張志芬,劉景輝,付曉峰,趙寶平,李立軍,劉俊青,楊海順
(1.內蒙古農業(yè)大學農學院,內蒙古呼和浩特 010018; 2.內蒙古自治區(qū)農牧業(yè)科學院特色作物所,內蒙古呼和浩特 010031)
干旱脅迫對燕麥葉片氣孔和葉肉細胞超微結構的影響
張志芬1,劉景輝1,付曉峰2,趙寶平1,李立軍1,劉俊青2,楊海順2
(1.內蒙古農業(yè)大學農學院,內蒙古呼和浩特 010018; 2.內蒙古自治區(qū)農牧業(yè)科學院特色作物所,內蒙古呼和浩特 010031)
為了解干旱后燕麥解剖結構的變化,以燕麥品種白燕2號為材料,通過盆栽控水試驗,設置正常供水、輕度干旱和重度干旱三個不同水分處理(土壤含水量分別為田間持水量的75%、60%和45%),研究了干旱脅迫對燕麥葉片滲透調節(jié)物質含量、氣孔和葉肉細胞超微結構的影響。結果表明,正常水分條件(對照)下,燕麥葉片脯氨酸和可溶性糖含量較低,表皮細胞皺褶,氣孔關閉或微張,葉肉細胞內細胞器形狀規(guī)則,結構清晰。與對照相比,輕度干旱脅迫下,燕麥葉片脯氨酸和可溶性糖含量增加,葉片表皮細胞飽滿,氣孔開啟度較大,葉綠體形狀變圓,近球狀,線粒體外被膜膨脹,但結構未見明顯損傷;重度干旱脅迫下,葉片脯氨酸和可溶性糖含量極顯著增加,表皮細胞干癟,氣孔保衛(wèi)細胞膨脹,氣孔關閉,氣孔器下陷。重度干旱脅迫下,燕麥葉綠體和線粒體受到的損傷較大,葉綠體內基粒、基質類囊體降解,出現(xiàn)較大的空腔;線粒體外被膜斷裂,內含物流失;細胞核染色質凝聚,葉綠體之間出現(xiàn)嵌合現(xiàn)象。因此,干旱脅迫能誘導燕麥葉片滲透調節(jié)物質的積累和細胞超微結構的改變,滲透調節(jié)物質增幅和細胞超微結構的破壞程度隨著土壤有效水分含量的降低而上升,但在細胞超微結構上也出現(xiàn)抗性反應,表明燕麥具有較強的抗旱性。
燕麥;干旱脅迫;葉片;氣孔;超微結構
Abstract:The variety of oat Baiyan 2 were used to investigate the effect of soil drought stress on the contents of osmotic regulators, the stomata and ultrastructure of mesophyll cell under pot culture condition.Soil water content is 75%, 60% and 45% of the water holding capacity in the field under normal water,light drought stress and severe drought stress,respectively.The result showed under normal water condition, the contents of proline and soluble sugar were low, the epidermal cells were wrinkled, and the stomata were closed or slightly opened. The shape of organelles in mesophyll cells was regular and the structure was clear. Under light drought stress, the content of proline and soluble sugar in oat leaves increased, the epidermal cells were full, the stomatal opening was larger, the chloroplast and mitochondria changed slightly, but the structure did not show obvious damage. Compared with the control, under the severe drought stress, the content of proline and soluble sugar in leaves increased significantly, and the epidermal cells were shrunk; The stomatal guard cells expanded, the stomata was closed, the stomatal apparatus was sagged;Under the condition of severe drought stress, the chloroplast and mitochondria in the mesophyll cells caused great damage,granum lamellae and stroma lamellaein the chloroplast were degraded, and the larger cavity appeared inside;Membrane of mitochondrial broken, inclusions loss; in addition, nuclear chromatin condensed, and there was chimerism between chloroplasts. It can be seen that drought stress induced the accumulation of osmotic regulators and structural change. The growth rate of osmotic regulators increases rapidly with the decrease of soil water content,and the degree of structural damage increases,the oat also showed strong drought resistance in structure.
