胡亞鮮 Nikolaus J. Kuhn
(1 西北農(nóng)林科技大學(xué)水土保持研究所,陜西楊凌 712100)
(2 中國(guó)科學(xué)院水利部水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100)
(3 瑞士巴塞爾大學(xué)環(huán)境科學(xué)系,巴塞爾 4056 瑞士)
利用土壤顆粒的沉降粒級(jí)研究泥沙的遷移與分布規(guī)律*
胡亞鮮1,2Nikolaus J. Kuhn3
(1 西北農(nóng)林科技大學(xué)水土保持研究所,陜西楊凌 712100)
(2 中國(guó)科學(xué)院水利部水土保持研究所黃土高原土壤侵蝕與旱地農(nóng)業(yè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100)
(3 瑞士巴塞爾大學(xué)環(huán)境科學(xué)系,巴塞爾 4056 瑞士)
了解不同粒徑泥沙遷移運(yùn)動(dòng)規(guī)律,有助于深入理解侵蝕條件下碳、氮、磷等元素的生物地球化學(xué)過程。土壤營(yíng)養(yǎng)元素的遷移轉(zhuǎn)化與泥沙顆粒的運(yùn)動(dòng)規(guī)律密切相關(guān),而泥沙的運(yùn)動(dòng)規(guī)律由顆粒大小、性狀、孔隙度和密度等因素共同決定。依據(jù)泥沙顆粒沉降速度分選的原理,針對(duì)中國(guó)兩種典型侵蝕土壤(紅壤和黃綿土),分別進(jìn)行了土壤機(jī)械組成(礦質(zhì)土粒分選)和沉降速度分選測(cè)定。結(jié)果表明,土壤顆粒的沉降粒級(jí)可有效區(qū)分紅壤和黃綿土中不同粒徑團(tuán)聚體的沉降速度,能夠更加準(zhǔn)確地反映出同一粒徑顆粒因性狀、密度和孔隙度的差異而形成的不同沉降速度。相對(duì)于質(zhì)地疏松的黃綿土,紅壤的機(jī)械組成顯示,有86.9%的有機(jī)碳與≤32 μm的礦物顆粒相結(jié)合,很有可能隨懸移過程匯入下游水體。但土壤顆粒沉降速度分布表明,約有90.5%的紅壤有機(jī)碳與等效石英粒徑≥63 μm的團(tuán)聚體相結(jié)合,易在經(jīng)歷較短的遷移過程后,快速沉積于下坡面。這表明,現(xiàn)有的土壤侵蝕模型大多利用土壤機(jī)械組成(即礦質(zhì)粒徑大小)在反映泥沙運(yùn)動(dòng)或元素遷移規(guī)律方面存在片面性。土壤的團(tuán)聚過程可有效縮減有機(jī)碳和無機(jī)碳的遷移距離,從而使其更易沉積于陸生環(huán)境。土壤顆粒的沉降速度分級(jí)對(duì)認(rèn)識(shí)泥沙顆粒和養(yǎng)分元素在侵蝕—遷移—沉積過程中的生物地球化學(xué)過程提供了新的途徑和視角。
沉降管法;沉降速度;團(tuán)聚體;遷移距離;有機(jī)碳;無機(jī)碳
土壤的侵蝕和遷移過程決定泥沙中元素的空間分布,而沉積區(qū)的微環(huán)境影響了泥沙中有機(jī)碳的生物地球化學(xué)轉(zhuǎn)化過程,從而對(duì)土壤有機(jī)碳總儲(chǔ)量、大氣中CO2的循環(huán)以及下游河流系統(tǒng)中元素的富集產(chǎn)生深遠(yuǎn)的影響[1-3]。了解泥沙顆粒的運(yùn)動(dòng)規(guī)律是研究泥沙中養(yǎng)分元素(如有機(jī)碳或磷)在流域內(nèi)的空間分布及生物地球化學(xué)特征的基礎(chǔ)[4-6]。泥沙的運(yùn)動(dòng)規(guī)律由顆粒大小、性狀、孔隙度和密度等因素共同決定[7-9]。然而,現(xiàn)今土壤侵蝕模型中,泥沙的沉降速度主要依賴于土壤礦質(zhì)土?;驒C(jī)械組成,即通過粒徑大小來估算,在反映泥沙運(yùn)動(dòng)規(guī)律方面存在片面性[10-13]。事實(shí)上,泥沙在侵蝕和遷移的過程中主要是以團(tuán)聚體形式運(yùn)動(dòng),而非礦質(zhì)單粒形式[14-16]。團(tuán)聚過程可將沉降速度慢的細(xì)小顆粒團(tuán)聚成沉降速度較快的大顆粒,從而縮減其遷移距離。因此,相對(duì)于礦質(zhì)土粒或機(jī)械組成,土壤團(tuán)聚體的沉降速度能夠更加準(zhǔn)確地反映泥沙的侵蝕和遷移過程[17]。然而,傳統(tǒng)的土壤團(tuán)聚體分選方法,如濕篩和干篩[18-19],除了依賴粒徑分級(jí)的片面性之外,在篩選過程中,團(tuán)聚體也易因摩擦而破裂,造成大顆粒團(tuán)聚體含量的減損,無法充分反映土壤團(tuán)聚體的顆粒組成[20]。因此,水土流失過程中泥沙顆粒的理想分選方法,不僅需實(shí)現(xiàn)團(tuán)聚體沉降速度分選,還應(yīng)保持不同粒級(jí)團(tuán)聚體的完整性。
本研究選用兩種典型侵蝕土壤,紅壤(簡(jiǎn)育濕潤(rùn)富鐵土,Hapli-Udic Ferrosols)和黃綿土(黃土正常新成土,Loessi-OrthicPrimosols),分別采集于江西南昌典型旱作坡耕地和黃土高原陜西省長(zhǎng)武縣王東溝典型坡地。此兩種供試土壤質(zhì)地相似,但其有機(jī)碳含量與團(tuán)聚體結(jié)構(gòu)差異甚大,可對(duì)比反映不同團(tuán)聚結(jié)構(gòu)對(duì)土壤顆粒運(yùn)動(dòng)規(guī)律的影響。相關(guān)土壤性狀見表1。本研究將兩種土壤分別進(jìn)行兩種不同方法的分級(jí)——傳統(tǒng)機(jī)械(礦質(zhì)土粒)組成法和沉降管法,對(duì)比分析兩種方法下土壤顆粒的差異性分布。
