亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        淡水環(huán)境中微塑料的賦存、來源和生態(tài)毒理效應(yīng)研究進(jìn)展

        2017-10-16 01:29:48丁劍楠張閃閃鄒華張?jiān)?/span>朱榮
        關(guān)鍵詞:毒理中微淡水

        丁劍楠,張閃閃,鄒華*,張?jiān)?,朱榮

        淡水環(huán)境中微塑料的賦存、來源和生態(tài)毒理效應(yīng)研究進(jìn)展

        丁劍楠1,2,張閃閃1,鄒華1,2*,張?jiān)?,2,朱榮1

        1. 江南大學(xué)環(huán)境與土木工程學(xué)院,江蘇 無錫 214122;2. 江蘇省水處理技術(shù)與材料協(xié)同創(chuàng)新中心,江蘇 蘇州 215009

        塑料制品在當(dāng)今社會(huì)中被大量生產(chǎn)和使用,導(dǎo)致其不斷進(jìn)入水環(huán)境。環(huán)境中的塑料垃圾會(huì)進(jìn)一步分解為很多粒徑小于5 mm的塑料殘片,即微塑料。微塑料作為一類新型污染物,已受到國內(nèi)外學(xué)者和公眾的廣泛關(guān)注。然而,現(xiàn)階段有關(guān)微塑料污染的研究主要集中在海洋環(huán)境,而內(nèi)陸淡水環(huán)境與人類接觸頻繁,其微塑料污染應(yīng)受到更多重視。為全面了解淡水環(huán)境中微塑料污染現(xiàn)狀,加強(qiáng)對(duì)微塑料污染的風(fēng)險(xiǎn)監(jiān)控,文章總結(jié)了近些年的相關(guān)研究,綜述了淡水環(huán)境中微塑料的賦存、來源和生態(tài)毒理效應(yīng)。有關(guān)研究表明,微塑料污染可能在全世界淡水環(huán)境中普遍存在,其在淡水水體、沉積物和淡水生物中均有賦存;而中國內(nèi)陸淡水環(huán)境中微塑料的污染可能尤為嚴(yán)重。淡水環(huán)境中微塑料的來源尚不明確,主要直接來源可能包括污水處理廠的尾水排放、水環(huán)境中塑料垃圾的風(fēng)化降解以及水土流失或地表徑流形成的陸源輸入;而初始源頭可能包括了個(gè)人護(hù)理品、合成紡織品、工業(yè)原料以及城鎮(zhèn)、農(nóng)業(yè)、旅游、工業(yè)區(qū)塑料垃圾的不當(dāng)處置。另外,微塑料會(huì)對(duì)淡水生物造成物理性損傷和生化水平脅迫,并有可能與其他污染物形成復(fù)合污染,對(duì)淡水生物產(chǎn)生交互效應(yīng)。因此,對(duì)淡水環(huán)境中微塑料污染的深入研究已刻不容緩。今后可在環(huán)境因素對(duì)微塑料污染特征的影響、微塑料污染的源解析、微塑料與污染物的生態(tài)交互效應(yīng)這三方面加強(qiáng)研究。文章可為淡水環(huán)境中微塑料的污染和生態(tài)風(fēng)險(xiǎn)研究提供理論參考。

        微塑料;淡水環(huán)境;賦存;來源;生態(tài)毒理效應(yīng)

        塑料制品在當(dāng)今社會(huì)中被廣泛應(yīng)用,其在全球范圍內(nèi)的年產(chǎn)量已超過 3×108t,并且正以 0.2×108t·a-1的速度增長。由于大量的生產(chǎn)和使用,塑料制品不可避免地會(huì)進(jìn)入水環(huán)境。據(jù)估算,全球海洋表面漂浮著超過2.5×105t塑料垃圾(Eriksen et al.,2014)。這些塑料垃圾經(jīng)過物理降解、光降解和生物降解作用,會(huì)進(jìn)一步分解形成粒徑小于5 mm的微塑料(Law et al.,2014)。微塑料的種類繁多,以材質(zhì)劃分,目前環(huán)境中檢出的微塑料主要包括聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚酯(PEst)和聚對(duì)苯二甲酸類(PET)(Wagner et al.,2014;屈沙沙等,2017);在形狀上則分為塑料粒料、微纖維、塑料顆粒、泡沫塑料和薄膜等(王昆等,2017)。

        作為一類新型污染物,微塑料已受到國內(nèi)外學(xué)者的高度關(guān)注,而目前的微塑料污染調(diào)查主要集中在海洋環(huán)境(Cole et al.,2011;Do Sul et al.,2014),包括加拿大(Desforges et al.,2014)、巴西(Miranda et al.,2016)、西歐(Steer et al.,2017)、中國(Zhao et al.,2014),甚至南極洲(Cincinelli et al.,2017)附近海域,均報(bào)道了微塑料的檢出。微塑料的大量賦存會(huì)對(duì)生物產(chǎn)生毒性效應(yīng),造成嚴(yán)重的生態(tài)風(fēng)險(xiǎn)(Wright et al.,2013;周倩等,2015),甚至可能通過食物鏈傳遞(Set?l? et al.,2014),威脅人體健康。海洋環(huán)境中的微塑料污染在河口地區(qū)尤為嚴(yán)重,表明陸地河流輸入是近海水體中微塑料的重要來源(Browne et al.,2011;Vendel et al.,2017;Zhao et al.,2014)。然而,目前內(nèi)陸淡水環(huán)境中微塑料的污染研究尚處于起步階段。相較于海洋環(huán)境,內(nèi)陸淡水環(huán)境與人類接觸更為頻繁,因此開展淡水環(huán)境中微塑料水體污染與生態(tài)風(fēng)險(xiǎn)的研究已刻不容緩。

        本文通過文獻(xiàn)調(diào)研,對(duì)淡水環(huán)境中微塑料的賦存現(xiàn)狀、來源以及生態(tài)毒理效應(yīng)的研究進(jìn)行了綜述,可為淡水環(huán)境中微塑料的污染和生態(tài)風(fēng)險(xiǎn)研究提供理論參考。

        1 淡水環(huán)境中微塑料的賦存現(xiàn)狀

        1.1 水體

        現(xiàn)階段微塑料水體檢測方法尚未標(biāo)準(zhǔn)化,導(dǎo)致微塑料的環(huán)境污染調(diào)查工作無法充分開展。目前的微塑料定量分析主要通過目檢法實(shí)現(xiàn),利用體視顯微鏡,對(duì)微塑料顆粒進(jìn)行人工計(jì)數(shù),該方法較為費(fèi)時(shí)費(fèi)力,且誤差較大;Micro-FT-IR、Micro-Raman、Pyr-GC-MS等高效定量分析方法能夠大大提高微塑料定量分析的準(zhǔn)確性,但成本較高(王昆等,2017)。因此,發(fā)展準(zhǔn)確、迅速且成本較低的微塑料水體檢測方法是現(xiàn)階段的當(dāng)務(wù)之急。

