許國瑞, 李金香, 付永旗, 胡笳, 孫玉田, 劉曉芳
(1.華北電力大學(xué) 電氣與電子工程學(xué)院,北京 102206;2.水力發(fā)電設(shè)備國家重點(diǎn)實(shí)驗(yàn)室(哈爾濱大電機(jī)研究所),黑龍江 哈爾濱 100084;3.中國電力國際有限公司,北京100080)
汽輪發(fā)電機(jī)轉(zhuǎn)子阻尼結(jié)構(gòu)對(duì)大擾動(dòng)低頻振蕩的影響
許國瑞1, 李金香2, 付永旗1, 胡笳3, 孫玉田2, 劉曉芳1
(1.華北電力大學(xué) 電氣與電子工程學(xué)院,北京 102206;2.水力發(fā)電設(shè)備國家重點(diǎn)實(shí)驗(yàn)室(哈爾濱大電機(jī)研究所),黑龍江 哈爾濱 100084;3.中國電力國際有限公司,北京100080)
為了研究汽輪發(fā)電機(jī)轉(zhuǎn)子大齒導(dǎo)條、導(dǎo)電槽楔和轉(zhuǎn)子鐵心等轉(zhuǎn)子阻尼結(jié)構(gòu)在大擾動(dòng)低頻振蕩過程中的作用,首先建立了用于研究大擾動(dòng)低頻振蕩過程中汽輪發(fā)電機(jī)轉(zhuǎn)子各部分阻尼結(jié)構(gòu)作用的場(chǎng)-路耦合時(shí)步有限元模型,并通過實(shí)驗(yàn)進(jìn)行了驗(yàn)證;然后采用該模型研究了汽輪發(fā)電機(jī)轉(zhuǎn)子各部分阻尼結(jié)構(gòu)大擾動(dòng)低頻振蕩過程中的作用,分析了三部分阻尼單獨(dú)作用和共同作用時(shí),對(duì)大擾動(dòng)低頻振蕩影響較大的阻尼結(jié)構(gòu);最后研究了不同材料轉(zhuǎn)子槽楔對(duì)汽輪發(fā)電大擾動(dòng)低頻振蕩過程的影響。結(jié)果表明:汽輪發(fā)電機(jī)轉(zhuǎn)子阻尼作用可以有效抑制大擾動(dòng)后的低頻振蕩過程;在三部分阻尼中轉(zhuǎn)子槽楔所起的作用較大,且轉(zhuǎn)子采用鋁合金槽楔對(duì)于抑制大擾動(dòng)低頻振蕩的效果明顯好于不銹鋼槽楔。
轉(zhuǎn)子阻尼結(jié)構(gòu);大擾動(dòng);低頻振蕩;汽輪發(fā)電機(jī);時(shí)步有限元
發(fā)電機(jī)容量的提升及遠(yuǎn)距離輸電的發(fā)展增加了電力系統(tǒng)發(fā)生低頻振蕩的概率,尤其是當(dāng)電網(wǎng)發(fā)生大擾動(dòng)后機(jī)組之間過大的功角擺動(dòng)幅度極易造成發(fā)電機(jī)的失步和電網(wǎng)的解列[1-3]。通常情況下,充足的系統(tǒng)阻尼對(duì)于抑制低頻振蕩起著至關(guān)重要作用[4],而汽輪發(fā)電機(jī)轉(zhuǎn)子本體結(jié)構(gòu)的阻尼作用是系統(tǒng)總阻尼的重要組成部分,它通常包括轉(zhuǎn)子大齒導(dǎo)條、轉(zhuǎn)子鐵心和轉(zhuǎn)子導(dǎo)電槽楔[5-6],如圖1所示,轉(zhuǎn)子各部分阻尼的結(jié)構(gòu)和材料特性不同導(dǎo)致其產(chǎn)生的阻尼作用及抑制低頻振蕩的能力也不同。因此,研究汽輪發(fā)電機(jī)轉(zhuǎn)子各部分阻尼結(jié)構(gòu)對(duì)大擾動(dòng)低頻振蕩的作用是十分必要的。
圖1 汽輪發(fā)電機(jī)三部分阻尼結(jié)構(gòu)Fig.1 Three component of damping structure of turbine generator
國內(nèi)外的文獻(xiàn)對(duì)發(fā)電機(jī)小擾動(dòng)引起的低頻振蕩原因和機(jī)理進(jìn)行了大量研究,并取得了較多的成果[7-10]。然而,對(duì)于大擾動(dòng)引起的發(fā)電機(jī)及系統(tǒng)的低頻振蕩問題,尤其是全面深入考慮汽輪發(fā)電機(jī)轉(zhuǎn)子各部分阻尼結(jié)構(gòu)作用下的低頻振蕩問題還沒有深入研究。傳統(tǒng)的發(fā)電機(jī)電路模型通常采用等效阻尼參數(shù)來模擬實(shí)際的轉(zhuǎn)子阻尼結(jié)構(gòu)[11-12],然而汽輪發(fā)電機(jī)轉(zhuǎn)子鐵心通常由整塊鋼鍛造且轉(zhuǎn)子槽楔、導(dǎo)條等阻尼結(jié)構(gòu)分布不均勻,這些因素使得阻尼等效參數(shù)難以精確計(jì)算,如果再考慮到磁路飽和以及集膚效應(yīng)的影響,這些參數(shù)就更加難以精確計(jì)算了[13]。