與果實(shí)的結(jié)合點(diǎn)到果實(shí)質(zhì)心的距離l,mm;θ為O′p與y′軸方向的夾角,(°);x0為果實(shí)沿x軸的位移,mm;y0為果實(shí)沿y軸的位移,mm。
果實(shí)在三維激振的激勵(lì)下產(chǎn)生振動(dòng),其動(dòng)能方程可表示為
相應(yīng)的勢能方程為
由果實(shí)的動(dòng)能方程(1)和勢能方程(2)可建立拉格朗日函數(shù)
根據(jù)數(shù)學(xué)計(jì)算式,有拉格朗日方程
式中為果實(shí)從振動(dòng)到脫落的時(shí)間,s。
將拉格朗日函數(shù)式(3)代入到拉格朗日方程式(4)中整理得
在無柄果實(shí)的動(dòng)力學(xué)模型中,當(dāng)采收機(jī)向系統(tǒng)模型施加振動(dòng)慣性力時(shí),果實(shí)與樹枝振動(dòng)規(guī)律一致。果實(shí)與樹體結(jié)合點(diǎn)的運(yùn)動(dòng)規(guī)律可由式(7)表示,由于樹枝在垂直方向上只存在微幅振動(dòng),故只需考慮果實(shí)在水平位置的振動(dòng),果實(shí)-樹體結(jié)合點(diǎn)運(yùn)動(dòng)規(guī)律的方程表達(dá)式為
式中0為樹枝振幅,mm;為樹枝振動(dòng)頻率,Hz。
將式(7)代入式(6)中得
式(8)為二階常系數(shù)非齊次線性微分方程,解得
當(dāng)外部振動(dòng)對懸掛于樹體上的果實(shí)施加激振時(shí),果實(shí)受自身重力、樹枝拉力0以及慣性力共同作用,其中慣性力為法向慣性力F與切向慣性力F的合力,如圖2所示。
注:a為果實(shí)的加速度,m·s-2;an和at分別為果實(shí)法向加速度和切向加速度,m·s-2。
法向慣性力F和切向慣性力F為
式(13)即為果實(shí)從樹體脫落的理論條件。但是在實(shí)際條件下由于果樹形態(tài)各異、外界干擾因素多樣,理論模型不可能完全反映復(fù)雜的采收過程。為了判斷理論模型的正誤,采用本文設(shè)計(jì)開發(fā)的電子果實(shí)進(jìn)行驗(yàn)證,并通過在實(shí)際采摘過程中電子果實(shí)記錄的加速度值與理論脫落條件計(jì)算值進(jìn)行對比,作為評判理論模型精度的依據(jù)。
OIRS電子果實(shí)是基于單片機(jī)技術(shù)開發(fā)的一款具有數(shù)據(jù)獲取和存儲(chǔ)功能的球形檢測器,其尺寸接近砂糖桔的實(shí)際形態(tài)(直徑約50 mm),其實(shí)際結(jié)構(gòu)及尺寸如圖3所示,檢測量程達(dá)±500,為重力加速度(=9.8 m/s2),可滿足砂糖桔在機(jī)械振動(dòng)采收過程中受到的機(jī)械沖擊檢測要求。OIRS電子果實(shí)主要由測量范圍達(dá)±500的三軸加速度計(jì)、存儲(chǔ)芯片、微控制單元、供能單元4部分組成。電子果實(shí)具備3 200 Hz最大掃描頻率和13位分辨率,抗沖擊加速度可達(dá)10 000,續(xù)航能力約為10 h。根據(jù)砂糖桔的實(shí)際尺寸(約為45 mm)整個(gè)OIRS電路板安置在一個(gè)直徑為50 mm的硅膠殼中,質(zhì)量約49 g,與砂糖桔質(zhì)量(一般成熟砂糖桔質(zhì)量約40~60 g)相當(dāng)。試驗(yàn)之前對OIRS傳感器的數(shù)據(jù)檢測精度做校核,結(jié)果表明誤差范圍在3.3%~6.4%之間,符合精度要求。
圖3 OIRS電子果實(shí)實(shí)際結(jié)構(gòu)及尺寸
OIRS電子果實(shí)以三軸重力加速度作為測量參數(shù),通過、、3個(gè)單軸加速度計(jì)以兩兩正交的形式組合在一起形成三軸加速度計(jì),整體結(jié)構(gòu)簡單,適合于果樹在振動(dòng)采收下的動(dòng)態(tài)加速度測量。在實(shí)際布局中,、軸與OIRS傳感器電路板的表面平行,軸垂直于電路板表面。在微控制單元上,OIRS電子果實(shí)采用美國Atmel公司提供的AVR系列的8位微控制器,其型號為Atmega328p-AU,采用SPI(3線/4線)和I2C兩種數(shù)字接口,可實(shí)現(xiàn)信息的多樣化傳輸,方便其他功能的擴(kuò)展,且可在?40~85°C的環(huán)境溫度下工作。