        根據(jù)有限的研究結(jié)果,微塑料污染可能廣泛存在于淡水水體中。在北美五大湖流域,漂浮在水面的微塑料的平均豐度高達(dá)43000 ind·km-2(Eriksen et al.,2013)。而在歐洲多個(gè)國家的淡水湖泊或河流中,均已檢測出微塑料的水體賦存(Eerkes-Medrano et al.,2015),其中瑞士日內(nèi)瓦湖的微塑料最高豐度已達(dá)到48146 ind·km-2(Faure et al.,2012)。值得注意的是,F(xiàn)ree et al.(2014)在位于亞洲地區(qū)的蒙古國北部的庫蘇古爾湖表層水中,同樣發(fā)現(xiàn)了微塑料污染,其平均豐度為20264 ind·km-2;該區(qū)域地理位置偏遠(yuǎn),且人口稀少,這表明在缺乏有效防治措施的情況下,微塑料可能會(huì)受徑流、季風(fēng)等因素的作用,遷移擴(kuò)散至各類水域,最終對(duì)淡水環(huán)境和人類健康造成不可估量的風(fēng)險(xiǎn)。

        中國淡水環(huán)境的微塑料污染調(diào)查同樣較為匱乏,從現(xiàn)有報(bào)道來看,中國淡水水體的微塑料污染可能十分嚴(yán)重。Wang et al.(2017a)近期調(diào)查發(fā)現(xiàn),武漢的城市湖泊和河流普遍受到了微塑料污染,其中,北湖的微塑料豐度最高,為(8925±1591)ind·m-3;武漢地區(qū)的微塑料污染與人口密度間呈現(xiàn)出明顯的正相關(guān)性,靠近市區(qū)的水體微塑料豐度遠(yuǎn)高于郊區(qū)。Zhao et al.(2015)對(duì)位于中國東南沿海的3個(gè)城市河口的調(diào)查發(fā)現(xiàn),臺(tái)州椒江口、溫州甌江口和福州閩江口水體中均存在微塑料污染,豐度范圍在100~4100 ind·m-3,且三地的微塑料污染水平與當(dāng)?shù)氐慕?jīng)濟(jì)產(chǎn)業(yè)結(jié)構(gòu)息息相關(guān)。另外,在太湖的表層水體中同樣報(bào)道了微塑料的賦存,豐度為3.4~25.8 ind·L-1,其中漂浮在水面的微塑料豐度達(dá)到了 0.01×106~6.8×106ind·km-2,遠(yuǎn)高于武漢、臺(tái)州、溫州、福州和國外其他地區(qū)的淡水水域;太湖西北部竺山灣和梅梁灣的微塑料污染狀況尤為嚴(yán)重,這可能是由于該區(qū)域毗鄰蘇錫常城市圈,人口密度大,人類活動(dòng)頻繁所致(Su et al.,2016)。Zhang et al.(2015;2017)發(fā)現(xiàn),三峽大壩附近的長江干流微塑料豐度高達(dá) 34.1×105~136×105ind·km-2,而香溪河回水區(qū)則為 0.55×105~342×105ind·km-2,均比其他淡水水體中的微塑料豐度高出約 1~3個(gè)數(shù)量級(jí),表明三峽庫區(qū)存在著嚴(yán)重的微塑料污染;作者同時(shí)指出,水力條件和面源輸入是影響三峽庫區(qū)微塑料分布和賦存水平的重要因素??傮w上,中國淡水水體的微塑料污染較嚴(yán)重,豐度高于世界其他地區(qū)。這一方面是由于中國人口密度較大,另一方面是由于中國缺乏合理的塑料垃圾監(jiān)管處置措施。Jambeck et al.(2015)報(bào)道稱,2010年中國有76%(約8.82×106t)的塑料垃圾沒有妥善處置,而美國該項(xiàng)比例僅為 2%(約 2.8×104t)。因此,盡快開展中國淡水水體中微塑料污染的調(diào)查和防治工作已顯得極為迫切。

        1.2 沉積物

        除水體之外,沉積物是微塑料在淡水環(huán)境中另一個(gè)重要的“匯”(Horton et al.,2017a;Wagner et al.,2014)。在世界范圍內(nèi),每千克淡水環(huán)境沉積物中微塑料的數(shù)量范圍在幾十到幾百個(gè)之間(Horton et al.,2017a),甚至要高于水體中的賦存水平。其中,德國萊茵河岸邊沉積物中微塑料豐度較高,達(dá)到了228~3763 ind·kg-1(Klein et al.,2015)。中國淡水環(huán)境沉積物中同樣檢出了微塑料的賦存。在長江下游的太湖(Su et al.,2016)以及長江口(Peng et al.,2017)沉積物中,微塑料的豐度分別達(dá)到了 11.0~234.6 ind·kg-1和 20~340 ind·kg-1。位于長江中上游的三峽香溪河回水區(qū)沉積物中,微塑料的豐度達(dá)到 80~864 ind·m-2,該地區(qū)沉積物中微塑料的空間分布與水體分布并不一致,而與水力條件有一定的相關(guān)性:一般在流速較低的河段,沉積物中微塑料豐度較高(Zhang et al.,2017)。Wang et al.(2017b)對(duì)位于珠江流域的北江的調(diào)查發(fā)現(xiàn),該地沉積物中微塑料豐度達(dá)到了178~544 ind·kg-1,高于目前已知的長江流域沉積物污染水平。另外需要注意的是,近期在中國西藏色林錯(cuò)流域的沉積物中,已經(jīng)發(fā)現(xiàn)了微塑料的賦存,其豐度為8~563 ind·m-2,表明青藏高原等偏遠(yuǎn)地區(qū)的微塑料污染同樣不容忽視(Zhang et al.,2016)。