因此,系統(tǒng)仿真分析中通常采用降階的發(fā)電機(jī)模型,由于這些模型引入了假設(shè)條件使得計(jì)算結(jié)果的精確性難以保證。同時(shí),系統(tǒng)發(fā)生大擾動(dòng)后發(fā)電機(jī)通常會(huì)進(jìn)入電磁和機(jī)電暫態(tài)共存的連續(xù)擾動(dòng)過程,如果不能準(zhǔn)確考慮發(fā)電機(jī)轉(zhuǎn)子阻尼結(jié)構(gòu)會(huì)使得發(fā)電機(jī)大擾動(dòng)后低頻振蕩區(qū)域發(fā)生變化,進(jìn)而會(huì)影響勵(lì)磁控制器、電力系統(tǒng)穩(wěn)定器等發(fā)電機(jī)輔助設(shè)備的參數(shù)整定[14]。
發(fā)電機(jī)的時(shí)步有限元模型可以全面有效的計(jì)及轉(zhuǎn)子各部分阻尼結(jié)構(gòu)的作用,也可以充分考慮磁路飽和、磁場(chǎng)畸變和集膚效應(yīng)等非線性因素對(duì)轉(zhuǎn)子阻尼作用的影響[18-19]。文獻(xiàn)[15-17]等采用時(shí)步有限元法計(jì)算和分析了發(fā)電機(jī)動(dòng)態(tài)特性和參數(shù),并取得了較好的結(jié)果。文獻(xiàn)[2021]中采用時(shí)步有限元模型計(jì)算發(fā)電機(jī)空載突然短路過程并與實(shí)測(cè)結(jié)果進(jìn)行對(duì)比,結(jié)果非常接近。因此,采用時(shí)步有限元法來研究系統(tǒng)大擾動(dòng)低頻振蕩過程中汽輪發(fā)電機(jī)轉(zhuǎn)子各部分阻尼結(jié)構(gòu)的作用可以滿足精確度的要求。
本文首先建立了用于研究大擾動(dòng)低頻振蕩過程中汽輪發(fā)電機(jī)轉(zhuǎn)子阻尼作用的場(chǎng)-路耦合時(shí)步有限元模型,并通過模型機(jī)實(shí)驗(yàn)對(duì)所建立的模型進(jìn)行了驗(yàn)證;然后采用該模型研究了汽輪發(fā)電機(jī)轉(zhuǎn)子阻尼結(jié)構(gòu)作用對(duì)大擾動(dòng)低頻振蕩的影響,具體分析了轉(zhuǎn)子三部分阻尼結(jié)構(gòu)單獨(dú)作用和共同作用時(shí),對(duì)大擾動(dòng)低頻振蕩影響較大的阻尼結(jié)構(gòu);最后研究了轉(zhuǎn)子導(dǎo)電槽楔采用不同材料對(duì)汽輪發(fā)電機(jī)大擾動(dòng)低頻振蕩的影響。研究結(jié)果可為汽輪發(fā)電機(jī)轉(zhuǎn)子阻尼結(jié)構(gòu)的優(yōu)化設(shè)計(jì)以及如何提高發(fā)電機(jī)承受系統(tǒng)低頻振蕩能力提供理論支持。
1.1 充分考慮轉(zhuǎn)子三部分阻尼結(jié)構(gòu)作用的時(shí)步有限元模型
采用二維有限元模型,在麥克斯韋方程組的基礎(chǔ)上推導(dǎo)得到發(fā)電機(jī)的場(chǎng)-路耦合方程如式(1)所示[19]。
(1)
式中:A為矢量磁位,Is為定子電流矩陣,可表示為[iA,iB,iC],if為勵(lì)磁電流,rs和ls為定子繞組的電阻和端部漏感,rf和lf為轉(zhuǎn)子繞組的電阻和端部漏感,Rs=diag[rs,rs,rs],Ls=diag[ls,ls,ls],Ul為定子電壓矩陣,可表示為[uA,uB,uC],K為剛度矩陣,Cs為定子電流的關(guān)聯(lián)矩陣,Ds、Dd和Dr分別為轉(zhuǎn)子導(dǎo)電槽楔、大齒導(dǎo)條和轉(zhuǎn)子鐵心渦流的關(guān)聯(lián)矩陣,Cf為勵(lì)磁電流的關(guān)聯(lián)矩陣,lef為軸長(zhǎng)。
圖2 阻尼回路模型Fig.2 Damping circuit model
為了精確計(jì)及由轉(zhuǎn)子導(dǎo)電槽楔、大齒導(dǎo)條及端環(huán)構(gòu)成的阻尼繞組的作用,采用對(duì)轉(zhuǎn)子阻尼繞組回路列寫方程的方法進(jìn)行計(jì)算。阻尼回路模型如圖2所示,其中,rdi、ldi分別為阻尼端環(huán)的電阻與漏電感,ibi為轉(zhuǎn)子槽楔或大齒導(dǎo)條中的電流,idi為各個(gè)回路的電流,udi為槽楔或大齒導(dǎo)條兩端的電壓。
轉(zhuǎn)子大齒導(dǎo)條與導(dǎo)電槽楔直線部分各點(diǎn)的電流密度Jdi可表示為
(2)
式中轉(zhuǎn)子大齒導(dǎo)條和導(dǎo)電槽楔的電導(dǎo)率統(tǒng)一用σ來表示。
根據(jù)圖2中所示的正方向,列寫各支路的電流方程和回路的電壓方程可得到式(3)。
(3)
