黃敏,范玲玲,干博文,陳軍波
( 1.中南民族大學(xué)生物醫(yī)學(xué)工程學(xué)院,武漢 430074;2.華中科技大學(xué)光學(xué)與電子信息學(xué)院,武漢 430074 )
磁共振成像(MRI)以無(wú)電離輻射、多方位多參數(shù)成像等優(yōu)點(diǎn),被廣泛用于臨床和研究[1]。但傳統(tǒng)的MRI通過(guò)一次掃描,只能得到T1,T2或質(zhì)子密度中的一種“加權(quán)像”,而且不同序列得到的圖像結(jié)果在灰度上也很大不同。MRI屬于定性測(cè)量,重建的圖像結(jié)果不能真實(shí)表示組織的具體參數(shù)值,醫(yī)生只能根據(jù)經(jīng)驗(yàn),按照?qǐng)D像的灰度對(duì)比度來(lái)“推測(cè)”可能是什么疾病?!按殴舱裰讣y”(magnetic resonance fingerprinting, MRF)是2013年Griswold等人提出的一種全新的成像方式,通過(guò)一次掃描就能夠同時(shí)得到多種參數(shù)的定量圖像,可以直接通過(guò)組織參數(shù)值對(duì)疾病進(jìn)行診斷[2-3]。
MRF成像的序列設(shè)計(jì)與MRI有很大區(qū)別,MRF序列的翻轉(zhuǎn)角FA和重復(fù)時(shí)間TR是隨機(jī)變化的,梯度切換的聲音讓人聽(tīng)起來(lái)不再是噪聲,大大提升了患者的舒適感[4]。而且對(duì)MRF掃描得到的數(shù)據(jù)也需要采用全新的數(shù)據(jù)處理方式才能同時(shí)得到多個(gè)參數(shù)圖像。MRF需要建立一個(gè)包含被掃描部位所有組織的參數(shù)信息的字典,字典里的每個(gè)入口代表了一組T1,T2參數(shù)組合的Bloch信號(hào)。采用匹配的方法,將掃描的數(shù)據(jù)與字典信號(hào)進(jìn)行匹配,才能得到相應(yīng)的參數(shù)信息。目前,采用直接匹配的算法[2]將每個(gè)體素的信號(hào)與字典所有信號(hào)匹配,匹配準(zhǔn)確度高,但所需的時(shí)間太長(zhǎng),不適合臨床推廣。針對(duì)速度慢的缺陷,有研究者采用奇異值分解(SVD)后再進(jìn)行逐條內(nèi)積匹配的方法[5],以減少字典的體積。也有采用直接分組匹配的方式[6],將字典分成幾個(gè)小字典,通過(guò)對(duì)小字典的信號(hào)進(jìn)行平均的方法來(lái)分配待匹配的字典,以減少匹配的時(shí)間。
為了進(jìn)一步提高數(shù)據(jù)匹配效率,我們將SVD與快速組匹配相結(jié)合,進(jìn)一步加速參數(shù)量化的速度。
字典的建立對(duì)于MRF的數(shù)據(jù)處理至關(guān)重要,必須根據(jù)不同部位組織的種類以及參數(shù)的范圍來(lái)設(shè)計(jì)字典。字典所依賴的參數(shù)取值間隔越小,字典越大,匹配的精度越高,但匹配所需的時(shí)間也會(huì)越長(zhǎng)。根據(jù)大腦組織的生理特性,我們對(duì)組織的馳豫參數(shù)T1和T2進(jìn)行離散取值。T1值的范圍為100~5000 ms(小于2000 ms的部分以20 ms增加,大于2000 ms的部分以300 ms增加);T2值的范圍為20~3000 ms(小于100 ms的部分以5 ms增加,大于100 ms且小于200 ms的部分以10 ms增加,大于200 ms的部分以20 ms增加)。向量T1的大小為106,向量T2的大小為41。利用T1,T2參數(shù)的不同組合,根據(jù)布洛赫方程[7]來(lái)仿真字典,字典大小為4346x500,有4346個(gè)字典入口,每個(gè)入口代表了一條500個(gè)點(diǎn)的信號(hào)。
不考慮磁場(chǎng)的非均勻性時(shí),字典信號(hào)生成公式為:
(1)
其中,Mx(t),My(t),Mz(t)是磁化強(qiáng)度矢量在三個(gè)坐標(biāo)軸的分量;M0為施加新的RF脈沖前的初始值;mp表示射頻脈沖的相位矩陣(等于單位對(duì)象陣,由于RF脈沖設(shè)計(jì)為非負(fù)數(shù))。mr為旋轉(zhuǎn)矩陣:
MRF與MRI最大不同的是:在同一個(gè)k空間編碼中,采用了多組不同的偽隨機(jī)變化的RF翻轉(zhuǎn)角和TR值。