Keywords:Oat;Drought Stress;Leaf;Stomata;Ultrastructures
燕麥(AvenasativaL.)是禾本科燕麥屬草本植物,抗逆性強,廣泛種植于貧瘠、干旱、冷涼等地區(qū),是糧飼兼用型作物[1]。燕麥根系發(fā)達,吸水能力較強,且根冠比較大,調節(jié)水分能力較強,成為治理土地荒漠化的先鋒作物[2]。干旱脅迫是限制干旱半干旱地區(qū)植物生長發(fā)育的關鍵因素[3-5]。關于干旱對燕麥滲透調節(jié)物質的影響,報道較多的是可溶性糖和脯氨酸變化,其含量隨著干旱脅迫程度的增加而顯著升高[6-10]。研究表明,植物葉片的組織結構對環(huán)境變化的反應比較敏感[11],干旱脅迫不僅會降低作物的光合作用,改變酶活性、葉片表皮氣孔[12]以及葉綠體、線粒體等[13-15]結構。葉綠體和線粒體是植物光合、呼吸作用和能量轉化的重要細胞器[16],隨著環(huán)境條件變化,其形態(tài)結構也會發(fā)生相應改變[17-18],因而可在一定程度上表征植物對逆境條件的耐受性[11-13]。干旱脅迫下水稻葉片的氣孔密度明顯增大,氣孔的長、寬減小,且隨著干旱脅迫強度的增大,氣孔開度變小,趨于關閉狀態(tài)[12]。干旱脅迫后,小麥葉綠體片層結構變混亂[19],線粒體部分外膜斷裂,嵴結構模糊不清[20];大麥葉片細胞核中染色質的凝聚程度高,葉綠體變形,外被膜出現(xiàn)較大程度的波浪狀和膨脹,同時基粒出現(xiàn)彎曲、膨脹、排列混亂的現(xiàn)象;線粒體外形及膜受到破壞,內部嵴部分消失等[21]。由此可見,葉綠體和線粒體對逆境脅迫比較敏感,因此,研究逆境脅迫下作物顯微結構和生理功能變化,觀察干旱脅迫后葉綠體和線粒體結構的變化規(guī)律是了解植物抗旱生理機制的重要手段[22]。但目前關于逆境脅迫后燕麥葉綠體和線粒體超微結構的變化鮮見報道。本研究采用盆栽試驗模擬干旱脅迫條件,在掃描電鏡和透射電鏡下觀察了不同干旱脅迫程度下燕麥葉片氣孔和葉肉細胞超微結構的變化,以期進一步豐富燕麥適應干旱逆境的生理機制理論。
試驗于2016年5-10月在內蒙古農牧業(yè)科學院溫室內進行。供試燕麥品種為白燕2號。所用盆的直徑為16 cm,高15 cm,裝有2.2 kg來自田間的土壤。土壤田間持水量、永久萎蔫點及土壤質量含水量按Ryan等[23]的方法分析測定。設置正常供水(對照)、輕度干旱脅迫和重度干旱脅迫3個處理,土壤含水量分別為田間持水量的75%、60%和45%,每個處理3次重復,每次重復種植7盆,每盆20株。每天下午5點利用稱重法進行稱重補水,以保持各處理土壤含水量穩(wěn)定。燕麥于5月5日播種,5月12日出苗,6月6日拔節(jié)期取樣。