結(jié)合式(2)與式(3),經(jīng)過有限元離散可得阻尼回路方程為:
(4)
式中:Ud=[ud1…udi…udk]T,Id=[id1…idi…idk]T,Rd=diag[2rd1,…,2rdk],Ld=diag[2ld1,…,2ldk],Hd1=diag[σS1/lef,…,σS1/lef]。
將轉(zhuǎn)子阻尼繞組中電流密度表達(dá)式(2)代入磁場(chǎng)方程,經(jīng)過加權(quán)積分變換后可得到磁場(chǎng)方程的有限元表達(dá)式(5)。
(5)
結(jié)合方程(1)、(4)和(5),可得充分考慮汽輪發(fā)電機(jī)轉(zhuǎn)子阻尼結(jié)構(gòu)的場(chǎng)-路耦合時(shí)步有限元模型:
(6)
1.2 實(shí)驗(yàn)驗(yàn)證
為了驗(yàn)證上述所建立模型的準(zhǔn)確性,本文以實(shí)驗(yàn)室7.5 kW 模型機(jī)為基礎(chǔ),搭建了單機(jī)接升壓變壓器并通過雙回線連接無窮大電網(wǎng)的實(shí)驗(yàn)平臺(tái),通過該平臺(tái)進(jìn)行了系統(tǒng)大擾動(dòng)的實(shí)驗(yàn)并與仿真進(jìn)行了對(duì)比。其中,模型機(jī)的參數(shù)如表1所示,實(shí)驗(yàn)平臺(tái)如圖3所示。
圖3 同步發(fā)電機(jī)動(dòng)態(tài)實(shí)驗(yàn)測(cè)試平臺(tái)Fig.3 Dynamic experiment platform of synchronous generator
參數(shù)300MW發(fā)電機(jī)7.5kW模型機(jī)功率/kW3000007.5額定功率因數(shù)0.850.85額定電壓/V20000400額定電流/A1020012.73額定勵(lì)磁電流/A25008轉(zhuǎn)速/(r/min)30003000
以直流電動(dòng)機(jī)作為原動(dòng)機(jī)將發(fā)電機(jī)模型機(jī)拖動(dòng)到同步轉(zhuǎn)速,然后施加勵(lì)磁電流使其達(dá)到并網(wǎng)條件后并入電網(wǎng),調(diào)節(jié)原動(dòng)機(jī)和勵(lì)磁電電流使模型機(jī)運(yùn)行在某一負(fù)載工況并穩(wěn)定運(yùn)行。在變壓器高壓側(cè)的一回線首端施加三相接地短路故障,經(jīng)過0.1 s后切除故障線路,模型機(jī)通過單回線向系統(tǒng)供電。將時(shí)步有限元的計(jì)算結(jié)果與上述實(shí)測(cè)結(jié)果進(jìn)行對(duì)比,得到模型機(jī)的勵(lì)磁電流、定子電流和轉(zhuǎn)速的波形曲線如圖4所示。從圖中可以看出仿真與實(shí)測(cè)結(jié)果擬合較好。
本文采用如圖5所示系統(tǒng)仿真模型來研究系統(tǒng)大擾動(dòng)低頻振蕩過程中汽輪發(fā)電機(jī)轉(zhuǎn)子三部分阻尼結(jié)構(gòu)的作用。圖中:UG為發(fā)電機(jī)出口端電壓,UT為變壓器高壓側(cè)電壓,US為無窮大系統(tǒng)母線電壓。文中所采用的汽輪發(fā)電機(jī)額定參數(shù)如表1所示。汽輪發(fā)電機(jī)的定轉(zhuǎn)子結(jié)構(gòu)及轉(zhuǎn)子三部分阻尼結(jié)構(gòu)如圖1所示,阻尼結(jié)構(gòu)所用材料及其電導(dǎo)率如表2所示。本文所采用的大擾動(dòng)條件為:當(dāng)系統(tǒng)運(yùn)行在某一穩(wěn)定工況時(shí),任意時(shí)刻在單回線的首段F點(diǎn)施加三相接地短路故障,故障持續(xù)0.1s后切除該線路,此時(shí)發(fā)電機(jī)通過單回線向電網(wǎng)供電,系統(tǒng)的供電方式發(fā)生變化。在大擾動(dòng)激勵(lì)下,發(fā)電機(jī)系統(tǒng)發(fā)生低頻振蕩。
表2 轉(zhuǎn)子三部分阻尼結(jié)構(gòu)的材料及相應(yīng)的電導(dǎo)率
圖4 實(shí)測(cè)和仿真結(jié)果對(duì)比Fig.4 Simulation results of T-S FEM compared with the testing
圖5 單機(jī)無窮大系統(tǒng)動(dòng)態(tài)仿真模型Fig.5 Dynamic simulation model of single-machine infinite-bus system
2.1 轉(zhuǎn)子阻尼計(jì)及與否對(duì)大擾動(dòng)低頻振蕩的影響