平衡態(tài)時(shí):Mx=0,My=0,Mz=1,即M0=1;MRF序列首先施加180度翻轉(zhuǎn)脈沖后:m0=[0,0,-1],以此為初始值,采用500組RF翻轉(zhuǎn)角和TR值中的第一組,根據(jù)公式(1),取t=TR(1)/2作為采集時(shí)刻,得到Mx(1),My(1),Mz(1),即為字典信號(hào)中的第一個(gè)點(diǎn)。
再根據(jù)公式(1),取t=TR(1)得到TR結(jié)束時(shí)的磁化矢量,并作為下次運(yùn)算的新初始值m0。進(jìn)行重復(fù)計(jì)算,一直到計(jì)算出Mx(500),My(500),Mz(500)為止。對(duì)任意一個(gè)T1,T2參數(shù)組合,將計(jì)算出的Mx(1),Mx(2),…,Mx(500)連成一條曲線就得到了一條字典信號(hào)的實(shí)部;將計(jì)算出的My(1),My(2),…,My(500)連成一條曲線就得到了一條字典信號(hào)的虛部。
字典的建立需要設(shè)定偽隨機(jī)變化的翻轉(zhuǎn)角FA和重復(fù)時(shí)間TR的值,且必須與實(shí)際掃描時(shí)序列的參數(shù)值相同,才能用于對(duì)采集數(shù)據(jù)的匹配。FA采用分段函數(shù)實(shí)現(xiàn),TR取值范圍為9~14 ms之間的隨機(jī)值,TR很短以保證MRF序列總時(shí)間不長(zhǎng)。FA和TR的取值見(jiàn)圖1和圖2,公式分別為:
圖1 翻轉(zhuǎn)角
圖2 重復(fù)時(shí)間
0≤n<250
250≤n<500
(2)
TR=rand(1,500)*5+9
(3)
采用了兩種模型作為MRF成像的數(shù)據(jù)仿真對(duì)象。其中一個(gè)模型采用BrainWeb數(shù)據(jù)庫(kù)中的人腦模型數(shù)據(jù),模型的大小為181x217x181。在橫斷位方向,從181層挑選9層做實(shí)驗(yàn)。由于傅里葉變換要求矩陣的大小為2的N次方,所以將這9層數(shù)據(jù)模型擴(kuò)大為256x256。大腦模型由10種不同組織按照各自的質(zhì)子密度混合而成,各種組織的T1,T2以及質(zhì)子密度信息見(jiàn)表1。
表1 大腦模型的組織參數(shù)
第二種數(shù)據(jù)模型是我們?cè)O(shè)計(jì)的以中南民族大學(xué)的英文簡(jiǎn)稱“SCUEC”為核心的模體,5個(gè)字母結(jié)構(gòu)中分別注入不同的液體,代表不同的組織。模型大小為256x256,尺寸為25 cm,參數(shù)信息見(jiàn)表2。
表2 “SCUEC”模型參數(shù)
對(duì)兩種模型,采用500組不同的FA和TR構(gòu)成的序列參數(shù),模擬進(jìn)行單支螺旋的k空間軌跡快速采樣,并采用非均勻付立葉重建的快速算法NUFFT[8],得到500組重建圖像。將500組圖像中的空間每個(gè)體素點(diǎn)的信號(hào)進(jìn)行組合,形成每個(gè)體素點(diǎn)所代表的組織隨參數(shù)衰減的時(shí)間信號(hào),供后續(xù)與字典匹配使用。
每個(gè)體素點(diǎn)的信號(hào)需要與字典進(jìn)行匹配才能得到組織的參數(shù)信息。為了提高匹配效率,我們采用基于SVD分解的快速組匹配算法,步驟如下:
(1)隨機(jī)從字典中選取一行作為初始信號(hào)S0,將初始信號(hào)S0和字典所有入口信號(hào)的元素進(jìn)行內(nèi)積運(yùn)算,內(nèi)積排在前542的所有入口信號(hào)將作為第一組,并且計(jì)算第一組的平均信號(hào),記為S1;(2)將其它內(nèi)積排序在次542的字典信號(hào)作為第二組,并且計(jì)算第二組的平均信號(hào),記為S2;直到字典不再剩余信號(hào),最后得到8個(gè)小組和8個(gè)平均信號(hào)(注:第1-7組均含542條信號(hào),第8組含552條信號(hào))。(3)對(duì)8個(gè)字典小組進(jìn)行奇異值分解,根據(jù)統(tǒng)計(jì)計(jì)算出8組字典奇異值數(shù)目最大值為20。取每個(gè)字典小組右特征向量的前20列表示字典特征信息,以此作為新的字典,進(jìn)一步壓縮了字典大小;(4)先將待匹配信號(hào)與8個(gè)組的平均信號(hào)內(nèi)積運(yùn)算,挑選內(nèi)積最大的小組;(5)對(duì)待匹配的每個(gè)體素的信號(hào)進(jìn)行奇異值分解,也取右特征向量的前20個(gè)。(6)待匹配信號(hào)的特征向量與該小組的所有入口特征向量進(jìn)行內(nèi)積運(yùn)算,內(nèi)積最大的字典入口對(duì)應(yīng)的參數(shù)組合作為最佳匹配結(jié)果。