在存儲(chǔ)功能上,采用美國SanDisk公司提供的型號為Memory Stick Micro的1G內(nèi)存存儲(chǔ)芯片,其理論最大讀寫速度可達(dá)104 MB/s,具有數(shù)據(jù)傳輸速度快、質(zhì)量輕、體積小等特點(diǎn)。在供能單元的選取上,首先需要考慮功能單元尺寸大小和續(xù)航時(shí)間,合適的電源不僅要滿足電路板的實(shí)際大小,還必須對電路提供穩(wěn)定的電壓,保證OIRS電子果實(shí)能夠工作在1 h以上。根據(jù)實(shí)際工作條件,在考慮保護(hù)電路各部分正常工作且不會(huì)因電壓過大而燒毀的前提下,供能單元需接入穩(wěn)壓單元以保證向電路提供恒定的3.3V工作電壓。
砂糖桔的機(jī)械振動(dòng)采收過程是通過三維激振采收機(jī)實(shí)現(xiàn)的。三維激振采收機(jī)實(shí)際上是以振搖為主的空間連桿機(jī)構(gòu),主體由箱體、動(dòng)力傳動(dòng)部分、空間連桿振搖機(jī)構(gòu)、夾持機(jī)構(gòu)4部分組成[31],如圖4所示。具體工作時(shí),機(jī)構(gòu)利用自身的曲柄搖桿機(jī)構(gòu)和曲柄滑桿機(jī)構(gòu)使夾持裝置的運(yùn)動(dòng)軌跡呈空間曲線狀。這樣通過夾持裝置夾住果樹的樹枝,強(qiáng)迫樹枝做空間曲線運(yùn)動(dòng)產(chǎn)生慣性力,迫使果實(shí)在果樹慣性力的作用下產(chǎn)生運(yùn)動(dòng)加速度,以實(shí)現(xiàn)果實(shí)與樹體的分離。在實(shí)際試驗(yàn)當(dāng)中,整個(gè)機(jī)構(gòu)由24 V蓄電池供能,振動(dòng)頻率為5 Hz,曲柄轉(zhuǎn)速為300 r/min。以上設(shè)計(jì)參數(shù)是建立在避免機(jī)構(gòu)大振幅對果樹損傷的基礎(chǔ)上,結(jié)合理論研究所提出來的,主要用于小型林果的振動(dòng)收獲。
圖4 三維激振采收機(jī)
室內(nèi)果實(shí)脫落試驗(yàn)是利用三維激振采摘裝置和德國Pco高速攝像機(jī)(檢測瞬間物理現(xiàn)象、高速運(yùn)動(dòng))配合電子果實(shí)共同完成。通過尼龍扣將電子果實(shí)固定在從桔樹截取的三級樹枝上,通過數(shù)顯測力計(jì)觀察電子果實(shí)和樹枝的結(jié)合力(圖5a所示)。然后利用三維激振采摘裝置夾持樹體進(jìn)行激振,此時(shí)高速攝影機(jī)與電子果實(shí)的拍攝距離約為0.5 m,曝光頻率為10 ms,鏡頭距地面100 mm。電子果實(shí)會(huì)在外部慣性力的作用下產(chǎn)生擺動(dòng),當(dāng)擺動(dòng)離心力大于結(jié)合力時(shí)電子果實(shí)就會(huì)從樹體脫落,完成試驗(yàn),試驗(yàn)在同一位置進(jìn)行4次測試(如圖5b所示)。
圖5 電子果實(shí)的脫落試驗(yàn)
果實(shí)的損傷不僅與沖擊加速度有關(guān),還與兩物體相接觸時(shí)的沖擊接觸面積及沖擊時(shí)間有關(guān)。由于果實(shí)生長在樹體的高度及位置分布不同,在振動(dòng)采收時(shí)很難確定兩物體接觸面積與沖擊時(shí)間。因此,本文通過電子果實(shí)動(dòng)態(tài)試驗(yàn)采集對果實(shí)損傷起決定因素的沖擊加速度來評估果實(shí)損傷的可能性。其他因素由于實(shí)際情況的復(fù)雜性暫不考慮。OIRS電子果實(shí)動(dòng)態(tài)試驗(yàn)開展于2017年1月,在浙江理工大學(xué)的校內(nèi)百果園進(jìn)行。隨機(jī)選取一株砂糖桔樹,高約2~3 m,將OIRS電子果實(shí)用粘性BOPP膜固定在砂糖桔樹的三級樹枝上(距地約1 m),如圖6所示。試驗(yàn)開始時(shí),三維激振采收裝置在電機(jī)驅(qū)動(dòng)下輸出頻率為5 Hz的振動(dòng)激勵(lì),通過夾持裝置激發(fā)到選定的三級樹枝上,使樹枝產(chǎn)生慣性力,迫使果實(shí)產(chǎn)生擺動(dòng),當(dāng)擺動(dòng)離心力大于連接力時(shí)電子果實(shí)就會(huì)從樹體脫落,完成試驗(yàn)。由OIRS電子果實(shí)采集到的原始數(shù)據(jù),首先在TF-Card中生成一個(gè)txt格式文本并進(jìn)行保存,然后將文本數(shù)據(jù)傳輸?shù)缴衔粰C(jī)中,通過MATLAB對信號進(jìn)行時(shí)域分析,本文中得出的所有加速度數(shù)據(jù)是3個(gè)方向的加速度矢量合成。為保證OIRS采集到的數(shù)據(jù)完整、有效,試驗(yàn)在同一位置進(jìn)行4次重復(fù)測試。