        1.3 淡水生物

        由于水環(huán)境中微塑料的大小與浮游生物近似,因此極易被水生生物吞食,累積在生物體內(nèi)(Jabeen et al.,2017),甚至通過食物鏈逐級(jí)傳遞(Set?l? et al.,2014)。雖然海洋生物對(duì)微塑料的累積已有廣泛報(bào)道(Do Sul et al.,2014),但是現(xiàn)階段有關(guān)淡水生物對(duì)微塑料累積賦存的研究還相當(dāng)匱乏,且多集中于淡水魚類。野生淡水魚類體內(nèi)的微塑料主要存在于腸道中,其賦存特征與季節(jié)、魚類生活特性以及微塑料顆粒特征等有關(guān)。Dantas et al.(2012)對(duì)巴西某河口的調(diào)查發(fā)現(xiàn),在雨季后期,石首魚(Stellifer spp.)腸道內(nèi)的微塑料含量最高。Zhang et al.(2017)指出,以浮游生物為食的魚類更易攝食微塑料,且野生魚類腸道內(nèi)的微塑料以纖維狀為主,這可能是由于纖維狀微塑料具有較高的可變形性,更易被魚類吞食。此外,Su et al.(2016)首次在中國太湖的蛤類體內(nèi)檢出了微塑料的賦存,其體內(nèi)微塑料累積量是底泥中的38~3810倍,表明底棲無脊椎動(dòng)物同樣可能會(huì)賦存較多的微塑料。

        1.4 污染特征

        目前,淡水環(huán)境中微塑料的污染主要在北美和西歐(Eerkes-Medrano et al.,2015;Horton et al.,2017a),以及中國部分地區(qū)(Jabeen et al.,2017;Peng et al.,2017;Su et al.,2016;Wang et al.,2017b,a;Zhang et al.,2015,2016,2017;Zhao et al.,2014,2015)檢出;另外,在巴西(Dantas et al.,2012;Possatto et al.,2011;Ramos et al.,2012)、蒙古(Free et al.,2014)和印度(Sruthy et al.,2017)也偶有微塑料檢出(圖 1)??傮w上看,微塑料的污染水平在人口密集地區(qū)較高,但在人口稀少的偏遠(yuǎn)地區(qū),仍可能會(huì)出現(xiàn)一定水平的微塑料污染。相較于海洋環(huán)境,淡水環(huán)境受人類活動(dòng)影響更大,其微塑料污染也會(huì)受到更多因素的影響,包括流域周邊的城鎮(zhèn)化水平(Eriksen et al.,2013;Su et al.,2016;Wang et al.,2017a)、經(jīng)濟(jì)產(chǎn)業(yè)結(jié)構(gòu)(Zhao et al.,2015)、垃圾處置狀況(Free et al.,2014)、水文氣候條件(Zhang et al.,2017)以及微塑料的理化特性(Besseling et al.,2017)等。因此,淡水環(huán)境的微塑料污染在世界范圍內(nèi)顯現(xiàn)出很大的地區(qū)差異性。

        圖1 各國(地區(qū))淡水環(huán)境中微塑料檢出報(bào)道次數(shù)(至2017年6月)Fig. 1 The number of reports for occurrence of microplastics in the freshwater environment among different countries or regions(till June, 2017)

        以中國為例,中國淡水環(huán)境中有關(guān)微塑料檢出的報(bào)道主要集中于2014年以后,并有逐年增加的趨勢(Jabeen et al.,2017;Peng et al.,2017;Su et al.,2016;Wang et al.,2017b,a;Zhang et al.,2015,2016,2017;Zhao et al.,2014,2015),這表明近年來中國學(xué)者對(duì)淡水環(huán)境中的微塑料污染已經(jīng)愈發(fā)重視。根據(jù)目前的調(diào)查結(jié)果,微塑料污染在中國淡水環(huán)境中已普遍存在,并顯現(xiàn)出一些本土化特征。

        首先,從污染水平上看,中國淡水環(huán)境中的微塑料賦存豐度高于其他國家和地區(qū)(Su et al.,2016;Wang et al.,2017b;Zhang et al.,2015,2017)。另外,中國淡水環(huán)境中檢出的微塑料種類繁多,主要包括 4類:PP、PE、PS和 PET(圖 2);其中 PP和PE類檢出率最高,這可能是由于這兩類塑料制品在中國的產(chǎn)量較高(智研咨詢集團(tuán),2016)。在大小上,中國淡水環(huán)境中的微塑料粒徑以<2 mm為主(Peng et al.,2017;Su et al.,2016;Wang et al.,2017a;Zhang et al.,2015;Zhao et al.,2015),如武漢城市水體中的<2 mm 的微塑料占 80%以上(Wang et al.,2017a),椒江口、甌江口和閩江口漂浮微塑料中0.5~2 mm粒徑范圍占70%以上(Zhao et al.,2015),這與中國近海海域的微塑料大小相近(章海波等,2016)。但需要指出的是,現(xiàn)階段中國淡水環(huán)境的微塑料污染調(diào)查還不夠全面,相關(guān)研究主要集中在長江中下游地區(qū)(Jabeen et al.,2017;Peng et al.,2017;Su et al.,2016;Wang et al.,2017a;Zhang et al.,2015,2017;Zhao et al.,2014),該地區(qū)人口密集,工業(yè)較發(fā)達(dá),因此微塑料的污染可能較為嚴(yán)重;而除了珠江流域出現(xiàn)了一次微塑料檢出的報(bào)道外(Wang et al.,2017b),在中國其他主要水系,如黃河、淮河和松花江流域,有關(guān)微塑料污染的調(diào)查至今還沒有開展。因此,應(yīng)盡快調(diào)查這些地區(qū)的微塑料賦存特征,明晰中國淡水環(huán)境中微塑料污染的分布規(guī)律。

        圖2 中國淡水環(huán)境中各種微塑料檢出比例(至2017年6月)Fig. 2 The rates of various microplastics classes detected in the freshwater environment of China (till June, 2017)