1.2.1 脯氨酸和可溶性糖含量測定
采集新鮮燕麥幼苗,立即液氮速凍并保存。測定時,先放入液氮預冷,再研磨至粉末,用冷凍干燥機將新鮮燕麥幼苗粉末冷凍干燥,4 ℃保存。脯氨酸含量采用茚三酮比色法測定[24],可溶性糖含量采用蒽酮比色法測定[ 24]。
1.2.2 葉片表皮結構觀測
上午10:30取材料頂部第2葉,用磷酸緩沖液沖洗,取葉片的中間部位,剪為1 cm長,用2.5%戊二醛固定,置于4 ℃冰箱中過夜,取出樣品,用磷酸緩沖液漂洗,然后取1 mm×1 mm葉片,1%的鋨酸固定2 h,經乙醇系列梯度脫水,臨界點干燥,粘臺噴金后在JSM-5310LV掃描電鏡下觀察和拍照。
1.2.3 葉肉細胞超微結構觀測
取樣方法同1.2.2,樣品脫水后,轉入Epon812環(huán)氧樹脂內浸透包埋。用LeicaEMUC6型超薄切片機切片,在JEM-100KXⅡ透射電鏡下觀察、拍照。
數(shù)據利用Excel 2007軟件處理, 利用SAS軟件進行顯著性分析。
隨著土壤水分含量的降低,燕麥葉片脯氨酸和可溶性糖含量均呈上升趨勢(圖1)。與對照相比,輕度干旱脅迫下脯氨酸和可溶性糖含量分別提高21.4%和10.2%,但脯氨酸含量變化不顯著;重度干旱脅迫下脯氨酸和可溶性糖含量均顯著提高,增幅分別為4.23倍和53.2%。
燕麥葉片上、下表皮細胞形狀規(guī)則,由長型細胞和短型細胞組成,表皮細胞均順著葉長軸成行排列(圖2A)。氣孔器長條形,氣孔關閉或者微張,由2個啞鈴形保衛(wèi)細胞和2個腎形副衛(wèi)細胞組成(圖2B)。正常水分條件下,表皮凸凹不平,形成脊和溝,表皮毛分布在脊上,形成皮毛帶,氣孔分布在脊的兩側,形成氣孔帶(圖2C),葉片表皮細胞皺褶,下表皮較上表皮更明顯(圖2A),下表皮脊較突出(圖2D);表皮毛主要分布在下表皮(圖2C)。下表皮氣孔下陷,副衛(wèi)細胞空癟(圖2D),上表皮氣孔副衛(wèi)細胞較飽滿。
輕度干旱脅迫下,燕麥葉片表皮細胞飽滿,上表皮有較少的皺褶,表皮相對平滑,表皮毛較少,氣孔較平整(圖3C、D),氣孔副衛(wèi)細胞飽滿,保衛(wèi)細胞空癟,氣孔開口孔徑增大(圖3E、F),大部分氣孔微張(圖3A、B);下表皮氣孔器表面分泌物較多(圖3D)。
重度干旱脅迫下,燕麥葉片表皮細胞干癟,表皮毛較少,葉表皮平滑(圖4A、B),氣孔器副衛(wèi)細胞和周圍細胞均塌陷,保衛(wèi)細胞膨脹,氣孔關閉,氣孔器下陷(圖4C、D)。
圖柱上不同字母表示處理間差異顯著(P<0.05)。
Different letters on the columns indicate significant difference among the treatment at 0.05 level.