采用時(shí)步有限元模型分別對(duì)轉(zhuǎn)子阻尼作用計(jì)及與否情況下的大擾動(dòng)低頻振蕩進(jìn)行仿真計(jì)算,得出大擾動(dòng)后發(fā)電機(jī)的功角和角速度曲線如圖6所示。
從圖6中可以看出:
1)當(dāng)不計(jì)轉(zhuǎn)子阻尼作用時(shí),功角的最大幅值為59.89°,而計(jì)及轉(zhuǎn)子阻尼作用后最大幅值變?yōu)?1.51°,較前者減小了18.38°,可以看出汽輪發(fā)電機(jī)轉(zhuǎn)子各部分阻尼結(jié)構(gòu)的作用可以有效抑制大擾動(dòng)過程中的功角和角速度的幅值。
2)當(dāng)不計(jì)轉(zhuǎn)子阻尼作用時(shí),功角曲線接近等幅振蕩,衰減時(shí)間常數(shù)很大,而計(jì)及轉(zhuǎn)子阻尼作用后,功角曲線很快衰減,衰減時(shí)間常數(shù)減小為2.151 s。可以看出轉(zhuǎn)子阻尼作用也可以明顯減小大擾動(dòng)低頻振蕩的衰減時(shí)間常數(shù)。
從上述結(jié)果可以看出,汽輪發(fā)電機(jī)轉(zhuǎn)子阻尼作用對(duì)系統(tǒng)大擾動(dòng)及其引起的機(jī)-網(wǎng)之間的低頻振蕩過程具有明顯的抑制作用。
圖6 轉(zhuǎn)子阻尼計(jì)及與否時(shí)大擾動(dòng)功角曲線與角速度曲線Fig.6 Power angle and angular velocity curves after large disturbance with and without rotor damping effects
2.2 轉(zhuǎn)子各部分阻尼單獨(dú)作用對(duì)大擾動(dòng)低頻振蕩的影響
汽輪發(fā)電機(jī)的轉(zhuǎn)子阻尼結(jié)構(gòu)通常由大齒導(dǎo)條、導(dǎo)電槽楔和鐵心三部分構(gòu)成,為了研究這三部分阻尼在大擾動(dòng)過程的作用及其對(duì)機(jī)-網(wǎng)低頻振蕩幅值和衰減時(shí)間常數(shù)的影響,本節(jié)對(duì)轉(zhuǎn)子三部分阻尼單獨(dú)作用下的大擾動(dòng)過程進(jìn)行仿真對(duì)比,其結(jié)果如圖7所示。為了定量化的對(duì)比和分析仿真結(jié)果的差異,本文通過Prony法對(duì)三種情況下計(jì)算的角速度曲線進(jìn)行擬合,得出大擾動(dòng)低頻振蕩過程中發(fā)電機(jī)轉(zhuǎn)子角速度的振蕩頻率和阻尼比,結(jié)果如表3所示。
圖7 三部分阻尼單獨(dú)作用時(shí)的功角與角速度曲線Fig.7 Power angle and angular velocity curves under separately effect of three damping structures
λ1,2f/Hzζ轉(zhuǎn)子槽楔-1.1±j5.96901.90.18123轉(zhuǎn)子鐵心-0.91±j5.34071.70.16790大齒導(dǎo)條-0.41±j5.96901.90.06852
從圖7和表3中可以看出:
1)轉(zhuǎn)子導(dǎo)電槽楔單獨(dú)作用時(shí),功角與角速度曲線的振蕩幅值最?。欢D(zhuǎn)子鐵心單獨(dú)作用時(shí),功角與角速度曲線的振蕩幅值最大。因此,轉(zhuǎn)子導(dǎo)電槽楔對(duì)于功角與角速度最大幅值的抑制作用比較明顯。
2)轉(zhuǎn)子導(dǎo)電槽楔、鐵心及大齒導(dǎo)條分別作用時(shí),角速度曲線的衰減時(shí)間常數(shù)分別為0.81 s、0.98 s、2.2 s。轉(zhuǎn)子導(dǎo)電槽楔對(duì)于大擾動(dòng)后低頻振蕩的快速衰減作用比較明顯。
3)轉(zhuǎn)子導(dǎo)電槽楔單獨(dú)作用時(shí)的阻尼比最大,而大齒導(dǎo)條單獨(dú)作用時(shí)的阻尼比最小,說明轉(zhuǎn)子三種阻尼結(jié)構(gòu)單獨(dú)作用時(shí),轉(zhuǎn)子導(dǎo)電槽楔的作用最強(qiáng)。
2.3 轉(zhuǎn)子各部分阻尼共同作用對(duì)大擾動(dòng)低頻振蕩的影響