圖6 電子果實(shí)振動(dòng)采收動(dòng)態(tài)
通過高速攝影可清晰地記錄果實(shí)擺動(dòng)和脫落的過程,統(tǒng)計(jì)4組試驗(yàn)中由高速攝影記錄下的果實(shí)振幅和由數(shù)顯測力計(jì)測量到的果實(shí)與樹體間的結(jié)合力,得出果實(shí)振動(dòng)的振幅0和結(jié)合力0如表1所示。
表1 果實(shí)的試驗(yàn)振幅和結(jié)合力
電子計(jì)重稱測量電子果實(shí)質(zhì)量為48.87 g,計(jì)算得到空心球體的電子果實(shí)轉(zhuǎn)動(dòng)慣量為I=7.3×10-5kg·m2,測得尼龍扣等效彈性系數(shù)=5.5 N/mm,果實(shí)的振幅和脫離力取記錄的平均值,代入式(13)計(jì)算得17.25 N>11.6 N,由此驗(yàn)證了法向慣性力是影響果實(shí)脫落的主要參數(shù)。
電子果實(shí)在整個(gè)振動(dòng)采收過程中所受的沖擊情況通過三軸加速度計(jì)和存儲(chǔ)芯片被檢測并記錄下來,4組試驗(yàn)結(jié)果如圖7所示。從圖中可看出整個(gè)采收過程大致可分為兩個(gè)階段:振動(dòng)階段和下落階段。振動(dòng)階段表示電子果實(shí)從初始靜止到最后與樹體分離的過程(此過程平均時(shí)間約為1.1 s),電子果實(shí)所記錄的沖擊加速度,不僅包含其自身的運(yùn)動(dòng)也包含與樹體之間的相互碰撞,除此之外,振動(dòng)階段還存在大量的高幅值沖擊。下落階段是指電子果實(shí)與樹體分離到落地的過程(整個(gè)過程的平均時(shí)間約為1.6 s),此過程中,電子果實(shí)在空中飛行未發(fā)生沖擊,當(dāng)與地面接觸時(shí)產(chǎn)生的明顯沖擊。對比圖7中振動(dòng)階段與下落階段的沖擊加速度數(shù)據(jù)曲線,結(jié)果表明:與下落階段相比,電子果實(shí)在振動(dòng)階段所遭受的沖擊更頻繁,并且持續(xù)時(shí)間更長、幅值較大。
圖7 振動(dòng)采收過程中OIRS記錄的機(jī)械沖擊加速度
在實(shí)際采收過程中,林果的損傷概率與在采摘過程中果實(shí)所受的沖擊大小有直接關(guān)系。在4組野外試驗(yàn)中分別對振動(dòng)階段和下落階段果實(shí)所承受的最大沖擊加速度和平均沖擊加速度進(jìn)行統(tǒng)計(jì)(下落階段只考慮電子果實(shí)與地面相互接觸撞擊過程的沖擊數(shù)據(jù)點(diǎn)),得出振動(dòng)階段最大沖擊加速度平均值為(217±16),對應(yīng)的平均沖擊加速度為(123±5);下落階段最大沖擊加速度平均值和標(biāo)準(zhǔn)差為(155±40),對應(yīng)的平均沖擊加速度為(76±12)。2個(gè)階段的沖擊加速度平均值大小主要依賴于各階段所記錄的沖擊個(gè)數(shù)和沖擊幅值,當(dāng)考慮最大沖擊時(shí),4組試驗(yàn)對應(yīng)的振動(dòng)階段的最大沖擊加速度均值大于下落階段最大沖擊加速度均值,當(dāng)考慮平均沖擊時(shí),振動(dòng)階段的平均沖擊加速度均值大于下落階段平均沖擊加速度均值。
上述結(jié)果表明:由于振動(dòng)階段所產(chǎn)生的沖擊個(gè)數(shù)較多、沖擊幅值較大,且振動(dòng)階段不論最大沖擊加速度均值還是平均沖擊加速度均值都遠(yuǎn)大于下落階段,由此可推測該三維激振采收機(jī)在工作過程中的振動(dòng)階段容易造成果實(shí)損傷。