表1 供試土壤基本理化性質(zhì)Table 1 Physio-chemical properties of the red soil and loess soil
稱取25 g風(fēng)干土,浸入水中,配成總體積為100 ml的懸濁液。用超聲震蕩儀(Sonifer 250,Branson,美國(guó))將此懸浮液以總能量為60 J ml-1的強(qiáng)度進(jìn)行充分震蕩(總能量 = 震蕩儀輸出功率70 W ×震蕩時(shí)長(zhǎng)85 s / 懸濁液總體積100 ml)。在震蕩過程中,注意通過水浴或者冰浴控制懸濁液的溫度變動(dòng)小于5℃,防止震蕩能量因溫度變化而帶來的誤差。隨后,將震蕩后的懸濁液進(jìn)行濕篩,并將其分選為六個(gè)礦質(zhì)粒徑級(jí)別:≥500 μm、250~500 μm、125~250 μm、63~125 μm、32~63 μm、≤32 μm。分選后,晾干,稱重,并用總碳分析儀(Leco RC 612,St. Joseph,美國(guó))測(cè)定各級(jí)別的有機(jī)碳和無機(jī)碳含量。試驗(yàn)重復(fù)三次。
稱取25 g風(fēng)干土,浸泡于50 ml水中,靜置15 min。土壤遇水后發(fā)生一定程度的團(tuán)聚體破裂現(xiàn)象,此靜置過程可有效保證團(tuán)聚體破裂程度的統(tǒng)一性,降低重復(fù)樣本之間的誤差。隨后,將該懸浮液樣品從沉降管頂部注入,根據(jù)不同團(tuán)聚體顆粒的沉降速度,按特定時(shí)間間隔,進(jìn)行分選。進(jìn)行沉降速度分級(jí)實(shí)驗(yàn)時(shí),先使用投放器,將土壤樣品由沉降管頂部投放至沉降管水體中,旋轉(zhuǎn)水槽,依據(jù)斯托克斯定率(Stokes’Law)所計(jì)算出的不同顆粒的沉降時(shí)間,將收集器對(duì)準(zhǔn)沉降管底端,實(shí)現(xiàn)對(duì)土壤樣品按照沉降速度進(jìn)行分選收集。該方法不僅避免干篩或濕篩方法帶來的團(tuán)聚體破壞,而且可最大限度地反映團(tuán)聚過程對(duì)細(xì)小顆粒沉降時(shí)間的加速現(xiàn)象,從而更真實(shí)地推算團(tuán)聚體的最大遷移距離,有效減小了單一依據(jù)礦質(zhì)土粒分析而帶來的輸沙量估算方面的誤差。
具體而言,沉降管法主要通過速度沉降管設(shè)備實(shí)現(xiàn),其主要由三部分組成(圖1):(1)沉降管,用于土壤樣品自上而下沉降運(yùn)動(dòng);(2)樣品投放器,用于將土壤樣品從沉降管頂端投入管內(nèi);(3)旋轉(zhuǎn)水槽,按照特定時(shí)間間隔旋轉(zhuǎn),分級(jí)收集從沉降管底部沉降出的土壤顆粒。
沉降管:本實(shí)驗(yàn)所用沉降管根據(jù)圖1所示設(shè)計(jì),由透明聚氯乙烯(PVC)管所制,高80 cm,內(nèi)徑5 cm,總?cè)莘e約為1.57 L(圖1a)。進(jìn)行土壤沉降速度分級(jí)的過程中,沉降管應(yīng)始終充滿水,形成直立水柱用于土壤顆粒自上而下進(jìn)行沉降。多數(shù)情況下,土壤顆粒小于2 mm,因此,沉降管內(nèi)徑(50 mm)與土壤顆粒(2 mm)的比值大于25∶1,可有效避免邊界效應(yīng)(< 10%)[17]。與吸管法相比,此沉降管主要有三點(diǎn)不同:(1)沉降管長(zhǎng)度較長(zhǎng),可保證快速沉降的大顆粒團(tuán)聚體能夠充分沉降,并在沉降管內(nèi)實(shí)現(xiàn)有效分選;(2)沉降管直徑較大,可承載較大容積的混合液,有效避免各個(gè)顆粒之間的推擠或抱團(tuán)現(xiàn)象,保證不規(guī)則形狀團(tuán)聚體的順利沉降;(3)沉降管底端開口開闊,土壤顆粒可無阻礙排出,有效避免因細(xì)小出口所帶來的土壤顆粒堆積或者團(tuán)聚體破裂現(xiàn)象。因此,與吸管法相比,沉降管法以更長(zhǎng)沉降距離,更寬裕的管內(nèi)徑,以及更開闊平順的底端開口,更適用于研究田間尺度泥沙的運(yùn)動(dòng)規(guī)律。
樣品投放器:用于將土壤樣品從頂端投至沉降管中,它主要有兩種樣式:推桿型(如Hu等[21]中所述)和閥門型(圖1a)。推桿型投放器是由一個(gè)約30 cm長(zhǎng)的推桿穿過一個(gè)中空的容器,上下推送,實(shí)現(xiàn)樣品投放。該推送桿兩端分別配有可拆卸橡皮塞,用于密閉,實(shí)現(xiàn)沉降管內(nèi)水柱直立不掉落。閥門型投放器是由兩個(gè)球形閥門與一個(gè)中空短管組成,通過先后控制球形閥門的開合,實(shí)現(xiàn)空間密閉和樣品投放。在投放土壤樣品之前,投放器容積約為80 cm3,約可容納土壤樣品25 g(干重),懸浮液濃度約為6 g L-1。根據(jù)Loch[17]的報(bào)告,此懸浮液濃度并不會(huì)對(duì)土壤顆粒的沉降運(yùn)動(dòng)造成干擾。若所需沉降分選樣品為徑流場(chǎng)或者流域內(nèi)收集的泥沙,也可直接將泥沙鮮樣從沉降管頂部注入,實(shí)現(xiàn)泥沙鮮樣的實(shí)時(shí)沉降與分選,用于反映泥沙不同顆粒在徑流條件下的沉降速度,并推測(cè)其遷移距離分布。