本節(jié)對(duì)汽輪發(fā)電機(jī)各部分阻尼共同作用時(shí)的大擾動(dòng)低頻振蕩過程進(jìn)行研究。首先對(duì)僅計(jì)轉(zhuǎn)子大齒導(dǎo)條、計(jì)及轉(zhuǎn)子大齒導(dǎo)條和導(dǎo)電槽楔、計(jì)及轉(zhuǎn)子大齒導(dǎo)條和鐵心這三種情況下的大擾動(dòng)低頻振蕩過程進(jìn)行對(duì)比,結(jié)果如圖8(a)所示。從圖中可以看出,僅計(jì)轉(zhuǎn)子大齒導(dǎo)條作用時(shí)系統(tǒng)功角的振蕩幅值較大,功角最大幅值為50.75°;而轉(zhuǎn)子大齒導(dǎo)條和導(dǎo)電槽楔共同作用以及轉(zhuǎn)子大齒導(dǎo)條和鐵心共同作用時(shí),系統(tǒng)功角的最大幅值分別為41.55°與41.6°,振蕩幅值明顯減小且功角曲線也更快達(dá)到穩(wěn)態(tài)值。
然后對(duì)僅計(jì)轉(zhuǎn)子鐵心、計(jì)及轉(zhuǎn)子鐵心和導(dǎo)電槽楔、計(jì)及轉(zhuǎn)子鐵心和大齒導(dǎo)條等三種情況下的大擾動(dòng)低頻振蕩過程進(jìn)行對(duì)比,結(jié)果如圖8(b)所示。從圖中可以看出,僅計(jì)轉(zhuǎn)子鐵心作用時(shí)系統(tǒng)功角的振蕩幅值較大,功角最大幅值為52.38°;而轉(zhuǎn)子鐵心和導(dǎo)電槽楔共同作用以及轉(zhuǎn)子鐵心和大齒導(dǎo)條共同作用時(shí)系統(tǒng)功角的最大幅值分別為42.36°與41.6°,振蕩幅值均明顯減小。
最后對(duì)僅計(jì)轉(zhuǎn)子導(dǎo)電槽楔、計(jì)及轉(zhuǎn)子導(dǎo)電槽楔和鐵心、計(jì)及轉(zhuǎn)子導(dǎo)電槽楔和大齒導(dǎo)條等三種情況下的大擾動(dòng)低頻振蕩過程進(jìn)行對(duì)比,如圖8(c)所示。三種情況下的功角最大幅值分別為44.93°、42.36°、41.55°。從圖中可以看出,僅計(jì)轉(zhuǎn)子導(dǎo)電槽楔作用時(shí)系統(tǒng)功角的振蕩幅值與轉(zhuǎn)子導(dǎo)電槽楔和鐵心共同作用、轉(zhuǎn)子導(dǎo)電槽楔和大齒導(dǎo)條共同作用時(shí)均較為接近。
綜上所述可以看出,轉(zhuǎn)子大齒導(dǎo)條單獨(dú)作用與大齒導(dǎo)條和其它兩種轉(zhuǎn)子阻尼結(jié)構(gòu)分別作用時(shí)的大擾動(dòng)低頻振蕩過程均相差較大;轉(zhuǎn)子鐵心單獨(dú)作用與轉(zhuǎn)子鐵心和其它兩種轉(zhuǎn)子阻尼結(jié)構(gòu)分別作用時(shí)的大擾動(dòng)低頻振蕩過程也相差較大;而轉(zhuǎn)子槽楔單獨(dú)作用、轉(zhuǎn)子槽楔與大齒導(dǎo)條共同作用、轉(zhuǎn)子槽楔與鐵心共同作用時(shí)的大擾動(dòng)低頻振蕩過程則相差較小,因而可以得出在轉(zhuǎn)子各部分結(jié)構(gòu)阻尼相互作用時(shí)轉(zhuǎn)子槽楔仍然起主要作用。
為了進(jìn)一步分析轉(zhuǎn)子各部分阻尼結(jié)構(gòu)在大擾動(dòng)低頻振蕩過程中的作用,將擾動(dòng)過程中各阻尼結(jié)構(gòu)中的阻尼電流折合到d、q軸,分別得出在d軸的阻尼電流ID和q軸阻尼電流IQ,對(duì)比各部分阻尼電流的大小。當(dāng)三部分阻尼全計(jì)及時(shí),計(jì)算得出其中電流如圖9所示.從圖中看出:轉(zhuǎn)子槽楔的直軸阻尼電流分量遠(yuǎn)大于其它兩種阻尼結(jié)構(gòu);而三部分阻尼的交軸阻尼電流分量相差不大,且轉(zhuǎn)子槽楔中的電流更大一些??傮w來看,轉(zhuǎn)子槽楔中的阻尼電流最大,而大齒導(dǎo)條中的阻尼電流最小,阻尼電流越大,其產(chǎn)生的磁場(chǎng)與定子磁場(chǎng)之間產(chǎn)生電磁力越大,發(fā)電機(jī)轉(zhuǎn)速和功角就越易趨于穩(wěn)定。
圖8 轉(zhuǎn)子各部分阻尼單獨(dú)作用與共同作用功角曲線對(duì)比Fig.8 Comparison of power angle curves under separately and interaction effect of damping structures
2.4 轉(zhuǎn)子不同槽楔材料對(duì)大擾動(dòng)低頻振蕩的影響
通常情況下,不同容量和型號(hào)的汽輪發(fā)電機(jī)轉(zhuǎn)子槽楔的材料也不相同,主要有不銹鋼槽楔、鋁合金槽楔和銅基合金槽楔等幾種類型,這些槽楔材料的磁導(dǎo)率基本相同而電導(dǎo)率卻相差較大。由表2可知,鋁合金的電導(dǎo)率約為不銹鋼的12倍。為了研究轉(zhuǎn)子不同槽楔材料對(duì)大擾動(dòng)低頻振蕩的影響,本節(jié)對(duì)比分析了轉(zhuǎn)子槽楔采用不銹鋼和鋁合金時(shí),轉(zhuǎn)子槽楔單獨(dú)作用、轉(zhuǎn)子槽楔與鐵心共同作用、轉(zhuǎn)子槽楔與大齒導(dǎo)條共同作用以及轉(zhuǎn)子阻尼全部作用四種情況下,兩種不同槽楔材料對(duì)發(fā)電機(jī)的大擾動(dòng)低頻振蕩的影響,結(jié)果如圖10所示。