從記錄的沖擊數(shù)據(jù)中研究機(jī)械沖擊分布模式(圖7)與沖擊數(shù)量(表2)可直觀分析果實(shí)受到的不同程度沖擊影響水平。在4組試驗(yàn)中超過190的沖擊個(gè)數(shù)平均產(chǎn)生5個(gè),約占總沖擊個(gè)數(shù)的6%;150~190范圍內(nèi)的平均沖擊個(gè)數(shù)為16個(gè),約占總沖擊個(gè)數(shù)的18%;100~150范圍內(nèi)的平均沖擊個(gè)數(shù)為32個(gè),約占總沖擊個(gè)數(shù)的37%;50~100的機(jī)械沖擊平均個(gè)數(shù)出現(xiàn)28個(gè),約占總沖擊個(gè)數(shù)的32.3%;小于50的沖擊個(gè)數(shù)為5個(gè),約占總沖擊個(gè)數(shù)的6%。
表2 4組試驗(yàn)結(jié)果各沖擊范圍的沖擊個(gè)數(shù)
統(tǒng)計(jì)分析上述OIRS電子果實(shí)在采收過程中所產(chǎn)生的機(jī)械沖擊分布可得:果實(shí)在采收過程中可以明顯地分為兩個(gè)階段(振動(dòng)階段和下落階段),在振動(dòng)階段的平均沖擊加速度值為123,同時(shí)整個(gè)過程最大的沖擊加速度值也在該階段產(chǎn)生(4組試驗(yàn)最大沖擊加速度的平均值為217)。在振動(dòng)階段電子果實(shí)產(chǎn)生的機(jī)械沖擊主要是采摘機(jī)對果樹的振動(dòng)激勵(lì)所造成的。因此,對于采摘機(jī)的設(shè)計(jì)與改良,不僅要考慮采摘機(jī)對果樹的激振效果,更重要的是要考慮采摘機(jī)激振果樹后引起的果實(shí)振動(dòng)沖擊情況。在下落階段,由于果實(shí)受重力和生長高度的影響,在與地面接觸撞擊過程中也會(huì)產(chǎn)生較大的沖擊(4組試驗(yàn)最大沖擊加速度的平均值為155)。因此,采用振動(dòng)式采收機(jī)采收果實(shí)時(shí)需要考慮設(shè)計(jì)收集裝置,并在收集裝置表面鋪設(shè)減震緩沖材料以有效降低果實(shí)下落沖擊造成的損傷。
1)建立了砂糖桔的果實(shí)—樹體動(dòng)力學(xué)模型,并進(jìn)行求解和分析,通過室內(nèi)果實(shí)脫落試驗(yàn)測得砂糖桔的振幅和果實(shí)與果柄間的結(jié)合力,計(jì)算得到果實(shí)法向慣性力大于結(jié)合力,即17.25 N>11.6 N,驗(yàn)證了果實(shí)從樹體脫落的理論條件。
2)開發(fā)了一種模擬砂糖桔的球型傳感器(OIRS),并對三維激振采收機(jī)采收過程中引起的果實(shí)機(jī)械沖擊進(jìn)行采集與分析,確定了果實(shí)在采收機(jī)工作過程中的動(dòng)態(tài)行為。
3)通過電子果實(shí)動(dòng)態(tài)試驗(yàn)發(fā)現(xiàn),砂糖桔在振動(dòng)階段不僅產(chǎn)生了最大217的單一機(jī)械沖擊還伴有數(shù)量更多的高幅值機(jī)械沖擊,而且沖擊持續(xù)時(shí)間長。因此,必須通過調(diào)整采收機(jī)的振幅、激振頻率的參數(shù),降低在振動(dòng)階段中可能產(chǎn)生的果實(shí)損傷。而在下落階段,果實(shí)與地面接觸時(shí)也出現(xiàn)了達(dá)155的極值沖擊,收獲設(shè)備表面可采用減震緩沖材料,以降低果實(shí)下落階段的沖擊。
雖然本文開發(fā)的OIRS電子果實(shí)在尺寸、質(zhì)量以及連接方式上與真實(shí)砂糖桔仍存在差異,但是通過該研究,可以準(zhǔn)確把握果實(shí)在收獲過程中可能造成損傷的關(guān)鍵點(diǎn),為林果采摘機(jī)結(jié)構(gòu)改良、性能優(yōu)化和鮮果采收質(zhì)量的提高提供指導(dǎo)。
[1] 彭磊. 欠驅(qū)動(dòng)蘋果采摘末端執(zhí)行器研究和設(shè)計(jì)[D]. 南京:南京農(nóng)業(yè)大學(xué),2010.
Peng Lei. Development of Under-actuated Manipulator for Apple Picking[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese with English abstract)
[2] Savary S K J U, Ehsani R, Salyani M, et al. Study of force distribution in the citrus tree canopy during harvest using a continuous canopy shaker[J]. Computers and Electronics in Agriculture, 2011, 76(1): 51-58.
