丁穎+王愛(ài)菊+馬文越+黃繼海
摘 要: 為了提高對(duì)Web異常數(shù)據(jù)的檢測(cè)及挖掘能力,保障Web網(wǎng)絡(luò)數(shù)據(jù)庫(kù)的安全穩(wěn)定運(yùn)行,進(jìn)行Web異常數(shù)據(jù)挖掘的軟件開(kāi)發(fā),提出一種基于堆棧彈出中斷屏蔽的Web異常數(shù)據(jù)挖掘方法,并在Bootloader 程序開(kāi)發(fā)平臺(tái)上進(jìn)行軟件開(kāi)發(fā)。首先構(gòu)建Web異常數(shù)據(jù)挖掘系統(tǒng)的總體結(jié)構(gòu)模型,采用post關(guān)鍵字編譯方法進(jìn)行Web異常數(shù)據(jù)的堆棧彈出設(shè)計(jì),軟件模塊化設(shè)計(jì)包括程序加載模塊、數(shù)據(jù)寄存模塊、異常數(shù)據(jù)交互式編譯模塊和中斷屏蔽模塊,創(chuàng)建LabWindows/CVI工程文件進(jìn)行軟件面板開(kāi)發(fā),生成用戶(hù)界面文件,實(shí)現(xiàn)異常數(shù)據(jù)挖掘。測(cè)試結(jié)果表明,該系統(tǒng)能有效實(shí)現(xiàn)Web數(shù)據(jù)挖掘,準(zhǔn)確挖掘概率有所提升。
關(guān)鍵詞: Web網(wǎng)絡(luò); 異常數(shù)據(jù)挖掘; 軟件開(kāi)發(fā); 堆棧彈出; LabWindows/CVI
中圖分類(lèi)號(hào): TN911?34; TP311 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2017)18?0032?03
Development and improvement of Web abnormal data mining software
DING Ying1, WANG Aiju1, MA Wenyue2, HUANG Jihai1
(1. Zhengzhou Institute of Technology, Zhengzhou 450044, China; 2. College of Communication Engineering, Hunan University, Changsha 410000, China)
Abstract: In order to improve the detection and mining ability of Web abnormal data, and ensure the safe and stable operation of Web network database, the software of Web abnormal data mining is developed, a Web abnormal data mining method based on the stack pop?up interrupt mask is presented, and software development is conducted in the Bootloader program development platform. The overall structure model of the Web data mining system is constructed. The post keyword compiling method is used to carry out the stack pop?up design of Web abnormal data. The software module design includes program loading module, data storage module, abnormal data interactive compiling module and interrupt mask module. A LabWindows/CVI project file was created to develop the software panel, generate the user interface file and realize the abnormal data mining. The test results show that the system can effectively achieve Web data mining. The accurate mining probability has been improved.
Keywords: Web network; abnormal data mining; software development; stack pop?up; LabWindows/CVI
0 引 言
網(wǎng)絡(luò)技術(shù)的不斷普及和應(yīng)用,催生了Web數(shù)據(jù)庫(kù)的跨越發(fā)展。Web數(shù)據(jù)庫(kù)存儲(chǔ)大量的網(wǎng)絡(luò)數(shù)據(jù),實(shí)現(xiàn)信息及時(shí)傳輸和定點(diǎn)調(diào)度,Web數(shù)據(jù)發(fā)生故障和遭受到網(wǎng)絡(luò)入侵時(shí),可能產(chǎn)生Web異常數(shù)據(jù),通過(guò)對(duì)Web異常數(shù)據(jù)有效挖掘,保障Web網(wǎng)絡(luò)數(shù)據(jù)庫(kù)的可靠性運(yùn)行,確保網(wǎng)絡(luò)安全和信息挖掘[1]。Web異常數(shù)據(jù)挖掘與常規(guī)大數(shù)據(jù)信息挖掘相比較,具有自身的特點(diǎn)和差異性[2],Web異常數(shù)據(jù)具有隱蔽性強(qiáng)和時(shí)間窗口較短的特點(diǎn),常規(guī)采用預(yù)判篩選的關(guān)聯(lián)規(guī)則挖掘方法難以有效滿(mǎn)足準(zhǔn)確挖掘的需求。本文進(jìn)行Web異常數(shù)據(jù)挖掘的軟件開(kāi)發(fā)與改進(jìn),通過(guò)對(duì)異常數(shù)據(jù)挖掘系統(tǒng)的改進(jìn)設(shè)計(jì),大大地縮短了收集數(shù)據(jù)的時(shí)間,提高了數(shù)據(jù)挖掘的工作效率。
1 軟件開(kāi)發(fā)實(shí)現(xiàn)
1.1 Web異常數(shù)據(jù)的堆棧彈出設(shè)計(jì)
在上述進(jìn)行Web異常數(shù)據(jù)挖掘的總體設(shè)計(jì)和軟件設(shè)計(jì)原理分析的基礎(chǔ)上,進(jìn)行Web異常數(shù)據(jù)挖掘的開(kāi)發(fā)設(shè)計(jì)。本文提出一種基于堆棧彈出中斷屏蔽的Web異常數(shù)據(jù)挖掘方法,并在Bootloader 程序開(kāi)發(fā)平臺(tái)上進(jìn)行軟件開(kāi)發(fā),采用post關(guān)鍵字編譯方法進(jìn)行Web異常數(shù)據(jù)的堆棧彈出設(shè)計(jì)。首先建立post關(guān)鍵字編譯決策數(shù)據(jù)集如表1所示。
在海量的Web數(shù)據(jù)背景下,選用SuperViVi作為Bootloader[3],通過(guò)設(shè)定鎖相環(huán)倍頻數(shù)識(shí)別這些指令的操作數(shù),結(jié)合表1建立后綴項(xiàng)表,在Web網(wǎng)絡(luò)數(shù)據(jù)庫(kù)中,建立Web異常數(shù)據(jù)挖掘的特征檢測(cè)模型,異常數(shù)據(jù)挖掘的傳輸模塊采用50 MHz參考時(shí)鐘作為調(diào)制信號(hào),A/D分辨率可達(dá)0.45 Hz,兼容性估計(jì)模型的一個(gè)通信傳輸組件使用post關(guān)鍵字mach?mini2440.c進(jìn)行編譯[4],進(jìn)行Web異常數(shù)據(jù)的堆棧彈出設(shè)計(jì),編譯代碼如下:endprint