圖1不同處理下燕麥葉片脯氨酸和可溶性糖含量
Fig.1Prolineandthesolublesugarcontentofoatleafunderdifferenttreatments
正常水分條件下,燕麥葉肉細胞有明顯的細胞核及葉綠體、線粒體等細胞器,各細胞的形狀規(guī)則(圖2E),細胞核外被膜結構清晰,內部染色質均勻分布(圖2F)。葉綠體較大,數(shù)目多,面向細胞壁一側外被膜平直,另一側向細胞中央突出;葉綠體外被膜及基粒和基質類囊體膜結構清晰,基粒排列整齊,其類囊體片層排列緊密(圖2G),內具少量淀粉粒和隨機分布的嗜鋨顆粒(圖2E、H)。線粒體外被膜完整,內部嵴分布均勻,結構清晰(圖2E)。
輕度干旱脅迫下,燕麥葉肉細胞仍然有明顯的細胞核及葉綠體、線粒體等細胞器,被膜清晰且基本完整。但與對照相比,葉綠體變圓,近球狀,淀粉粒較大(圖3G、H),基質類囊體較少,基粒類囊體皺縮(圖3I);線粒體膨脹,外被膜完整,內部嵴仍較清晰(圖3J)。
重度干旱脅迫下,燕麥葉肉細胞內出現(xiàn)雙層膜的較大空泡狀結構(圖4I),部分細胞器邊緣化(圖4E),葉綠體緊貼細胞壁(圖4F),部分葉綠體形狀變?yōu)榻驙?,或外被膜部分向外突出形成波浪狀,?個葉綠體之間出現(xiàn)嵌合現(xiàn)象(圖4H),但外被膜仍然較為完整;葉綠體內部嗜鋨顆粒較多(圖4G),基粒和基質類囊體膜斷裂,出現(xiàn)了較大的空腔。線粒體外被膜斷裂現(xiàn)象明顯,內含物流失,內部出現(xiàn)空腔。細胞核核膜出現(xiàn)膨脹甚至斷裂現(xiàn)象,核內染色質分布不均勻,出現(xiàn)輕微凝聚現(xiàn)象(圖4J)。
A~D:掃描電鏡照片;E~H:透射電鏡照片;A&B:上表皮;C&D:下表皮;E:細胞器;F:核染色質;G&H:葉綠體;E:表皮細胞;S:氣孔;Hb:表皮毛帶;Sb:氣孔帶;M:線粒體;Ch:葉綠體;GL:基粒片層;SL:基質片層;Nu:核染色質;ST:淀粉粒;OG:嗜鋨顆粒;CW:細胞壁。下同。
A-D:Scanning electron micrographs; E-H:Transmission electron micrographs; A&B:Upper epidermis; C&D:Lower epidermis; E:Organelles; F:Nuclear chromatin;G&H:Chloroplasts; E:Epidermal cell; S:Stomatal;Hb:Hair band; M:Mitochondria; Ch:Chloroplast; GL:Granum lamellae; SL:Stroma lamellae; Nu:Nuclear chromatin; ST:Starch granules; OG:Osmiophilic globlue. The same blow.
圖2正常水分條件下燕麥葉片表皮細胞、氣孔結構和細胞的超微結構
Fig.2Epidermalcell,stomatalstructureandultrastructureofmesenchymalcellsofoatleafundernormalwatercondition
A~F:掃描電鏡照片;G~J:透射電鏡照片;A、C和E:上表皮;B、D和F:下表皮;G、H和I:葉綠體;J:線粒體。
A-F:Scanning electron micrographs; G-J:Transmission electron micrographs:A,C and E:Upper epidermis; B,D,F:Lower epidermis; G,H and I:Chloroplast; J:Mitochondria.
圖3輕旱條件下燕麥葉片表皮細胞、氣孔結構和葉肉細胞的超微結構
Fig.3Epidermalcell,stomatalstructureandultrastructureofmesenchymalcellsofoatleafunderlightdroughtcodition
隨著干旱脅迫程度的加大,植物的脯氨酸含量會顯著增加[7,9]。糖既是植物光合作用產物,也是呼吸作用底物,為植物生長發(fā)育提供碳架和能量,增強植物抗逆性[25];可溶性糖含量增加可使原生質粘稠度增大,彈性增強,細胞液濃度增大,進而提高了作物對水分的吸收能力及保水能力[26]。本研究也表明,干旱脅迫后燕麥葉片的脯氨酸含量增加,其中重度干旱脅迫的影響明顯;可溶性糖含量也表現(xiàn)出類似的趨勢。這說明干旱脅迫促進了這兩種物質在葉片中的累積,有助于增強植株的滲透調節(jié)能力,減輕干旱對組織的傷害。
A~D:掃描電鏡照片;E~J:透射電鏡照片;A&C:上表皮;B&D:下表皮;E:細胞器;F、G和H:葉綠體;I:線粒體; J:核染色質。
A-D:Scanning electron micrographs; E-J:Transmission electron micrographs; A&C:Upper epidermis;B&D:Lower epidermis; E:Organelles;F,G and H:Chloroplasts; I:Mitochondria;J:Nuclear chromatin.