旋轉(zhuǎn)水槽:放置于沉降管下端(圖1b),用于收集從沉降管底部沉降出的土壤顆粒。旋轉(zhuǎn)水槽主要由圓形水槽和收集器組成。旋轉(zhuǎn)水槽直徑約50 cm、深20 cm,容積約為40 L;水槽內(nèi)放置小型樣品收集器若干,每個(gè)收集器容積約為290 cm3,并使初始收集器對(duì)準(zhǔn)沉降管底部。土壤顆粒抵達(dá)沉降管底部之后,便可進(jìn)入樣品收集器。經(jīng)過指定時(shí)間后,便可轉(zhuǎn)動(dòng)水槽,使下一個(gè)收集器對(duì)準(zhǔn)沉降管底部,繼續(xù)收集下個(gè)速度級(jí)別的土壤顆粒。在土壤樣品沉降過程中,水槽內(nèi)的水深必須沒過沉降管底部,與沉降管內(nèi)的水柱形成一體,從而防止沉降管中的水柱掉落。若有條件,可在旋轉(zhuǎn)水槽底部設(shè)置電動(dòng)馬達(dá),與延時(shí)繼電器相連,準(zhǔn)確控制水槽旋轉(zhuǎn)的時(shí)間點(diǎn)和間隔,實(shí)現(xiàn)土壤顆粒按照不同沉降速度進(jìn)行分選(圖1c)。若條件有限,也可手動(dòng)旋轉(zhuǎn)水槽,但必須均勻輕柔,防止因過快旋轉(zhuǎn)造成水槽內(nèi)水體波動(dòng)所帶來的土壤顆粒漂移。
圖1 沉降速度管設(shè)備(a.設(shè)備整體構(gòu)造,b.樣品分選過程,c.分選后顆粒)Fig. 1 The settling tube apparatus(a. the complete apparatus setting,b. settling fractionation,c. soil particles after fractionation)
根據(jù)斯托克斯定律,土壤顆粒在水體中的沉降速度可由以下公式計(jì)算:
式中,V為沉降速度,m s-1;h為沉降距離(即沉降管長(zhǎng)度+投放器內(nèi)懸浮液高度),m,;t為沉降時(shí)間,s;d為土壤粒徑,mm;g為重力加速度,約為9.81 N kg-1;η為20℃時(shí)的水體黏度,約為1×10-3Ns m-2;Ds為土壤顆粒平均密度,約為2.65 ×103kg m-3;Df為水體密度,約為1.0 × 103kg m-3。理論上,斯托克斯定律多用于計(jì)算粒徑小于0.07 mm顆粒的運(yùn)動(dòng)規(guī)律[22],因此,對(duì)于與本實(shí)驗(yàn)供試土壤質(zhì)地差異較大的其他土壤,可視具體情況,選取相應(yīng)計(jì)算公式[22-23]。
為與傳統(tǒng)機(jī)械(礦質(zhì)土粒)組成法進(jìn)行對(duì)比,并方便與現(xiàn)有土壤侵蝕模型中的沉降速度參數(shù)結(jié)合,本文特利用“等效石英粒徑”這一概念,表達(dá)與某一石英粒徑具有相同沉降速度的土壤團(tuán)聚體的粒徑[17,21]。具體而言,依據(jù)斯托克斯定律,將土壤團(tuán)聚體的以下6組“等效石英粒徑”:≥ 500 μm、250~500 μm、125~250 μm、63~125 μm、32~63 μm、≤32 μm,轉(zhuǎn)化為不同沉降時(shí)間(表2)。經(jīng)過868 s沉降后,最細(xì)小顆粒,即等效石英粒徑≤32 μm的顆粒,仍以懸浮液狀態(tài)滯留于沉降管中??蓪⑵浞懦?,靜置,晾曬,收集,計(jì)為等效石英粒徑≤32 μm顆粒。利用總碳分析儀(Leco RC 612,St. Joseph,美國(guó))測(cè)定不同粒徑中有機(jī)碳、無機(jī)碳以及總碳含量。試驗(yàn)重復(fù)三次。若土壤樣品的團(tuán)聚結(jié)構(gòu)與本實(shí)驗(yàn)中所選土壤差異較大,可根據(jù)需要調(diào)整時(shí)間間隔(二次分割,或者合并),充分反應(yīng)目標(biāo)樣品的團(tuán)聚體沉降速度特征。
表2 土壤顆粒沉降速度、沉降時(shí)間和泥沙空間分布Table 2 Settling velocities,times,and likely spatial distribution of soil particles based on equivalent quartz size classes
本文所有數(shù)據(jù)分析由Microsoft Office Excel 2010完成,文中顯著性差異分析由SPSS 21完成,用最小顯著差異法(LSD)進(jìn)行均值間顯著性檢驗(yàn),顯著性水平取0.05。
通過兩種不同的分選方法所得土壤顆粒的分布狀況如圖2。結(jié)果表明,機(jī)械(礦質(zhì)土粒)組成法所得顆粒分布中細(xì)顆粒偏多(如,紅壤中≤32μm的細(xì)顆粒占87.8%),而利用沉降管所得大顆粒較多(如,紅壤中≥63 μm的大顆粒占94.5%)。這主要是因?yàn)?,傳統(tǒng)的機(jī)械(礦質(zhì)土粒)組成法破壞了土壤中的團(tuán)聚體,而沉降管法最大限度地保存了土壤團(tuán)聚體的原有結(jié)構(gòu)。若按照傳統(tǒng)侵蝕模型,利用土壤機(jī)械組成對(duì)泥沙的空間分布進(jìn)行預(yù)測(cè),那么,紅壤中粒徑≤32 μm的細(xì)顆粒(87.8%)將很有可能隨懸移經(jīng)歷較久的遷移過程,甚至很有可能匯入下游水體。然而,實(shí)際上,紅壤通過團(tuán)聚過程將細(xì)小黏?;蛏沉P纬奢^大團(tuán)聚體,加速其沉降速度,從而縮短遷移距離。若根據(jù)團(tuán)聚體沉降速度分布,該紅壤中94.5%的土壤顆粒實(shí)際為等效石英粒徑≥63 μm的團(tuán)聚體,很有可能最終將隨團(tuán)聚體沉積于陸地表面。此種現(xiàn)象,在團(tuán)聚體結(jié)構(gòu)較弱的黃綿土中也有體現(xiàn),僅是程度較弱:75.8%的黃綿土為機(jī)械組分≤32 μm的細(xì)小顆粒,依傳統(tǒng)侵蝕模型預(yù)測(cè),將很有可能匯入下游水體;但根據(jù)團(tuán)聚體實(shí)際沉降速度分布,其71.6%的土壤顆粒實(shí)際為等效石英粒徑≥63 μm的團(tuán)聚體,很有可能在經(jīng)歷較近的遷移距離后沉積。這一結(jié)果表明,現(xiàn)有土壤侵蝕模型中,依據(jù)土壤機(jī)械組成(即礦質(zhì)粒徑大?。┒扑愕哪嗌晨臻g假設(shè)是不正確的。