        2 淡水環(huán)境中微塑料的來源

        目前,即便在相關(guān)研究較多的海洋環(huán)境中,其微塑料污染的主要來源也仍然沒有明確的結(jié)論,而淡水環(huán)境中微塑料的源解析工作則更加匱乏。水環(huán)境中微塑料的來源大致分為兩類:一是較大塑料產(chǎn)品的逐級(jí)裂解,最終形成粒徑小于5 mm的微塑料,二是化妝品、藥物、拋光料等產(chǎn)品中塑料微珠的直接使用(屈沙沙等,2017;王昆等,2017)。本文通過比較分析現(xiàn)有研究結(jié)果,初步推測了淡水環(huán)境中微塑料污染的主要來源和途徑(見圖3)。微塑料污染的直接來源可能包括污水處理廠的尾水排放、水體中塑料垃圾的風(fēng)化降解以及水土流失或地表徑流形成的陸源輸入(Browne et al.,2011;Eerkes-Medrano et al.,2015;Hüffer et al.,2017;Horton et al.,2017a;Wagner et al.,2014),但這些推論還存在爭議。Carr et al.(2016)發(fā)現(xiàn)美國南加利福尼亞州的三級(jí)污水處理廠尾水中幾乎沒有微塑料的檢出,而二級(jí)污水處理廠尾水中的微塑料豐度也較低,平均每 1.14 升尾水中僅含有 1個(gè)微塑料顆粒;大部分微塑料在一級(jí)處理工藝段(撇油撇沫和沉淀)中已被有效去除,因此該作者認(rèn)為污水處理廠尾水可能并不是淡水環(huán)境中微塑料污染的主要來源。然而,Murphy et al.(2016)對(duì)蘇格蘭格拉斯哥某大型二級(jí)污水處理廠(日處理量 260954 m3)的調(diào)查發(fā)現(xiàn),雖然尾水中微塑料的最終去除率高達(dá)98.41%,但每天仍有約6.5×107個(gè)微塑料顆粒被排入受納水體,表明污水廠是微塑料污染的重要點(diǎn)源。比較兩者的報(bào)道可知,污水廠對(duì)微塑料污染的貢獻(xiàn)大小可能與其規(guī)模、所處地區(qū)以及進(jìn)水類型有關(guān)。此外,Horton et al.(2017a)指出陸源微塑料會(huì)通過地表徑流進(jìn)入河流和湖泊。該研究團(tuán)隊(duì)對(duì)英國泰晤士河流域進(jìn)行了調(diào)查,發(fā)現(xiàn)雨水管道排水口下游的沉積物中出現(xiàn)了大粒徑(1~4 mm)微塑料的大量賦存,最高豐度達(dá)到了660 ind·kg-1;該處微塑料以片狀為主,作者認(rèn)為這很可能是周邊城市道路的油漆路標(biāo)被雨水沖刷后,通過雨水收集管道的排放,最終賦存在了泰晤士河沉積物中(Horton et al.,2017b)。另外,Klein et al.(2015)在德國萊茵河岸邊帶沉積物中同樣發(fā)現(xiàn)了微塑料的大量賦存(228~3763 ind·kg-1),進(jìn)一步證實(shí)了陸源輸入對(duì)淡水環(huán)境微塑料污染的重要性。

        淡水環(huán)境中微塑料的初始源頭則更加難以追溯。Carr et al.(2016)發(fā)現(xiàn)污水廠進(jìn)水中微塑料顆粒的顏色、形狀和大小與牙膏配方中的PE微粒均十分相似,表明牙膏等個(gè)人護(hù)理品中的塑料微粒很可能是淡水環(huán)境中微塑料污染的源頭之一。此外,合成紡織品、工業(yè)原料以及城鎮(zhèn)、農(nóng)業(yè)、旅游、工業(yè)區(qū)塑料垃圾的不當(dāng)處置,均會(huì)造成微塑料的污染,并通過各種途徑進(jìn)入淡水環(huán)境(圖3)。其中,衣物等人工合成纖維紡織品的清洗被認(rèn)為是微塑料污染的重要源頭(Browne et al.,2011;Peng et al.,2017)。Hernandez et al.(2017)在實(shí)驗(yàn)室模擬了家用洗衣機(jī)清洗衣物的過程,發(fā)現(xiàn)洗衣機(jī)的排水中含有大量的纖維狀微塑料,且使用洗滌劑后,洗衣機(jī)排水中微塑料含量/(每克紡織品含有0.1 mg纖維狀微塑料)遠(yuǎn)高于未使用洗滌劑的洗衣機(jī)排水(每克紡織品含有0.025 mg纖維狀微塑料)。此外,船舶運(yùn)輸、工業(yè)原料泄漏、風(fēng)力傳送等過程也會(huì)造成淡水環(huán)境中一定程度的微塑料污染(McDevitt et al.,2017)。總體來看,目前學(xué)術(shù)界對(duì)淡水環(huán)境中微塑料污染的源解析還存在很多不足,亟待加強(qiáng)相關(guān)研究。

        圖3 淡水環(huán)境中微塑料的可能主要來源Fig. 3 Potential main sources of microplastics in the freshwater environment

        3 微塑料對(duì)淡水生物的生態(tài)毒理效應(yīng)

        目前有關(guān)微塑料生態(tài)毒理效應(yīng)的研究主要集中在海洋生物,結(jié)果表明,微塑料能夠在基因、細(xì)胞、組織和個(gè)體等各種水平上對(duì)海洋生物產(chǎn)生毒理效應(yīng)(周倩等,2015)。然而,有關(guān)淡水生物生態(tài)毒理效應(yīng)的研究還十分匱乏。

        3.1 微塑料的單一毒理效應(yīng)

        野生淡水魚類和底棲無脊椎動(dòng)物會(huì)吞食并累積環(huán)境中的微塑料。實(shí)驗(yàn)室研究則進(jìn)一步證實(shí)微塑料能夠在浮游動(dòng)物大型溞(Daphnia magna)體內(nèi)大量累積(Besseling et al.,2014;Nasser et al.,2016;Rehse et al.,2016;Rosenkranz et al.,2009);此外,鉤蝦(Gammarus fossarum)(Blarer et al.,2016)、端足蟲(Hyalella azteca)(Au et al.,2015)、夾雜帶絲蚓(Lumbricus variegates)(Imhof et al.,2013)和青鳉魚(Oryzias latipes)(Rochman et al.,2013a)等不同營養(yǎng)級(jí)的淡水生物均會(huì)累積微塑料。然而,近期也有報(bào)道指出金魚(Carassius auratus)能夠迅速排泄微塑料,因而微塑料不會(huì)在其腸道中累積(Grigorakis et al.,2017),表明微塑料在淡水生物中的累積可能存在種間差異。