圖4重度干旱條件下燕麥葉片表皮細胞、氣孔結構和葉肉細胞的超微結構
Fig.4Epidermalcell,stomatalstructureandultrastructureofmesenchymalcellsofoatleafunderseriousdroughtcondition
氣孔關閉是植物對干旱脅迫最普遍反應[27],氣孔開啟度對土壤含水量變化的敏感程度大于氣孔密度,但就上、下表皮而言,下表皮的敏感度大于上表皮[28]。本研究中,干旱脅迫對燕麥葉片氣孔開啟度的影響較大,與對照相比,輕度脅迫下氣孔開啟度增大,重度脅迫下氣孔開啟度減小,甚至徹底關閉,說明輕度干旱脅迫下并未引起氣孔限制,反而增加葉片表皮細胞的飽滿度,可見燕麥具有較強的抗旱性。林葉春等[29]研究也發(fā)現(xiàn),裸燕麥孕穗期土壤含水率由高降低至中等并未誘發(fā)明顯的氣孔限制。此外,燕麥葉片表皮的氣孔器下陷,氣孔常常處于關閉狀態(tài)或開得很小,具有表皮毛,是典型耐旱作物結構特征[30];重度干旱脅迫下保衛(wèi)細胞和副衛(wèi)細胞縮水,氣孔面積減小,氣孔關閉,氣孔器下陷,是燕麥在進化過程中形成的一種自我保護機制,適度降低土壤含水量未顯著降低葉片光合能力,有利于提高葉片水分利用效率[29],從而提高燕麥的抗旱能力。
在干旱脅迫下,植物葉片葉肉細胞的超微結構會發(fā)生明顯的變化,其中葉綠體和線粒體是對脅迫比較敏感且所擔負功能較為重要的2個細胞器[13-15];干旱脅迫造成葉綠體的基粒彎曲、膨脹及排列混亂,使線粒體膨脹、變圓,外被膜不完整,內部嵴消失等現(xiàn)象[19,23,31-32]。本研究結果顯示,隨著土壤含水量的降低,燕麥葉綠體首先出現(xiàn)形狀改變,然后逐漸內部結構降解,出現(xiàn)較大的空隙;線粒體首先出現(xiàn)膨脹,然后內部結構降解,最終外被膜斷裂,內含物外流;重度干旱脅迫下出現(xiàn)細胞器周緣化。王復標等[33]研究表明,水稻葉綠體沿細胞壁排列的周緣化及形態(tài)結構的球狀化是其類囊體片層膜結構退化與降解過程啟動的“前奏”,對葉片的光合作用也有一定程度的影響。輕度干旱脅迫下,線粒體的形狀和內部結構與對照相比變化較小。由此說明,葉綠體對干旱脅迫更為敏感,這與白志英等[19]對小麥葉片超微結構的研究結果一致。另外,在本試驗中發(fā)現(xiàn)葉綠體之間出現(xiàn)嵌合現(xiàn)象,這有助于葉片加強細胞結構的支持力[21],顯示燕麥具有較強抗旱性。
干旱脅迫下,作物通過增加滲透調節(jié)物質含量來抵御損傷,其中脯氨酸和可溶性糖是重要的調節(jié)物質[15],其含量增加有助于提高細胞的親水性,減緩膜脂蛋白的解體。本研究中,輕度干旱脅迫下由于滲透物質的增加,細胞的保水能力增強,葉片表皮細胞更加飽滿,氣孔開啟度增加,葉肉細胞膜結構并未受到損傷;重度干旱脅迫后雖然脯氨酸和可溶性糖含量顯著高于正常水分和輕度干旱脅迫,但對燕麥葉肉細胞葉綠體和線粒體的傷害程度超過了燕麥的自我調控能力,葉綠體和線粒體膜解體。
[1]REN C Z,MA B L,BURROWS V,etal.Evolutions of early mature naked oat varieties as a summer-seeded crop in dryland northern climate regions [J].FiledCropResearch,2007,103:249.