圖9 三部分阻尼全計(jì)及時(shí)各阻尼結(jié)構(gòu)中的電流Fig.9 Currents in three component of rotor damping structure
從圖10中可以看出,四種情況下轉(zhuǎn)子槽楔采用不銹鋼材料時(shí)功角的擺動(dòng)幅值明顯大于鋁合金材料。這是因?yàn)橄到y(tǒng)大擾動(dòng)導(dǎo)致發(fā)電機(jī)的輸入和輸出功率失去平衡,從而引起轉(zhuǎn)速偏離同步速,這種情況下同步旋轉(zhuǎn)磁場(chǎng)切割轉(zhuǎn)子繞組產(chǎn)生感應(yīng)電流,該電流產(chǎn)生的磁場(chǎng)與同步旋轉(zhuǎn)磁場(chǎng)之間會(huì)產(chǎn)生電磁力,電磁力越大發(fā)電機(jī)轉(zhuǎn)速越易趨于穩(wěn)定,功角也就越易趨于穩(wěn)定。而該電磁力的大小主要取決于轉(zhuǎn)子繞組上感應(yīng)電流的大小,該電流的大小與材料的電導(dǎo)率成正比。
為了分析轉(zhuǎn)子槽楔材料對(duì)阻尼電流大小影響,分別計(jì)算轉(zhuǎn)子槽楔采用鋁合金和不銹鋼時(shí)時(shí),槽楔中阻尼電流的大小,結(jié)果如圖11所示。從圖中可以看出,轉(zhuǎn)子槽楔采用鋁合金時(shí)的直軸阻尼電流分量和交軸阻尼電流分量均大于采用不銹鋼槽楔時(shí)的電流。因此,鋁合金槽楔對(duì)于大擾動(dòng)后低頻振蕩的抑制作用要強(qiáng)于不銹鋼槽楔。
圖10 轉(zhuǎn)子槽楔采用不同材料時(shí)的大擾動(dòng)功角特性曲線Fig.10 Power angle curves after big disturbance under the effect of different material of slot wedge
圖11 不同轉(zhuǎn)子槽楔材料低頻振蕩過程中槽楔阻尼電流Fig.11 Damping currents of slot wedge with different rotor wedge material during low frequency oscillation
1)通過對(duì)汽輪發(fā)電機(jī)轉(zhuǎn)子阻尼作用計(jì)及與否時(shí)的大擾動(dòng)低頻振蕩過程進(jìn)行對(duì)比分析,得出轉(zhuǎn)子阻尼結(jié)構(gòu)的作用不僅可以抑制大擾動(dòng)后功角的最大擺動(dòng)幅值,而且可以有效減小大擾動(dòng)低頻振蕩過程的衰減時(shí)間常數(shù)。
2)通過對(duì)汽輪發(fā)電機(jī)轉(zhuǎn)子各部分阻尼單獨(dú)作用時(shí)的大擾動(dòng)低頻振蕩過程進(jìn)行對(duì)比分析,得出轉(zhuǎn)子導(dǎo)電槽楔單獨(dú)作用時(shí)的阻尼比最大,且衰減時(shí)間常數(shù)最小;而大齒導(dǎo)條單獨(dú)作用時(shí)的阻尼比最小,且衰減時(shí)間常數(shù)最大;在轉(zhuǎn)子各部分阻尼共同作用時(shí),轉(zhuǎn)子槽楔仍然起主要作用。
3)通過對(duì)汽輪發(fā)電機(jī)轉(zhuǎn)子槽楔材料采用鋁合金和不銹鋼時(shí)的大擾動(dòng)低頻振蕩過程進(jìn)行對(duì)比分析,得出四種情況下轉(zhuǎn)子槽楔采用不銹鋼時(shí)的功角振蕩幅值明顯大于其采用鋁合金時(shí)的振蕩幅值,采用電導(dǎo)率較大的轉(zhuǎn)子槽楔材料可以有效抑制發(fā)電機(jī)大擾動(dòng)低頻振蕩過程中的功角幅值。
[1] 陳恩澤,劉滌塵,廖清芬,等.多重?cái)_動(dòng)下的跨區(qū)電網(wǎng)低頻振蕩研究[J].電工技術(shù)學(xué)報(bào),2014,29(2):290-295. CHEN Enze,LIU Dichen,LIAO Qingfen,et al.Research on low frequency oscillation of interconnected power grid based on multiple disturbances[J].Transactions of China Electro-technical Society,2014,29(2): 290-295.