圖2 紅壤與黃綿土沉降速度分選與機(jī)械(礦質(zhì)土粒)組成法的粒級(jí)分布Fig. 2 Comparison of weight distribution in red soil and loess soil fractionated by settling and dispersion
有機(jī)碳單位含量(圖3)在紅壤的各機(jī)械粒級(jí)和各沉降粒級(jí)之間盡管存在顯著性差異,但其均值在數(shù)量級(jí)上差異不大(≤32 μm組除外)。然而,將有機(jī)碳單位含量(圖3)與各自粒徑的重量(圖2)相乘之后,有機(jī)碳總量分布在兩種不同分選方法間則存在明顯差異(圖4)。盡管,其機(jī)械(礦質(zhì)土粒)組成法所得有機(jī)碳分布情況表明,86.9%的有機(jī)碳是與紅壤中≤32 μm的細(xì)小顆粒相結(jié)合,很有可能隨懸移過程匯入下游水體,從而被掩埋保護(hù),減緩礦化分解過程[26-27]。但土壤顆粒沉降速度分布卻顯示,約有90.5%的紅壤有機(jī)碳與等效石英粒徑≥63 μm的團(tuán)聚體相結(jié)合(圖4),在經(jīng)歷較短的遷移過程后,快速沉積于下坡面。此部分團(tuán)聚體,快速沉積后,將在后續(xù)的降雨和侵蝕事件中,反復(fù)經(jīng)歷侵蝕—遷移—沉積過程,并伴隨著團(tuán)聚體破裂和礦化過程[28-29]。此結(jié)果與Hu等[21]觀察到的規(guī)律相似。黃綿土有機(jī)碳單位含量在不同礦質(zhì)顆粒中分布明顯高于團(tuán)聚體沉降顆粒(圖3),這主要是因?yàn)辄S綿土的結(jié)構(gòu)差,超生震蕩后破裂程度比紅壤更徹底,其有機(jī)碳在測(cè)定過程中的氧化程度更高。
圖3 有機(jī)碳單位含量在紅壤和黃綿土不同沉降速度和礦質(zhì)粒級(jí)中的分布Fig. 3 Comparison of the organic carbon content per unit in red soil and the loess soil fractionated by settling and dispersion
圖4 有機(jī)碳總量在紅壤和黃綿土不同沉降速度和礦質(zhì)粒級(jí)中的分布Fig. 4 Comparison of total organic carbon in red soil and the loess soil fractionated by settling and dispersion
圖5 無機(jī)碳單位含量在紅壤和黃綿土不同沉降速度和礦質(zhì)粒級(jí)中的分布Fig. 5 Comparison of the inorganic carbon content per unit of soil in red soil and the loess soil fractionated by settling and dispersion
圖6 無機(jī)碳總量在紅壤和黃綿土不同沉降速度和礦質(zhì)粒級(jí)中的分布Fig. 6 Comparison of the total inorganic carbon in red soil and the loess soil fractionated by settling and dispersion
紅壤中無機(jī)碳單位含量普遍較?。▓D5),盡管在不同粒級(jí)間存在顯著性差異,但其均值在數(shù)量級(jí)上差值不大。此外,黃綿土中的無機(jī)碳單位含量明顯高于紅壤,且在團(tuán)聚體沉降速度粒級(jí)與機(jī)械組成粒級(jí)之間也存在較大差異。在將無機(jī)碳單位含量(圖5)與各自粒徑的重量(圖2)相乘之后,無機(jī)碳總量分布的差異性表現(xiàn)則較為明顯(圖6):盡管其機(jī)械組份表明,77.9%的無機(jī)碳是與黃綿土中≤32 μm的細(xì)小顆粒相結(jié)合,但其實(shí)約有59.1%的黃綿土無機(jī)碳存在于等效石英粒徑≥63 μm的團(tuán)聚體中。這也表明,黃綿土中無機(jī)碳與不同團(tuán)聚體粒徑的結(jié)合,也直接影響了其在黃土高原不同流域的空間分布。特別是在土壤pH適宜的條件下,土壤無機(jī)碳含量與水熱之間的關(guān)系,也將會(huì)影響土壤中有機(jī)碳的固存和礦化過程[30]。這就意味著,隨著不同顆粒在不同地點(diǎn)的富集或減損,與其結(jié)合的有機(jī)碳和無機(jī)碳所處的微環(huán)境也隨之改變,從而影響整個(gè)流域內(nèi)有機(jī)碳和無機(jī)碳的生物地球化學(xué)變化[31-33]。
相較于傳統(tǒng)方法僅依賴于土壤機(jī)械組成(礦質(zhì)粒徑大?。┧M(jìn)行的測(cè)算,此沉降管法用團(tuán)聚體沉降速度進(jìn)行分級(jí),能更加全面地反映泥沙運(yùn)動(dòng)規(guī)律,明確泥沙顆粒的遷移距離和空間分布特征,從而準(zhǔn)確了解營(yíng)養(yǎng)物質(zhì)的遷移轉(zhuǎn)化過程,為深入理解土壤侵蝕—遷移—沉積全過程對(duì)有機(jī)碳循環(huán)的影響提供理論依據(jù)。本研究還證實(shí)了團(tuán)聚過程可將沉降速度較慢的細(xì)小黏?;蛏沉R聚成沉降速度較快的較大團(tuán)聚體,從而加速了細(xì)小顆粒的沉降速度,縮短其遷移距離。這也就意味著,那些原本經(jīng)懸移運(yùn)動(dòng)至下游水體的細(xì)小顆粒,由于團(tuán)聚過程的加速效應(yīng),將隨較大的團(tuán)聚體沉積于坡腳附近,從而改變了現(xiàn)有侵蝕模型中對(duì)于泥沙空間分布的假定。由于沉降管法是利用泥沙顆粒的沉降速度來反映其運(yùn)動(dòng)規(guī)律,無其他限制條件,因此,可適用于分析不同類型土壤在不同侵蝕程度下的泥沙運(yùn)動(dòng)規(guī)律,對(duì)重新認(rèn)識(shí)養(yǎng)分元素在侵蝕—遷移—沉積過程中的生物地球化學(xué)過程提供了新的視角。