[2] 任長忠,胡躍高.中國燕麥學[M].北京:中國農業(yè)出版社,2013:43.
REN C Z,HU Y G.Chinese Oat [M].Beijing:China Agriculture Press,2013:43.
[3]BIEHLER K,FOCK H.Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess elections in drought stressed wheat [J].PlantPhysiology,1996,112:271.
[4]BOSABALIDIS A M,KOFIDIS G.Comparative effects of drought stress on leaf anatomy of two olive cultivars [J].PlantScience,2002,163:377.
[5]KLICH M G.Leaf variations inElaeagnusangustifoliarelated to environmental heterogeneity [J].EnvironmentandExperimentalBotany,2000,44:182.
[6] 任 鵬,趙寶平,劉瑞芳,等.水分脅迫對燕麥穗穎滲透調節(jié)和抗氧化能力的影響[J].西北植物學報,2014,34(10):2051.
REN P,ZHAO B P,LIU R F,etal.Effect of stress on osmotic adjustment and antioxidation ability in glume of oat [J].ActaBotanicaBoreali-OccidentaliaSinica,2014,34(10):2051.
[7] 張 娜,趙寶平,任 鵬,等.水分脅迫對不同抗旱性燕麥品種根部生理特性的影響[J].中國農學通報,2012,28(21):65.
ZHANG N,ZHAO B P,REN P,etal.Effect of water stress on physiological characteristics in root of different oat cultivars [J].ChineseAgriculturalScienceBulletin,2012,28(21):65.
[8] 張 娜,趙寶平,郭若龍,等.水分脅迫對不同抗旱性燕麥品種生理特性的影響[J].麥類作物學報,2012,32(1):150.
ZHANG N,ZHAO B P,GUO R L,etal.Effect of water stress on physiological characteristics of different oat cultivar [J].JournalofTriticeaeCrops,2012,32(1):150.
[9] 劉景輝,趙海超,任永峰,等.土壤水分脅迫對燕麥葉片滲透調節(jié)物質含量的影響[J].西北植物學報,2009,29(7):1433.
LIU J H,ZHAO H C,REN Y F,etal.Change of osmotica in oat leaf under soil moisture stress [J].ActaBotanicaBoreali-OccidentaliaSinica,2009,29(7):1433.
[10] 劉建新,王金成,王瑞娟,等.旱鹽交叉脅迫對燕麥幼苗生長和滲透調節(jié)物質的影響[J].水土保持學報,2012,26(03):244.
LIU X J,WANG J C,WANG R J,etal.Interactive effect of drought and salinity stresses on growth and osmotic of naked oat seedlings [J].JournalofSoilandWaterConservation,2012,26(3):244.
[11] 李芳蘭,包維楷.植物葉片形態(tài)解剖結構對環(huán)境變化的響應與適應[J].植物學通報,2005,22(增刊):119.
LI F L,BAO W K.Responses of the morphological and anatomical structure of the plant leaf to environmental change [J].ChineseBulletinofBotany,2005,22(S):119.
[12] 孟 雷,李磊鑫,陳溫福,等.水分脅迫對水稻葉片氣孔密度、大小及凈光合速率的影響[J].沈陽農業(yè)大學學報,1990,30(5):480.
MENG L,LI L X,CHEN W F,etal.Effect of water stress on stomatal density,length,width and net photosynthetic rate in rice leave [J].JournalofShenyangAgriculturalUniversity,1990,30(5):480.
[13] 吳建慧,郭 瑤,崔艷桃.水分脅迫對絹毛委陵菜葉綠體超微結構及光合生理因子的影響[J].草業(yè)科學,2012,29(3):435.