例如,矩陣DSVD_i∈Cn×m代表初始字典的一個(gè)小組進(jìn)行SVD后得到的特征小組,n是字典小組的入口數(shù),m是字典小組每行的特征值個(gè)數(shù)(取20個(gè))。假設(shè)dj,j=1,…,n是DSVD_i的第j行;x是待匹配信號(hào)。對(duì)x進(jìn)行SVD分解,再和特征字典小組里的每一行dj進(jìn)行內(nèi)積運(yùn)算,內(nèi)積最大的那行dmax就是模板信號(hào)的最佳匹配結(jié)果,從而可以得到組織的相關(guān)參數(shù)屬性T1,T2。dmax滿足以下公式 :
(4)
其中,x*為信號(hào)x的共軛轉(zhuǎn)置,SVD是進(jìn)行奇異值分解運(yùn)算,||為向量的模運(yùn)算,特征向量和字典特征小組里的每一行dj進(jìn)行內(nèi)積運(yùn)算之前,先進(jìn)行歸一化。
“磁共振指紋”成像方法的匹配過(guò)程與將人體指紋和指紋庫(kù)匹配過(guò)程類似,一旦匹配成功,關(guān)于個(gè)人/組織的其它相關(guān)參數(shù)信息(如姓名籍貫/T1,T2參數(shù))也將同時(shí)得到。
我們利用兩種不同的模型,分別對(duì)直接匹配算法和基于SVD的快速組匹配算法進(jìn)行測(cè)試,并對(duì)算法的準(zhǔn)確度和計(jì)算效率進(jìn)行對(duì)比。采用配置為Intel(R) Core(TM) i7-4790處理器,3.6 GHZ,8 G內(nèi)存和2 T硬盤的聯(lián)想M4500工作站,在MATLAB 2013b環(huán)境下進(jìn)行測(cè)試。
算法性能測(cè)試采用重建數(shù)據(jù)的匹配參數(shù)圖與原始圖之間的均方根誤差作為衡量標(biāo)準(zhǔn),誤差越小,匹配準(zhǔn)確度越高。公式為:
(5)
其中:X為匹配的參數(shù)結(jié)果圖,Y為原始參數(shù)圖。
表3、表4顯示了兩種模型在兩種算法下的匹配誤差。從中可以看出,相比于直接匹配算法,基于SVD的快速組匹配分解算法并沒(méi)有降低匹配的準(zhǔn)確度,而且準(zhǔn)確度還有提高,這是因?yàn)椴捎闷娈愔捣纸夂螅A舻奶卣飨蛄坑行У南诵盘?hào)中噪聲的影響,在匹配的時(shí)候,可以匹配到更準(zhǔn)確的字典信號(hào),即參數(shù)量化更加準(zhǔn)確。
表3 T1匹配誤差
表4 T2匹配誤差
從表5可以看出,基于SVD的快速組匹配分解算法的匹配時(shí)間最短,從直接匹配的1 h降低為7.3 s。相比于直接匹配算法,降低了三個(gè)數(shù)量級(jí);相比于簡(jiǎn)單的分組匹配降低了一個(gè)數(shù)量級(jí)。
表5 匹配時(shí)間(s)
圖3a和3b分別顯示了頭部模型第100層的原始T1/T2參數(shù)(左邊列),及直接匹配法和我們方法得到的參數(shù)T1/T2的匹配結(jié)果(分別為中間列和右邊列)。圖3c和圖3d分別顯示了SCUEC模型的原始T1/T2參數(shù)(左邊列),及直接匹配法和我們方法得到的參數(shù)T2/T2的匹配結(jié)果(分別為中間列和右邊列)。
圖3 大腦模型和SCUEC模型的參數(shù)匹配結(jié)果
“磁共振指紋”成像是醫(yī)學(xué)成像領(lǐng)域的基于MR現(xiàn)象一種全新技術(shù)。其采用的數(shù)據(jù)處理過(guò)程與傳統(tǒng)MRI的最大區(qū)別是圖像重建后,還要進(jìn)行參數(shù)數(shù)據(jù)的匹配運(yùn)算,得到T1,T2等參數(shù)的準(zhǔn)確值。我們采用的基于SVD的快速組匹配算法,在基本保證參數(shù)匹配準(zhǔn)確度的前提下,大大地減少數(shù)據(jù)匹配時(shí)間,使得該方法向臨床應(yīng)用更進(jìn)一步。相信在可見(jiàn)的將來(lái),MRF技術(shù)會(huì)像MRI一樣應(yīng)用于臨床,且疾病的診斷不再依賴于醫(yī)生的經(jīng)驗(yàn),量化的組織參數(shù)信息更為直接地代表了疾病信息。