致 謝感謝瑞士巴塞爾大學(xué)實(shí)驗(yàn)員Ruth Strunk在實(shí)驗(yàn)操作方面給予的指導(dǎo)與幫助,感謝中國(guó)科學(xué)院水土保持研究所郭勝利研究員和西北農(nóng)林科技大學(xué)資環(huán)學(xué)院博士研究生王蕊在論文整理與修改期間的幫助與支持。
[1] Lal R,Pimentel D. Soil erosion:A carbon sink or source? Science,2008,319(5866):1040—1042
[2] Billings S A,Buddemeier R W,Richter DdeB,et al.A simple method for estimating the influence of eroding soil profiles on atmospheric CO2. Global Biogeochemical Cycles,2010,24(2):GB2001
[3] 肖海兵,李忠武,聶小東,等. 南方紅壤丘陵區(qū)土壤侵蝕-沉積作用對(duì)土壤酶活性的影響. 土壤學(xué)報(bào),2016,53(4): 881—890 Xiao H B,Li Z W,Nie X D,et al. Effects of soil erosion and deposition on soil enzyme activity in hilly red soil regions of South China(In Chinese). Acta Pedologica Sinica,2016,53(4):881—890
[4] 湯珊珊,李鵬,任宗萍,等. 模擬降雨下覆沙坡面侵蝕顆粒特征研究. 土壤學(xué)報(bào),2016,53(1):39—47 Tang SS,Li P,Ren Z P,et al. Particle size composition of sediment from sand-covered slope under simulated rainfall(In Chinese). Acta Pedologica Sinica,2016,53(1):39—47
[5] 朱高文,文博,李靜,等. 不同雨強(qiáng)和覆蓋度條件下崩積體侵蝕泥沙顆粒特征. 土壤學(xué)報(bào),2016,53(6):1371—1379 Zhu G W,Wen B,Li J,et al. Particle size composition of erosion sediment from colluvial deposits of collapsing hill as affected by rainfall intensity and coverage(In Chinese). Acta Pedologica Sinica,2016,53(6):1371—1379
[6] 張輝,李鵬,魯克新,等. 凍融作用對(duì)坡面侵蝕及泥沙顆粒分選的影響. 土壤學(xué)報(bào),2017,54(4):836—843 Zhang H,Li P,Lu K X,et al. Effects of freezing and thawing on soil erosion and sediment particle size fractionation(In Chinese). Acta Pedologica Sinica,2017,54(4):836—843
[7] Dietrich W E. Settling velocity of natural particles.Water Resources Research,1982,18(6):1615—1626
[8] Kinnell P I A. Particle travel distances and bed and sediment compositions associated with rain-impacted flows. Earth Surface Processes and Landforms,2001,26(7):749—758
[9] Kinnell P IA. Raindrop impact induced erosion processes and prediction:Areview. Hydrological Processes,2005,19(14):2815—2844
[10] Morgan R P C,Quinton J N,Smith R E,et al.The European Soil Erosion Model(EUROSEM):Adynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms,1998,23(6):527—544
[11] Beuselinck L,Govers G,Steegen A,et al. Evaluation of the simple settling theory for predicting sediment deposition by overland flow. Earth Surface Processes and Landforms,1999,24(11):993—1007