WU J H,GUO Y,CUI Y T.Effects of water stress on ultrastructure and photosynthetic physiological factor ofPotentiallasericea[J].PrataculturalScience,2012,29(3):434.
[14] 郁 慧,劉中亮,胡宏亮,等.干旱脅迫對5種植物葉綠體和線粒體超微結構的影響[J].植物研究通報,2011,31(2):153.
YU H,LIU Z L,HU H L,etal.Effect of drought stress on the ultramicrostructures of chloroplasts and mitochondria of five plants [J].BulletinofBotanicalResearch,2011,31(2):153.
[15] 周宇飛,王德權,陸樟鑣,等.干旱脅迫對持綠性高粱葉片滲透調節(jié)及葉綠體超微結構的影響[J].應用生態(tài)學報,2013,24(9):2548.
ZHOU Y F,WANG D Q,LU Z B,etal.Impact of drought stress on leaf osmotic adjustment and chloroplast ultrastructure of staygreen sorghum [J].ChineseJournalofAppliedEcology,2013,24(9):2548.
[16] 萬里強,石永紅,向 林.高溫干旱脅迫下三個多年生黑麥草品種葉綠體和線粒體超微結構的變化[J].草業(yè)學報,2008,18(1):25.
WNG L Q,SHI Y H,XIANG L.Alterations in leaf cellular ultra-structure of three varieties ofLoliumperennesubjected to high temperature and soil drought stress [J].ActaPrataculturaeSinica,2008,18(1):25.
[17] 翟中和,王喜忠,丁明孝.細胞生物學[M].北京:高等教育出版社,2000:207.
ZHAI Z H,WANG X Z,DING M X.Cell Biology [M].Beijing:Higher Education Press,2000:207.
[18] 鄭敏娜,李向林,萬里強,等.水分脅迫對6種禾草葉綠體、線粒體超微結構及光合作用的影響[J].草地學報,2009,17(5):644.
ZHANG M L,LI X L,WAN LQ,etal.Effect of water stress on ultrastructures of chloroplast and mitochondria and photosynthesis in six gramineous grass species [J].ActaAgrestiaSinica,2009,17(5):644.
[19] 白志英,李存東,屈 平.干旱脅迫對小麥中國春Synthetic 6X代換系葉片超微結構的影響[J].電子顯微學報,2009,28(1):71.
BAI Z Y,LI C D,QU P.Effect of drought stress on ultrastructure of flag leaves in wheat chromosome substitution lines [J].JournalofChineseElectronMicroscopySociety,2009,28(1):71.
[20]VASSILEVA V,SIMOVA-STOILOVA L,DEMIREVSKA K,etal.Variety-specific response of wheat(TriticumaestivumL.) leaf mitochondria to drought stress [J].JournalofPlantResearch,2009,122:448.
[21] 陳健輝,李榮華,郭培國,等.干旱脅迫對不同耐旱性大麥品種葉片超微結構的影響[J].植物學報,2011,46(1):32.
CHEN J H,LI R H,GUO P G,etal.Impact of drought stress on the ultrastructure of leaf cells in three barley genotypes differing in level of drought tolerance [J].ChineseBulletinofBotany,2011,46(1):32.
[22] 聞志彬,萊孜提·庫里庫,張明理.干旱脅迫對3種不同光合類型荒漠植物葉綠體和線粒體超微結構的影響[J].西北植物學報,2016,36(6):1156.
WEN Z B,LAZITI K,ZHANG M L.Effect of soil drought stress on the ultramicstructural of chloroplasts and mitochondria in there desert plants with different photosynthetic types [J].ActaBotanicaBoreali-OccidentaliaSinica,2016,36(6):1156.
[23]RYAN J,ESTEFAN G,RASHID A.Soil and Plant Analysis Laboratory Manual [M].Aleppo:Jointly published by the International Center for Agricultural Research in the Dry Areas(ICARDA) and the National Agricultural Research Center(NARC),2001:25-36.