        微塑料一旦在淡水生物體內(nèi)累積后,會(huì)造成各種物理性損傷,最終可能會(huì)對(duì)水生系統(tǒng)造成無法預(yù)知的生態(tài)風(fēng)險(xiǎn)。例如,納米級(jí)微塑料會(huì)通過靜電作用吸附在月牙藻(Pseudokirchneriella subcapitata)(Nolte et al.,2017)、小球藻(Chlorella spp.)和柵藻(Scenedesmus spp.)(Bhattacharya et al.,2010)表面,阻礙藻胞對(duì)光子和CO2的吸收利用,從而降低藻類的光合作用效率,導(dǎo)致藻類生長受到抑制(Bhattacharya et al.,2010)。微塑料會(huì)堵塞浮游動(dòng)物的攝食器官和消化道(Au et al.,2015;Besseling et al.,2014;Blarer et al.,2016;Nasser et al.,2016;Rehse et al.,2016;Rosenkranz et al.,2009),降低其攝食率(Nasser et al.,2016),或直接干擾其攝食過程(Au et al.,2015;Blarer et al.,2016),導(dǎo)致能量缺乏,生長、活動(dòng)、繁殖能力減弱(Au et al.,2015;Besseling et al.,2014;Casado et al.,2013;Rehse et al.,2016),甚至引起個(gè)體死亡(Au et al.,2015;Besseling et al.,2014;Blarer et al.,2016;Casado et al.,2013)。此外,微塑料的累積還會(huì)引起青鳉魚肝臟出現(xiàn)肝糖原耗竭和脂肪空泡等病理現(xiàn)象(Rochman et al.,2013a)。除了物理性損傷,微塑料自身還會(huì)浸出增塑劑等化學(xué)物質(zhì),從而對(duì)淡水生物造成毒理效應(yīng)。Lithner et al.(2009)研究了多種塑料制品浸出成分對(duì)大型溞的影響,發(fā)現(xiàn)PVC和聚氨酯(PU)會(huì)對(duì)大型溞產(chǎn)生急性毒性??傮w來看,現(xiàn)階段有關(guān)微塑料對(duì)淡水生物毒理效應(yīng)的研究還主要局限于個(gè)體和組織水平,今后應(yīng)從細(xì)胞和基因水平深入研究微塑料的毒性效應(yīng)機(jī)制,積累更多的毒理學(xué)基礎(chǔ)數(shù)據(jù)。

        3.2 微塑料與復(fù)合污染物的聯(lián)合毒理效應(yīng)

        水環(huán)境中存在多種污染物,而微塑料粒徑小,比表面積大,且具有疏水性,極有可能成為其他污染物的載體,形成復(fù)合污染(Rochman et al,2013b;Teuten et al,2009)。微塑料吸附的環(huán)境污染物在生物體內(nèi)釋放,可能會(huì)產(chǎn)生一系列毒理效應(yīng)(屈沙沙等,2017)。針對(duì)單一微塑料的生態(tài)毒理效應(yīng)研究顯然不足以反映水環(huán)境污染的真實(shí)風(fēng)險(xiǎn),研究微塑料與其他污染物復(fù)合污染的聯(lián)合效應(yīng)成為當(dāng)前的關(guān)鍵問題。目前有關(guān)微塑料復(fù)合污染的研究剛剛起步,主要集中在與重金屬(HMs)、多環(huán)芳烴(PAHs)和多氯聯(lián)苯(PCBs)等傳統(tǒng)污染物對(duì)海洋生物的聯(lián)合效應(yīng)。微塑料可以改變水環(huán)境中HMs、PAHs和PCBs的生物有效性(Brennecke et al.,2016;Karami et al.,2016;Oliveira et al.,2013;Sleight et al.,2017),進(jìn)而引起海洋生物的蛋白質(zhì)合成、能量儲(chǔ)存和生物轉(zhuǎn)化等生理過程的復(fù)雜變化(Karami et al.,2016;Oliveira et al.,2013)。同時(shí),微塑料對(duì)代謝酶效能的抑制會(huì)削弱PAHs的代謝轉(zhuǎn)化,提高其在生物體內(nèi)的累積水平(Paul-Pont et al.,2016)。需要注意的是,近期已有研究指出微塑料能夠吸附水體中的全氟化合物(PFCs)(Wang et al.,2015)、藥物及個(gè)人護(hù)理品(PPCPs)(Wu et al.,2016)和多溴聯(lián)苯醚(PBDEs)(Wardrop et al.,2016)等新型污染物,并對(duì)這些新型污染物的遷移、轉(zhuǎn)化和生態(tài)毒理效應(yīng)產(chǎn)生影響(Browne et al.,2013;Fonte et al.,2016;Wardrop et al.,2016)。

        由于更接近人類活動(dòng)區(qū)域,淡水環(huán)境中傳統(tǒng)和新型污染物的種類和濃度都要高于海洋環(huán)境,然而目前還沒有出現(xiàn)微塑料復(fù)合污染對(duì)淡水生物生態(tài)毒理效應(yīng)研究的相關(guān)報(bào)道(Horton et al.,2017a),這應(yīng)是將來重點(diǎn)關(guān)注的研究領(lǐng)域。

        4 總結(jié)與展望

        海洋環(huán)境中的微塑料污染問題已經(jīng)受到了數(shù)年的關(guān)注,在聯(lián)合國環(huán)境規(guī)劃署2014年發(fā)布的年鑒《UNEP Year Book 2014: Emerging Issues in Our Global Environment》(UNEP,2014)中,已將其上升為全球性政策問題予以重視。通過文獻(xiàn)綜述,發(fā)現(xiàn)淡水環(huán)境中微塑料的污染同樣十分嚴(yán)重,且會(huì)對(duì)淡水生態(tài)系統(tǒng)產(chǎn)生負(fù)面效應(yīng)。然而,相關(guān)的研究剛剛起步,針對(duì)這些問題開展系統(tǒng)性的工作已迫在眉睫。

        首先,國內(nèi)外淡水環(huán)境中微塑料賦存水平和分布狀況的基礎(chǔ)數(shù)據(jù)還十分匱乏,尤其是水文水質(zhì)和氣候等環(huán)境因素對(duì)微塑料污染特征的影響需要深入研究。一些野外調(diào)查工作雖然初步探討了河流流速或降水對(duì)微塑料污染的影響,但仍缺乏系統(tǒng)的研究,建議今后結(jié)合環(huán)境監(jiān)測與環(huán)境行為模擬等多種途徑對(duì)該問題進(jìn)行深入探索。

        其次,國內(nèi)外學(xué)者對(duì)淡水環(huán)境中微塑料的主要來源和污染途徑還沒有形成共識(shí)。由于塑料制品被廣泛應(yīng)用于人類的生產(chǎn)生活中,且淡水環(huán)境的污染受納途徑較復(fù)雜,因此對(duì)微塑料污染的源解析工作十分必要?,F(xiàn)階段應(yīng)盡快建立微塑料污染的源解析技術(shù)標(biāo)準(zhǔn),分析環(huán)境中微塑料的遷移轉(zhuǎn)化過程,為微塑料污染來源和途徑的確定提供技術(shù)支撐和理論基礎(chǔ)。

        最后,微塑料與淡水環(huán)境中的其他物質(zhì),尤其是新型污染物的復(fù)合污染研究尚未開展。由于特殊的理化特征,微塑料極有可能通過不同方式結(jié)合環(huán)境中的污染物,這是否會(huì)對(duì)淡水生物產(chǎn)生聯(lián)合毒性效應(yīng),或者改變其他污染物的生物累積和食物鏈傳遞過程,將是今后需要重點(diǎn)研究的問題之一,該方面的研究對(duì)環(huán)境中微塑料生態(tài)健康風(fēng)險(xiǎn)評(píng)估標(biāo)準(zhǔn)的制定具有重要意義。

        AU S Y, BRUCE T F, BRIDGES W C, et al. 2015. Responses of Hyalella azteca to acute and chronic microplastic exposures [J]. Environmental Toxicology and Chemistry, 34(11): 2564-2572.