[2] 耿博,姜睿,羅貴明.基于最小二乘法的最優(yōu)自適應(yīng)電力系統(tǒng)穩(wěn)定器[J].電機(jī)與控制學(xué)報(bào),2007,11(5): 512-516. GENG Bo,JIANG Rui,LUO Guiming.Optmial adaptive power system stabilizer based on least-squares algorithm [J].Electric Machines and Control,2007,11(5):512-516.
[3] 宋墩文,楊學(xué)濤,丁巧林,等.大規(guī)?;ヂ?lián)電網(wǎng)低頻振蕩分析與控制方法綜述[J].中國電機(jī)工程學(xué)報(bào),2011,35(10):23-27. SONG Dunwen,YANG Xuetao,DING Qiaolin,et al.A survey on analysis on low frequency oscillation in large-scale interconnected power grid and its control measures[J].Proceedings of the CSEE,2011,35(10):23-27.
[4] HAQUE M H.Evaluation of first swing stability of a large power system with various FACTS devices [J].IEEE Trans.Power Syst,2008,23(3): 1144-1151.
[5] 李偉力,孫佳慧,孫宏麗.汽輪發(fā)電機(jī)穩(wěn)態(tài)與負(fù)序工況下轉(zhuǎn)子渦流損耗計(jì)算和溫度場(chǎng)分析[J].電工技術(shù)學(xué)報(bào),2012,27(9):174-182. LI Weili,SUN Jiahui,SUN Hongli.Calculation and analysis of eddy loss and temperature field in rotor of synchronous generator under steady state and negative sequence[J].Transactions of China Electro-technical Society,2012,27(9): 174-182.
[6] 許國瑞,劉曉芳,羅應(yīng)立,等.汽輪發(fā)電機(jī)轉(zhuǎn)子阻尼系統(tǒng)對(duì)第一擺穩(wěn)定性影響的仿真計(jì)算研究[J].中國電機(jī)工程學(xué)報(bào),2015,35(1):214-222. XU Guorui,LIU Xiaofang,LUO Yingli,et al.Simulation study of the first swing stability affected by rotor damping systems of turbine generators[J].Proceedings of the CSEE,2015,35(1): 214-222.
[7] SHAHROKH S,JAFAR S.Damping of low frequency oscillations of multi-machine multi-UPFC power systems based on adaptive input-output feedback linearization control[J].IEEE Transactions on Power Systems,2012,27(4): 1831-1839.
[8] DJORDJE M D,MARKO V J.An improved method of damping of generator oscillations[J].IEEE Transactions on Energy Convers.,1999,14(4):1624-1629.
[9] 薛禹勝,郝思鵬,劉俊勇,等.關(guān)于低頻振蕩分析方法的評(píng)述[J].電力系統(tǒng)自動(dòng)化,2009,33(3):1-8. XUE Yusheng,HAO Sipeng,LIU Junyong,et al.A review of analysis methods for low-frequency oscillations[J] Automation of Electric Systems,2009,33(3):1-8.
[10] 徐英新,王西田,楊帆,等.同步發(fā)電機(jī)阻尼繞組和磁路飽和對(duì)低頻振蕩阻尼的影響[J].電力自動(dòng)化設(shè)備,2007,27(5):28-31 XU Yingxin,WANG Xitian,YANG Fan,et al.Effect of synchronous machine damper windings and magnetic saturation on low-frequency oscillation damping [J].Electric Power Automation Equipment,2007,27(5):28-35.
[11] 魏偉,楊艷.電力系統(tǒng)阻尼特性規(guī)律探索[J].電機(jī)與控制學(xué)報(bào),2008,12(1):34-37. WEI Wei,YANG Yan.Researches on damping characteristics of electric power systems [J].Electric Machines and Control,2008,12(1):34-37.
[12] CANAY I M.Determination of the model parameters of machines from the reactance operators xd(p),xq(p) [J].IEEE Trans.Energy Convers.1993,8(2): 272-279.
[13] GAO Jingde,ZHANG Linzheng,WANG Xiangheng.AC machine system:mathematical model and parameters,analysis,and system performance[M].Springer- Verlagand Tsinghua University Press,Beijing,2009: 58-266.