[12] van Oost K,Beuselinck L,Hairsine P B,et al.Spatial evaluation of a multi-class sediment transport and deposition model. Earth Surface Processes and Landforms,2004,29(8):1027—1044
[13] Aksoy H,Kavvas M L. A review of hillslope and watershed scale erosion and sediment transport models.Catena,2005,64(2/3):247—271
[14] Walling D E. Erosion and sediment yield research—some recent perspectives. Journal of Hydrology,1988,100(1/3):113—141
[15] Slattery M C,Burt T P. Particle size characteristics of suspended sediment in hillslope runoff and stream flow.Earth Surface Processes and Landforms,1997,22(8):705—719
[16] Beuselinck L,Steegen A,Govers G,et al.Characteristics of sediment deposits formed by intense rainfall events in small catchments in the Belgian Loam Belt. Geomorphology,2000,32(1/2):69—82
[17] Loch R J. Settling velocity–a new approach to assessing soil and sediment properties. Computers and Electronics in Agriculture,2001,31(3):305—316
[18] Cambardella C A,Elliott E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Science Society of America Journal,1994,58(1):123—130
[19] Christensen B T. Physical fractionation of soil and structural and functional complexity in organic matter turnover. European Journal of Soil Science,2001,52(3):345—353
[20] Xiao L,Hu Y,Greenwood P,et al. The use of a raindrop aggregate destruction device to evaluate sediment and soil organic carbon transport. Geographica Helvetica,2015,70(2):167—174
[21] Hu Y,F(xiàn)ister W,Rüegg H-R,et al. The ue of equivalent quartz size and settling tube apparatus to fractionate soil aggregates by settling velocity.Geomorphology Techniques(Online Edition),British Society for Geomorphology,2013,Section-1,1—9
[22] Rubey W W. Settling velocities of gravel,sand,and silt particles. American Journal of Science,1933,25(5):325—338
[23] Ferguson R I,Church M. A simple universal equation for grain settling velocity. Journal of Sedimentary Research,2004,74(6):933—937
[24] Wu W,Wang S S. Formulas for sediment porosity and settling velocity. Journal of Hydraulic Engineering,2006,132(8):858—862
[25] Starr G C,Lal R,Malone R,et al. Modeling soil carbon transported by water erosion processes. Land Degradation and Development,2000,11(1):83—91
[26] van Oost K,Quine T A,Govers G,et al. The impact of agricultural soil erosion on the global carbon cycle.Science,2007,318(5850):626—629
[27] Wang Z,Govers G,Steegen A,et al. Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area. Geomorphology,2010,124(1/2):65—74