        BESSELING E, QUIK J T K, SUN M, et al. 2017. Fate of nano-and microplastic in freshwater systems: A modeling study [J].Environmental Pollution, 220(Part A): 540-548.

        BESSELING E, WANG B, LüRLING M, et al. 2014. Nanoplastic affects growth of S. obliquus and reproduction of D. magna [J]. Environmental Science & Technology, 48(20): 12336-12343.

        BHATTACHARYA P, LIN S, TURNER J P, et al. 2010. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis [J]. The Journal of Physical Chemistry C, 114(39): 16556-16561.

        BLARER P, BURKHARDT-HOLM P. 2016. Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum [J]. Environmental Science and Pollution Research, 23:23522-23532.

        BRENNECKE D, DUARTE B, PAIVA F, et al. 2016. Microplastics as vector for heavy metal contamination from the marine environment [J].Estuarine, Coastal and Shelf Science, 178: 189-195.

        BROWNE M A, CRUMP P, NIVEN S J, et al. 2011. Accumulation of microplastic on shorelines woldwide: sources and sinks [J].Environmental Science & Technology, 45(21): 9175-9179.

        BROWNE M A, NIVEN S J, GALLOWAY T S, et al. 2013. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity [J]. Current Biology, 23(23): 2388-2392.

        CARR S A, LIU J, TESORO A G. 2016. Transport and fate of microplastic particles in wastewater treatment plants [J]. Water Research, 91:174-182.

        CASADO M P, MACKEN A, BYRNE H J. 2013. Ecotoxicological assessment of silica and polystyrene nanoparticles assessed by a multitrophic test battery [J]. Environment International, 51: 97-105.

        CINCINELLI A, SCOPETANI C, CHELAZZI D, et al. 2017. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence,distribution and characterization by FTIR [J]. Chemosphere, 175:391-400.

        COLE M, LINDEQUE P, HALSBAND C, et al. 2011. Microplastics as contaminants in the marine environment: a review [J]. Marine Pollution Bulletin, 62(12): 2588-2597.

        DANTAS D V, BARLETTA M, DA COSTA M F. 2012. The seasonal and spatial patterns of ingestion of polyfilament nylon fragments by estuarine drums (Sciaenidae) [J]. Environmental Science and Pollution Research, 19(2): 600-606.

        DESFORGES J P W, GALBRAITH M, DANGERFIELD N, et al. 2014.Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean [J]. Marine Pollution Bulletin, 79(1-2): 94-99.

        DO SUL J A I, COSTA M F. 2014. The present and future of microplastic pollution in the marine environment [J]. Environmental Pollution, 185:352-364.

        EERKES-MEDRANO D, THOMPSON R C, ALDRIDGE D C. 2015.Microplastics in freshwater systems: a review of the emerging threats,identification of knowledge gaps and prioritisation of research needs[J]. Water Research, 75: 63-82.

        ERIKSEN M, LEBRETON L C M, CARSON H S, et al. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea [J]. PloS ONE, 9(12):e111913.

        ERIKSEN M, MASON S, WILSON S, et al. 2013. Microplastic pollution in the surface waters of the Laurentian Great Lakes [J]. Marine Pollution Bulletin, 77(1-2): 177-182.

        FAURE F, CORBAZ M, BAECHER H, et al. 2012. Pollution due to plastics and microplastics in Lake Geneva and in the Mediterranean Sea [J].Archives Des Sciences, 65: 157-164.

        FONTE E, FERREIRA P, GUILHERMINO L. 2016. Temperature rise and microplastics interact with the toxicity of the antibiotic cefalexin to juveniles of the common goby (Pomatoschistus microps):Post-exposure predatory behaviour, acetylcholinesterase activity and lipid peroxidation [J]. Aquatic Toxicology, 180: 173-185.

        FREE C M, JENSEN O P, MASON S A, et al. 2014. High-levels of microplastic pollution in a large, remote, mountain lake [J]. Marine Pollution Bulletin, 85(1): 156-163.

        GRIGORAKIS S, MASON S A, DROUILLARD K G. 2017. Determination of the gut retention of plastic microbeads and microfibers in goldfish(Carassius auratus) [J]. Chemosphere, 169: 233-238.

        HERNANDEZ E, NOWACK B, MITRANO D M. 2017. Synthetic textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing [J]. Environmental Science & Technology, 51(12):7036-7046.

        HORTON A A, SVENDSEN C, WILLIAMS R J, et al. 2017b. Large microplastic particles in sediments of tributaries of the River Thames,UK–Abundance, sources and methods for effective quantification [J].Marine Pollution Bulletin, 114(1): 218-226.

        HORTON A A, WALTON A, SPURGEON D J, et al. 2017a. Microplasticsin freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities [J]. Science of the Total Environment, 586: 127-141.

        HüFFER T, PRAETORIUS A, WAGNER S, et al. 2017. Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles [J].Environmental Science & Technology, 51(5): 2499-2507.

        IMHOF H K, IVLEVA N P, SCHMID J, et al. 2013. Contamination of beach sediments of a subalpine lake with microplastic particles [J]. Current Biology, 23(19): R867-R868.

        JABEEN K, SU L, LI J, et al. 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China [J]. Environmental Pollution,221: 141-149.

        JAMBECK J R, GEYER R, WILCOX C, et al. 2015. Plastic waste inputs from land into the ocean [J]. Science, 347: 768-771.

        KARAMI A, ROMANO N, GALLOWAY T, et al. 2016. Virgin microplastics cause toxicity and modulate the impacts of phenanthrene on biomarker responses in African catfish (Clarias gariepinus) [J].Environmental Research, 151: 58-70.

        KLEIN S, WORCH E, KNEPPER T P. 2015. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany [J]. Environmental Science &Technology, 49(10): 6070-6076.

        LAW K L, THOMPSON R C. 2014. Microplastics in the seas [J]. Science,345(6193): 144-145.

        LITHNER D, DAMBERG J, DAVE G, et al. 2009. Leachates from plastic consumer products–screening for toxicity with Daphnia magna [J].Chemosphere, 74(9): 1195-1200.