[3] 王長勤,許林云,周宏平,等. 偏心式林果振動(dòng)采收機(jī)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(16):10-16.
Wang Changqin, Xu Linyun, Zhou Hongping, et al. Development and experiment of eccentric-type vibratory harvester for forest-fruits[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 10-16. (in Chinese with English abstract)
[4] 湯智輝,孟祥金,沈從舉,等. 機(jī)械振動(dòng)式林果采收機(jī)的設(shè)計(jì)與試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2010,32(8):65-69.
Tang Zhihui, Meng Xiangjin, Shen Congju, et al. Design and experimental investigation of mechanical vibration tree fruits and nuts harvester[J].Journal of Agricultural Mechanization Research, 2010, 32(8): 65-69. (in Chinese with English abstract)
[5] Praeger U, Surdilovic J, Truppel I, et al. Comparison of electronic fruits for impact detection on a laboratory scale[J]. Sensors, 2013, 13(6): 7140-7155.
[6] Brown G K, Marshall D E, Tennes B R, et al. Status of harvest mechanization of horticultural crops[J]. ASAE publication, 1983(3): 80-83.
[7] Chen D, Du X, Zhang Q, et al. Performance evaluation of mechanical cherry harvesters for fresh market grade fruits[J]. Applied Engineering in Agriculture, 2012, 28(4): 483-489.
[8] Peterson D L, Wolford S D, Timm E J, et al. Fresh market quality blueberry harvester[J]. Transactions of the ASAE, 1997, 40(3): 535-540.
[9] Zhou J, He L, Karkee M, et al. Analysis of shaking-induced cherry fruit motion and damage[J]. Biosystems Engineering, 2016(144): 105-114.
[10] Norton R, Claypool L, Leonard S, et al. Mechanical harvesting of sweet cherries: 1961 tests show promise and problems[J]. California Agriculture, 1962, 16(5): 8-10.
[11] Halderson J L. Fundamental factors in mechanical cherry harvesting[J]. Transactions of the ASAE, 1966, 9(5): 681-684.
[12] van Zeebroeck M, Ramon H, De Baerdemaeker J, et al. Impact damage of apples during transport and handling[J]. Postharvest Biology & Technology, 2007, 45(2): 157-167.