[28] Kuhn N J. Assessing lateral organic carbon movement in small agricultural catchments. Publikation zur Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft. 2013,29:151—164
[29] van Hemelryck H,F(xiàn)iener P,van Oost K,et al. The effect of soil redistribution on soil organic carbon:An experimental study. Biogeosciences,2010,7:3971—3986
[30] GuoY,Wang X,Li X,et al. Dynamics of soil organic and inorganic carbon in the cropland of upper Yellow River Delta,China. Scientific Reports,2016,6:36105
[31] Berhe A A. Decomposition of organic substrates at eroding vs. depositional landform positions. Plant and Soil,2012,350(1):261—280
[32] Berhe A A,Harte J,Harden J W,et al. The significance of the erosion-induced terrestrial carbon sink. BioScience,2007,57(4):337—346
[33] Hu Y,Berhe A A,F(xiàn)ogel M L,et al. Transportdistance specific SOC distribution:Does it skew erosion induced C fluxes? Biogeochemistry,2016,128(3):339—351
Using Settling Velocity to Investigate the Patterns of Sediment Transport and Deposition
HU Yaxian1,2Nikolaus J. Kuhn3
(1Institute of Soil and Water Conservation,Northwest A&F University,Yangling,Shaanxi712100,China)
(2State key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling,Shaanxi712100,China)
(3Physical Geography and Environmental Change,Department of Environmental Sciences,University of Basel,4056,Switzerland)
【Objective】Knowledge about thet ransport patterns of sediment helps to understand the erosion-induced biogeochemical processes of C,N and P. The sediment transport distance is closely associated with its settling velocity distribution,which is dependent on the size,shape,density and porosity of sediment particles. In fact,aggregation processes turn fine particles into large aggregates,speeding up the settling velocity of individual particles and shortening their transport distances. However,most of the soil erosion models currently available are using soil texture or mineral particle distribution,therefore cannot fully reflect the transport behavior of sediment particles.【Method】Two typical types of soils in China,red soil(Hapli-Udic Ferrosols)and loess soil(Loessi-OrthicPrimosols),were investigated in this study.The two soils had similar texture,but were distinctive in aggregate stability and soil organic carbon content.They were,therefore,considered as suitable objects in this study to explore the potential differences between settling velocity distribution and mineral size distribution. The two soils were fractionated by two methods:conventional wet-sieving into mineral size distribution;and settling tube fractionation into settling velocity distribution. The weight distribution,total organic carbon concentration and total inorganic carbon concentration of individual classes were measured and compared. 