[14] 吳跨宇,竺士章.發(fā)電機(jī)勵(lì)磁系統(tǒng)調(diào)差對(duì) PSS 參數(shù)整定的影響與對(duì)策[J].電力自動(dòng)化設(shè)備,2010,30(9):67-71. WU Kuayu,ZHU Shizhang.Effect of reactive compensation for generator excitation system on PSS parameter setting and solution [J].Electric Power Automation Equipment,2010,30(9):67-71.
[15] 高蓮蓮,梁艷萍.雙屏蔽電機(jī)定子端部漏抗計(jì)算及其影響分析[J].電機(jī)與控制學(xué)報(bào),2015,19(5):53-57. GAO Lianlian, LIANG Yanping.Calculation and analysis of stator end leakage reactance of double canned motor [J].Electric Machines and Control,2015,19(5):53-57.
[16] 羅應(yīng)立,胡笳,劉曉芳,等.面向系統(tǒng)動(dòng)態(tài)分析的場(chǎng)路網(wǎng)耦合時(shí)步有限元模型[J].中國電機(jī)工程學(xué)報(bào),2009,29(33):102-110. LUO Yingli,HU Jia,LIU Xiaofang,et al.Field-circuit-network coupled time-step finite element model for power system dynamic analysis[J].Proceedings of the CSEE,2009,29(33):102-110.
[17] SASIC M,LIOYD B,ELEZ A.Finite element analysis of turbine generator rotor winding shorted turns[J],IEEE Trans.Energy Convers.2012,27(4):930-937.
[18] XIALDONG L,ELSERAFI A M,FARIED S O.Application of the finite element method for the determination of the parameters representing the cross magnetizing in saturated synchronous machines [J].IEEE Trans.Energy Convers.,2010,25 (1): 71-79.
[19] IBRAHIM M,PILLAY P.Core loss prediction in electrical machine laminations considering skin effect and minor hysteresis loops[J].IEEE Trans.on Industry Application,2013,PP(99): 2681-2686.
[20] STURGESS J P,ZHU M,MACDONALD D C.Finite-element simulation of a generator on load after a three-phase fault [J].IEEE Trans.Energy Convers.1992,7(4): 787-791.
[21] XU Guorui,LIU Xiaofang,KANG Jinping,et al.The influence of turbine generator rotor damping structure and material on first swing stability [J].Electric Power Systems Research,2015,124: 181-189.
Influenceofrotordampingstructureofturbinegeneratorsonlowfrequencyoscillationunderlargedisturbance
XU Guo-rui1, LI Jin-xiang2, FU Yong-qi1, HU Jia3, SUN Yu-tian2, LIU Xiao-fang1
(1.School of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China; 2.State Key Laboratory of Hydropower Equipment (Harbin Institute of Large Electrical Machinery),Harbin 150040,China; 3.China Power International Holding Ltd,Beijing 100080,China)
It aims to study the effect of rotor damping structure which contains damping bars,the rotor iron core and rotor slot wedges on low frequency oscillation (LFO) under large disturbance.Firstly,the time stepping finite element model of turbine generator was built to study the effect of rotor damping structure on LFO and the model was tested by the experiment of 7.5 kW model machine.Then,the influence of rotor damping on LFO under large disturbance was studied under the individual and combined effect of three components of rotor damping structures.Finally,the influence of different rotor slot wedge material on LFO was studied.The results show that the rotor damping structure can suppress LFO under large disturbance.The rotor slot wedge plays a more vital role during LFO after large disturbance and the aluminum alloy slot wedge has a better suppression effect than that made of stainless steel.
rotor damping system; large disturbance; low frequency oscillation; turbine generator;time stepping finite element model
(編輯:賈志超)
2016-01-01
國家自然科學(xué)基金(51507059,51477049);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助 (2015QN03)
許國瑞(1986—),男,博士,研究方向?yàn)橥桨l(fā)電機(jī)模型、參數(shù)及機(jī)網(wǎng)協(xié)調(diào)運(yùn)行; 李金香(1965—),女,碩士,高級(jí)工程師,研究方向?yàn)殡姍C(jī)磁場(chǎng)理論研究與計(jì)算、電機(jī)瞬變過程分析與計(jì)算; 付永旗(1992—),男,碩士,研究方向?yàn)橥桨l(fā)電機(jī)大擾動(dòng)特性; 胡 笳(1982—),男,博士,研究方向?yàn)橥桨l(fā)電機(jī)動(dòng)態(tài)擾動(dòng)特性; 孫玉田(1963—),男,博士,教授級(jí)高工,研究方向?yàn)殡姍C(jī)電磁場(chǎng)、電機(jī)及系統(tǒng)動(dòng)態(tài)分析; 劉曉芳(1961—),女,學(xué)士,教授,研究方向?yàn)榇笮碗姍C(jī)非正常運(yùn)行及暫穩(wěn)態(tài)特性。
許國瑞
10.15938/j.emc.2017.08.002
TM 302
:A
:1007-449X(2017)08-0009-09