        MCDEVITT J P, CRIDDLE C S, MORSE M, et al. 2017. Addressing the issue of microplastics in the wake of the Microbead-Free Waters Act—a new standard can facilitate improved policy [J]. Environmental Science & Technology, 51(12): 6611-6617.

        MIRANDA D A, DE CARVALHO-SOUZA G F. 2016. Are we eating plastic-ingesting fish? [J]. Marine Pollution Bulletin, 103(1-2):109-114.

        MURPHY F, EWINS C, CARBONNIER F, et al. 2016. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 50(11): 5800-5808.

        NASSER F, LYNCH I. 2016. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna [J].Journal of Proteomics, 137: 45-51.

        NOLTE T M, HARTMANN N B, KLEIJN J M, et al. 2017. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption [J]. Aquatic Toxicology, 183: 11-20.

        OLIVEIRA M, RIBEIRO A, HYLLAND K, et al. 2013. Single and combined effects of microplastics and pyrene on juveniles (0+group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae) [J].Ecological Indicators, 34: 641-647.

        PAUL-PONT I, LACROIX C, FERNáNDEZ C G, et al. 2016. Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation [J]. Environmental Pollution, 216: 724-737.

        PENG G, ZHU B, YANG D, et al. 2017. Microplastics in sediments of the Changjiang Estuary, China [J]. Environmental Pollution, 225: 283-290.

        POSSATTO F E, BARLETTA M, COSTA M F, et al. 2011. Plastic debris ingestion by marine catfish: an unexpected fisheries impact [J]. Marine Pollution Bulletin, 62(5): 1098-1102.

        RAMOS J A A, BARLETTA M, COSTA M F. 2012. Ingestion of nylon threads by Gerreidae while using a tropical estuary as foraging grounds[J]. Aquatic Biology, 17: 29-34.

        REHSE S, KLOAS W, ZARFL C. 2016. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna [J]. Chemosphere, 153: 91-99.

        ROCHMAN C M, HOH E, HENTSCHEL B T, et al. 2013b. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris [J]. Environmental Science & Technology, 47(3): 1646-1654.

        ROCHMAN C M, HOH E, KUROBE T, et al. 2013a. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress [J].Scientific Reports, 3: 3263.

        ROSENKRANZ P, CHAUDHRY Q, STONE V, et al. 2009. A comparison of nanoparticle and fine particle uptake by Daphnia magna [J].Environmental Toxicology and Chemistry, 28(10): 2142-2149.

        SET?L? O, FLEMING-LEHTINEN V, LEHTINIEMI M. 2014. Ingestion and transfer of microplastics in the planktonic food web [J].Environmental Pollution, 185: 77-83.

        SLEIGHT V A, BAKIR A, THOMPSON R C, et al. 2017. Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish [J]. Marine Pollution Bulletin, 116(1-2): 291-297.

        SRUTHY S, RAMASAMY E V. 2017. Microplastic pollution in Vembanad Lake, Kerala, India: The first report of microplastics in lake and estuarine sediments in India [J]. Environmental Pollution, 222:315-322.

        STEER M, COLE M, THOMPSON R C, et al. 2017. Microplastic ingestion in fish larvae in the western English Channel [J]. Environmental Pollution, 226: 250-259.

        SU L, XUE Y, LI L, et al. 2016. Microplastics in Taihu Lake, China [J].Environmental Pollution, 216: 711-719.

        TEUTEN E L, SAQUING J M, KNAPPE D R U, et al. 2009. Transport and release of chemicals from plastics to the environment and to wildlife[J]. Philosophical Transactions of the Royal Society of London B:Biological Sciences, 364(1526): 2027-2045.

        UNITED NATIONS ENVIRONMENT PROGRAMME (UNEP). 2014.UNEP Year Book 2014: Emerging Issues in Our Global Environment[M]. Nairobi, Kenya: United Nations Environment Programme Publishing: 48-53.

        VENDEL A L, BESSA F, ALVES V E N, et al. 2017. Widespread microplastic ingestion by fish assemblages in tropical estuaries subjected to anthropogenic pressures [J]. Marine Pollution Bulletin,117(1-2): 448-455.

        WAGNER M, SCHERER C, ALVAREZ-MU?OZ D, et al. 2014.Microplastics in freshwater ecosystems: what we know and what we need to know [J]. Environmental Sciences Europe, 26: 1-9.

        WANG F, SHIH K M, LI X Y. 2015. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide(FOSA) on microplastics [J]. Chemosphere, 119: 841-847.

        WANG J, PENG J, TAN Z, et al. 2017b. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition,abundance, surface textures and interaction with heavy metals [J].Chemosphere, 171: 248-258.

        WANG W, NDUNGU A W, LI Z, et al. 2017a. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China [J]. Science of the Total Environment, 575: 1369-1374.WARDROP P, SHIMETA J, NUGEGODA D, et al. 2016. Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish [J]. Environmental Science & Technology, 50(7):4037-4044.

        WRIGHT S L, THOMPSON R C, GALLOWAY T S. 2013. The physical impacts of microplastics on marine organisms: a review [J].Environmental Pollution, 178: 483-492.

        WU C, ZHANG K, HUANG X, et al. 2016. Sorption of pharmaceuticals and personal care products to polyethylene debris [J]. Environmental Science and Pollution Research, 23(9): 8819-8826.

        ZHANG K, GONG W, LV J, et al. 2015. Accumulation of floating microplastics behind the Three Gorges Dam [J]. Environmental Pollution, 204: 117-123.

        ZHANG K, SU J, XIONG X, et al. 2016. Microplastic pollution of lakeshore sediments from remote lakes in Tibet plateau, China [J].Environmental Pollution, 219: 450-455.

        ZHANG K, XIONG X, HU H, et al. 2017. Occurrence and characteristics of microplastic pollution in Xiangxi bay of Three Gorges Reservoir,China [J]. Environmental Science & Technology, 51(7): 3794-3801.

        ZHAO S Y, ZHU L X, LI D J. 2015. Microplastic in three urban estuaries,China [J]. Environmental Pollution, 206: 597-604.

        ZHAO S Y, ZHU L X, WANG T, et al. 2014. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution [J]. Marine Pollution Bulletin, 86(1-2):562-568.

        屈沙沙, 朱會(huì)卷, 劉鋒平, 等. 2017. 微塑料吸附行為及對(duì)生物影響的研究進(jìn)展[J]. 環(huán)境衛(wèi)生學(xué)雜志, 7: 75-78.