[24] 鄒 琦.植物生理試驗指導[M].北京:中國農業(yè)出版社,2000:51- 54.
ZOU Q.Guidance of Plant Physiological Experiment [M].Beijing:China Agriculture Press,2000:51-54.
[25] 孫永梅,劉麗杰,馮明芳,等.植物在低溫脅迫下的糖代謝研究進展[J].東北農業(yè)大學學報,2015,46(7):95.
SUN YM,LIU L J,FENG M F,etal.Research progress of sugar metabolism of plants under cold stress [J].JournalofNortheastAgriculturalUniversity,2015,46(7):95.
[26] 李廣敏,關軍鋒.作物抗旱生理與節(jié)水技術研究[ M].北京:氣象出版社,2001:6.
LI G M,GUANJ F.Study on Crop Drought Resistance and Water Saving Technology [M].Beijing:Meteorological Press,2001:6.
[27] 簡令成,王 紅.逆境植物細胞生物學[M].北京:科學出版社,2009:115.
JIAN L C,WANG H.Adversity Plant Cell Biology [M].Beijing:Science Press,2009:115.
[28] 郭建平,高素華.土壤水分對冬小麥影響機制研究[J].氣象學報,2003,61(4):502.
GUO J P,GAO S H.Mechanism study on impact of soil water on winter wheat [J].ActaMeteorologicaSinica,2003,61(4):502.
[29] 林葉春,錢 欣,曾昭海,等.負水頭供水裸燕麥需水特性及其對不同土壤濕度的生理響應[J].農業(yè)工程學報,2012,28(16):97.
LIN Y C,QIAN X,ZENG Z H,etal.Water consumption property of naked oat irrigated by negative pressure water supplying equipment and its physiological responses to soil humidity [J].TransactionsoftheChineseSocietyofAgriculturalEngineering,2012,28(16):97.
[30]CECCARELLI S.Specific adaptation and breeding for marginal conditions [J].Euphytica,1994,77:205.
[31]RISTIC Z,CASS D D.Chloroplast structure after water shortage and high temperature in two lines ofZeamaysL.that differ in drought resistance [J].BotanicalGazette,1991,152:186.
[32] 韓善華.油菜葉綠體在干旱處理過程中的超微結構變化[J].作物學報,1991,17(4):312.
HAN S H.Ultrastructural change of rape chloroplasts during drought treatments [J].ActaAgronomicaSinica,1991,17(4):312.
[33] 王復標,黃福燈,程方民,等.水稻生育后期葉片早衰突變體的光合特性與葉綠體超微結構觀察[J].作物學報,2012,38(5):878.
WANG F B,HUANG F D,CHANG F M,etal.Photosynthesis and chloroplast ultra-structure characteristics of flag leaves for a premature senescence rice mutant [J].ActaAgronomicaSinica,2012,38(5):878.
EffectofDroughtStressonStomataandUltrastructureofMesophyllCellsofOatLeaf
ZHANGZhifen1,LIUJinghui1,FUXiaofeng2,ZHAOBaoping1,LILijun1,LIUJunqing2,YANGHaishun2
(1.Inner Mongolia Agricultural University,Hohhot,Inner Mongolia 010018,China; 2.Inner Mongolia Academy of Agriculture and Animal Husbandry,Hohhot,Inner Mongolia 010031,China)
時間:2017-09-13
網絡出版地址:http://kns.cnki.net/kcms/detail/61.1359.S.20170913.1139.024.html
S512.6;S311
A
1009-1041(2017)09-1216-08
2017-05-05
2017-05-31
國家燕麥蕎麥產業(yè)技術體系項目(CARS-08-B-5);國家自然科學基金項目(31560373);內蒙古自然科學基金項目(2015MS0353)
E-mail:zzf2663@126.com
劉景輝(E-mail:cauljh@163.com)