【Result】Results show that,compared with the conventional soil mineral size distribution,fractionation using settling tube is more effective in distinguishing the settling velocity distributions of red soiland loess soil. This is because clay-sized particles are more likely to be cooperated into aggregates,which facilitate the settling velocity of individual mineral particles,and thus largely shorten their potential transport distance. In particular in the better aggregated red soil,about 86.9% of the soil organic carbon was associated with fine particles ≤32 μm,which is very likely to stay as suspension and thus transported downstream once erosion occurs. However,as a matter of fact,about 90.5% of the soil organic carbon was combined with coarse aggregates of equivalent quartz size ≥63 μm,which would probably be deposited at the footslope immediately after short transport distance. Similar patterns of soil inorganic carbon distributions were observed in the loess soil. All the findings demonstrate that aggregation effects can effectively shorten the transport distance of soil organic and inorganic carbon and skew their distributions towards the terrestrial system than if otherwise predicted by mineral size distributions.【Conclusion】Settling velocity specific redistribution of sediment particles casts new light on our current understanding of C,N and P biogeochemical processes during soil erosion and sediment transport and deposition. Therefore,settling velocity specific distribution of sediment particle should be considered as a soil erodibility parameter to be applied to soil erosion models.
Settling tube;Settling velocity;Aggregates;Transport distance;Organic carbon;Inorganic carbon
K903
A
10.11766/trxb201703100056
* 國(guó)家自然科學(xué)基金項(xiàng)目(41371279)和西北農(nóng)林科技大學(xué)基本科研業(yè)務(wù)費(fèi)專項(xiàng)基金項(xiàng)目(2452017191)資助 Supported by the National Natural Science Foundation of China(No. 41371279)and the Fundamental Research Funds of Northwest A&F University(No. 2452017191)
胡亞鮮(1986—),女,河南鄭州人,博士,副研究員,主要從事土壤侵蝕研究。E-mail:huyaxian@nwafu.edu.cn
2017-03-10;
2017-05-18;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-06-02
(責(zé)任編輯:陳榮府)