[13] Xu R, Takeda F, Krewer G, et al. Measure of mechanical impacts in commercial blueberry packing lines and potential damage to blueberry fruit[J]. Postharvest Biology & Technology, 2015 (110): 103-113.
[14] Opara U L, Pathare P B. Bruise damage measurement and analysis of fresh horticultural produce: A review[J]. Postharvest Biology & Technology, 2014, 91(5): 9-24.
[15] Cooke J R, Rand R H. Vibratory Fruit harvesting: a linear theory of fruit-stem dynamics[J]. Journal of Agricultural Engineering Research, 1969, 14(3): 195-209.
[16] Gupta, Susheel K, Reza E, et al. Optimization of a citrus canopy shaker harvesting system: properties and modeling of tree limbs[J]. Transaction of the ASABE, 2015, 58(4): 971-985.
[17] Rand R H, Cooke J R. Vibratory fruit harvesting: a nonlinear theory of fruit-stem dynamics[J]. Journal of Agricultural Engineering Research, 1970, 15(4): 347-363.
[18] 牛潤新. 番茄貯運(yùn)振動(dòng)力學(xué)模型與模態(tài)分析[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2004.
Niu Runxin. The Vibration Mechanics Model of Tomato Stockade and Transportation and Model Analysis[D]. Hefei: Anhui Agricultural University, 2004. (in Chinese with English abstract)
[19] Colorio G, Beni C, Ragni L. Fruit damage in harvest and post-harvest: impact evaluation by using a electronic tool[C]// Congress of the Italian Horticulture Society. 1994.
[20] Garcia J L, Barreiro P, Ruiz-Altisent M, et al. Use of electronic fruits to evaluate fruit damage along the handling process[C]// Proceedings of AgEng. 1994.
[21] Rider R C, Fridley R B, O’Brien M. Elastic behavior of a pseudo-fruit for determining bruise damage to fruit during mechanized handling[J]. Transaction of the ASAE 1973, 16(2): 241–244.
[22] Pascoal-Faria P, Pereira R, Pinto E, et al. An integrated experimental and numerical approach to develop an electronic instrument to study apple bruise damage[J]. World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 2016, 10(6): 379-383.
[23] Schulte N L, Brown G K, Timm E J. Apple impact damage thresholds[J]. Applied Engineering in Agriculture 1992, 8(1): 55-60.
[24] Canneyt T V, Tijskens E, Ramon H, et al. Characterization of a potato-shaped instrumented device[J]. Biosystems Engineering 2003, 86(3): 275-285.
[25] Bollen A F. Technological innovations in sensors for assessment of postharvest mechanical handling systems[J]. International Journal of Postharvest Technology and Innovation, 2006, 1(1): 16-31.
[26] Yu P, Li C, Rains G, et al. Development of the berry impact recording device sensing system: hardware design and calibration[J]. Computers & Electronics in Agriculture, 2011, 79(2): 103-111.
[27] Herold B, Truppel I, Siering G, et al. A pressure measuring sphere for monitoring handling of fruit and vegetables[J]. Computers and Electronics in Agriculture 1996, 15(1): 73-88.
[28] 杜小強(qiáng),倪柯楠,武傳宇. 基于外旋輪線軌跡的果品振動(dòng)采收機(jī)構(gòu)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):59-66.
Du Xiaoqiang, Ni Kenan, Wu Chuanyu. Vibratory harvesting mechanism for tree fruit based on epitrochoid[J]. Transactions of The Chinese Society of Agricultural Machinery. 2016, 47(3): 59-66. (in Chinese with English abstract)
[29] 杜小強(qiáng),倪柯楠,潘珂,等. 可調(diào)振幅單向拽振式林果采收機(jī)構(gòu)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(16):25-32.
Du Xiaoqiang, Ni Ke’nan, Pan Ke, et al. Parameter optimization of stroke-adjustable and monodirectional pulling fruit harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 25-32. (in Chinese with English abstract)
[30] 陳少鐘. 變頻變幅振動(dòng)式山核桃采摘裝置的研究[D]. 杭州:浙江理工大學(xué), 2014.
Chen Shaozhong. Research on Mechanical Harvester for Chinese Hickory Nuts with Frequency and Stroke Control[D]. Hangzhou: Zhejiang Sci-Tech University, 2014. (in Chinese with English abstract)
[31] 高旗. 三維激振果品釆收機(jī)構(gòu)的設(shè)計(jì)與分析[D]. 杭州:浙江理工大學(xué),2016.