        王昆, 林坤德, 袁東星. 2017. 環(huán)境樣品中微塑料的分析方法研究進(jìn)展[J] . 環(huán)境化學(xué), 36(1): 27-36.

        章海波, 周倩, 周陽, 等. 2016. 重視海岸及海洋微塑料污染,加強(qiáng)防治科技監(jiān)管研究工作[J]. 中國科學(xué)院院刊, 31(10): 1182-1189.

        智研咨詢集團(tuán). 2016. 2016—2022年中國聚烯烴市場專項(xiàng)研究及投資前景評(píng)估報(bào)告[R]. 北京: 智研咨詢集團(tuán): 64-71.

        周倩, 章海波, 李遠(yuǎn), 等. 2015. 海岸環(huán)境中微塑料污染及其生態(tài)效應(yīng)研究進(jìn)展[J]. 科學(xué)通報(bào), 60(33): 3210-3220.

        Abstract: Due to the massive production and consumption in modern society, plastic products are delivered into the aquatic environment. The plastic waste in the aquatic environment would break down into numerous small plastic fragments with a size <5 mm, namely microplastics. As emerging environmental contaminants, microplastics have been received global attention from both scientific and public communities. Nowadays, most of the available literature concentrates mainly on the microplastics pollution in the marine environment. Due to the frequent contact with people, the microplastics pollution in the terrestrial freshwater environment should be considered more carefully. In order to get a thorough understanding of the microplastics pollution in the freshwater environment and strengthen the risk management, the occurrence, source and ecotoxicological effect of microplastics in the freshwater environment were reviewed based on the previous studies in recent years. The occurrences of microplastics have been reported in water, sediments and organisms, indicating that the microplastics pollution may be distributed worldwide in the freshwater environment. Moreover, it seems that the microplastics pollution in China is more significant than that in other countries.To date, the sources of microplastics in the freshwater environment are still not very well characterized. The main direct sources of microplastics may include effluents of wastewater treatment plants, degradation of plastic waste in the aquatic environment, and terrestrial input by soil erosion or runoff, while personal care products, synthetic textiles, industrial materials, and mismanaged plastic waste from urban, agricultural, touristic and industrial areas are considered the ultimate origins of microplastics in the freshwater environment. Microplastics can trigger physical effects and biochemical perturbations in freshwater organisms.Furthermore, it may lead to combined pollution with other contaminants, eventually inducing interactive effects on freshwater organisms. Collectively, there is an urgent need to investigate the microplastics pollution in the freshwater environment. In the future,the influence of environmental factors on the microplastics pollution characteristic, the analysis of the sources of microplastics, and the interactive effects between microplastics and other contaminants on freshwater organisms should be further studied. This paper would provide a theoretical reference for the study concerning the microplastics pollution and the ecological risk in freshwater environments.

        Key words: microplastics; freshwater environment; occurrence; source; ecotoxicological effect

        Occurrence, Source and Ecotoxicological Effect of Microplastics in Freshwater Environment

        DING Jiannan1,2, ZHANG Shanshan1, ZOU Hua1,2*, ZHANG Yun1,2, ZHU Rong1

        1. School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;2. Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou 215009, China

        10.16258/j.cnki.1674-5906.2017.09.023

        X171.5

        A

        1674-5906(2017)09-1619-08

        丁劍楠, 張閃閃, 鄒華, 張?jiān)? 朱榮. 2017. 淡水環(huán)境中微塑料的賦存、來源和生態(tài)毒理效應(yīng)研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào), 26(9): 1619-1626.

        DING Jiannan, ZHANG Shanshan, ZOU Hua, ZHANG Yun, ZHU Rong. 2017. Occurrence, source and ecotoxicological effect of microplastics in freshwater environment [J]. Ecology and Environmental Sciences, 26(9): 1619-1626.

        科技部國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFE0123600);江蘇省自然科學(xué)基金青年項(xiàng)目(BK20170188);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(JUSRP11714)

        丁劍楠(1988年生),男,助理研究員,博士,從事新型污染物的環(huán)境行為和生態(tài)毒理研究。E-mail: djn@jiangnan.edu.cn*通信作者:鄒華(1972年生),男,教授,博士,從事天然水體污染控制和環(huán)境生物技術(shù)研究。E-mail: zouhua@jiangnan.edu.cn

        2017-06-16

        猜你喜歡
        毒理中微淡水
        不簡單!一口普通的淡水蝦塘,他們竟能做到畝產(chǎn)2000多斤,獲利3萬多/畝
        鯨豚趣多多之它們愛淡水
        跳到海里喝淡水
        小學(xué)寫作教學(xué)中微課資源的開發(fā)與運(yùn)用
        信息化背景下高職高專英語教學(xué)中微課初探
        書法教學(xué)中微視頻使用存在的誤區(qū)
        中國篆刻(2017年6期)2017-07-18 11:09:55
        當(dāng)冷鹽水遇見溫淡水
        組網(wǎng)雷達(dá)中微多普勒效應(yīng)分析與仿真
        納米金的生殖毒理研究進(jìn)展和展望
        《中國藥理學(xué)與毒理學(xué)雜志》毒理學(xué)專輯征稿通知
        国产在线精品成人一区二区三区 | 国产三级自拍视频在线| av一区二区在线网站| 亚洲欧美国产精品久久| 亚洲av无码成人精品区在线观看| 中文字幕久久精品波多野结百度| 国产自拍三级黄片视频| 色综合天天综合欧美综合| 亚洲色欲色欲综合网站| 囯产精品无码一区二区三区| 美国又粗又长久久性黄大片 | 99爱在线精品免费观看| 国产精品久免费的黄网站| 一区二区特别黄色大片| 狠狠爱婷婷网五月天久久| 东京热无码av一区二区| 国产真人无遮挡作爱免费视频 | 国产高清一级毛片在线看| 少妇人妻无一区二区三区| 国产激情视频在线观看的 | 一级免费毛片| 中文字幕日本韩国精品免费观看 | 欧美人与禽2o2o性论交| 大地资源网最新在线播放| 亚洲区精品久久一区二区三区女同| 婷婷丁香开心五月综合| 免费a级毛片18以上观看精品| 自拍欧美日韩| 青青草视频在线播放81| 99噜噜噜在线播放| 国产精品白丝喷水在线观看| 日韩在线观看网址| 日本乱熟人妻中文字幕乱码69| 久久久久无码国产精品一区| 色婷婷六月天| 国产一级黄片久久免费看| 老太婆性杂交视频| 久久久久久久综合狠狠综合| 国产日产亚洲系列av| 国产一区二区三区激情视频| 欧美成人午夜精品久久久|