Gao Qi. Design and Analysis on Vibratory Fruit Harvesting Mechanism with Three-dimensional Excitation[D]. Hangzhou: Zhejiang Sci-Tech University, 2016. (in Chinese with English abstract)
[31] 王殿九. 振動(dòng)采果機(jī)的振動(dòng)參數(shù)和卡箍器[J]. 糧油加工與食品機(jī)械,1981(2): 40-44.
Fruit motion analysis in process of mechanical vibration harvesting based on electronic fruit technique
Du Xiaoqiang1,2, Li Dangwei1, He Leiying1, Wu Chuanyu1, Lin Lepeng1
(1.310018,;2.310018,)
At present, the main way of fruit harvesting is still dominated by manual picking. Although the workload of the laborer can be reduced by the use of mechanical equipment in the process of fruit harvesting, the unstable harvesting rate and the high proportion of fruit damage are hindering the development of harvesting equipment, especial in fruit harvesting machines, which are the key factors to improve harvesting machine. In order to improve the performance of harvesting equipment in the market of agricultural machinery, it is necessary to make accurate evaluation of the fruit motion in process of picking with fruit harvesting equipment, and then determine the main stages and key factors leading to fruit damage. In this paper, a flattened electronic fruit based on Orange Impact Recording Sensor (OIRS) was designed to detect the mechanical impact caused by the three-dimensional vibration harvesting system and analyze the fruit motion. The dynamics model of sugar orange was built and analyzed, which was equivalent to solve nonhomogeneous linear ordinary differential equation with constant coefficients. The dynamics model was solved and the theoretical condition of fruit abscission from tree body was obtained. The fruit falling process was recorded by high-speed photography in the detachment test of electronic fruit, and the amplitude and binding force of fruit were measured. All the parameters in the theoretical model were calculated, and the result of 17.25>11.6 N was obtained, which demonstrated that the normal inertia force of fruit was greater than that of binding force when the fruit was detached from the tree. So the theoretical model of fruit abscission was verified. Three-axis accelerometer was embedded in the OIRS, and was used to detect and record the acceleration in the process of harvesting. And the final resultant acceleration values from three directions were obtained with the method of FFT (Fast Fourier Transformation) by MATLAB. Four vibration harvesting experiments were carried out in orchard filed and recorded the maximum mechanical impact in vibration and falling stage, the maximum mechanical impact recorded by the electronic fruit was 217in the vibration stage, and the average impact reached 123. The maximum mechanical impact was 155in the falling stage, and the average impact was only 76. The results showed that the possibility of fruit damage in the vibration stage was higher, and the potential damage risk can be reduced by adjusting and improving working parameters of the harvesting machine. The higher impact caused by the fruit contact with the ground during the falling stage can also lead to fruit damage, in order to reduce the fruit damage during the falling stage, the damping and buffer materials can be used on the surface of fruit collect equipment. The use of electronic fruit can detect the mechanical shock effectively caused by the vibratory fruit harvesting mechanism with three-dimensional excitation in the fruit picking process, and it can be also used to evaluate damage in the process of harvesting fruit of the machine system. Though there are some differences in fruit size, weight and the way to fixed in fruit tree branch when comparing the actual picking environment and state, experiment results of mechanical harvest using electronic fruit technique in orchard filed demonstrate that this electronic fruit device has practical value and provides a reference for the improvement of the other fruits harvesting machine.
mechanization; vibrations; sensors; electronic fruit; impact
10.11975/j.issn.1002-6819.2017.17.008
S237
A
1002-6819(2017)-17-0058-07
2017-05-30
2017-08-07
國家自然科學(xué)基金項(xiàng)目(51475433,51505431);浙江省高校中青年學(xué)科帶頭人培養(yǎng)項(xiàng)目;浙江理工大學(xué)科研創(chuàng)新團(tuán)隊(duì)專項(xiàng)(13020049-Y);浙江理工大學(xué)521中青年拔尖人才項(xiàng)目和浙江理工大學(xué)研究生創(chuàng)新研究項(xiàng)目(No.YCX15029)。
杜小強(qiáng),教授,博士,主要從事現(xiàn)代農(nóng)業(yè)裝備與技術(shù)研究。杭州 浙江理工大學(xué)機(jī)械與自動(dòng)控制學(xué)院,310018。Email:xqiangdu@zstu.edu.cn
農(nóng)業(yè)工程學(xué)報(bào)2017年17期