聶衛(wèi)波,張 凡,馬孝義,黃 恒(. 西安理工大學(xué)水資源研究所,西安 70048;. 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 700)
基于土壤入滲變異性的畦灌單寬流量?jī)?yōu)化
聶衛(wèi)波1,張 凡1,馬孝義2,黃 恒1
(1. 西安理工大學(xué)水資源研究所,西安 710048;
2. 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 712100)
農(nóng)田土壤入滲變異性給畦灌系統(tǒng)的設(shè)計(jì)和管理帶來(lái)了困難。為進(jìn)一步提高畦灌灌水質(zhì)量,該研究利用已有考慮土壤變異條件下的畦灌灌水質(zhì)量計(jì)算模型,采用數(shù)值模擬與理論分析相結(jié)合的方法,擴(kuò)展了模型的使用范圍,并結(jié)合畦灌試驗(yàn)資料對(duì)其進(jìn)行了驗(yàn)證;在此基礎(chǔ)上分析了土壤入滲變異性對(duì)畦灌灌水質(zhì)量的影響,提出了考慮農(nóng)田土壤入滲變異條件下入畦單寬流量的確定方法。結(jié)果表明,文中擴(kuò)展后的模型可用于計(jì)算異質(zhì)土壤和均質(zhì)土壤情景模式下的畦灌灌水質(zhì)量指標(biāo),其計(jì)算值與田間實(shí)測(cè)值和WinSRFR軟件模擬值一致性較好,相對(duì)誤差均值分別為10%;土壤入滲變異對(duì)畦灌灌水質(zhì)量的影響顯著,貢獻(xiàn)度高達(dá)56.71%~95.68%,其對(duì)灌水均勻度的影響最為敏感,其次為灌水效率和儲(chǔ)水效率;基于均質(zhì)土壤入滲條件下優(yōu)化的入畦單寬流量,可用于異質(zhì)土壤畦灌灌水流量設(shè)計(jì),兩者符合1∶1的線性關(guān)系。研究結(jié)果可為考慮農(nóng)田土壤變異性的畦灌系統(tǒng)設(shè)計(jì)和管理提供理論依據(jù)和技術(shù)支撐。
土壤;入滲;模型;畦灌;變異性;數(shù)值模擬;灌水質(zhì)量;入畦單寬流量
畦灌是密植作物廣泛采用的灌水技術(shù),但灌水質(zhì)量不高仍是目前存在的主要問(wèn)題。國(guó)內(nèi)外學(xué)者針對(duì)該問(wèn)題進(jìn)行了大量研究,其中鄭和祥等[1]建議通過(guò)優(yōu)化田塊規(guī)格來(lái)提高畦灌灌水質(zhì)量;Sanchez等[2]、馬娟娟等[3]和Koech等[4]分別以田間灌水試驗(yàn)的基礎(chǔ)開(kāi)展了相應(yīng)的研究,其結(jié)果均表明通過(guò)選擇合理的灌水流量和停水時(shí)間可獲得較高的灌水質(zhì)量;繳錫云等[5]采用田口方法對(duì)畦灌技術(shù)要素組合進(jìn)行了設(shè)計(jì),增強(qiáng)了設(shè)計(jì)結(jié)果的穩(wěn)健性;吳彩麗等[6]采用數(shù)值模擬和理論分析相結(jié)合的方法,提出了不同灌溉技術(shù)要素組合下滿足灌溉性能綜合最優(yōu)的灌水深度控制目標(biāo)適宜值;白美健等[7]研究表明選用合理的關(guān)口時(shí)間(改水成數(shù))能有效提高畦灌灌水質(zhì)量;以上研究較好地促進(jìn)了畦灌系統(tǒng)的設(shè)計(jì)和管理水平,但同時(shí)在其研究過(guò)程中較少考慮農(nóng)田土壤入滲變異性對(duì)畦灌灌水質(zhì)量影響,通常對(duì)入滲參數(shù)取均值進(jìn)行簡(jiǎn)化處理,使其研究結(jié)果與田間實(shí)際情況有所差異,導(dǎo)致畦灌灌水質(zhì)量的提高幅度有限。
近年來(lái),部分學(xué)者開(kāi)展了農(nóng)田土壤入滲變異性對(duì)地面灌溉灌水質(zhì)量影響的量化研究。根據(jù)Oyonarte等[8]的研究表明,溝灌過(guò)程中土壤入滲參數(shù)的變異性是影響灌水質(zhì)量變化的主要因素,其貢獻(xiàn)率在45%~75%之間;Mateos等[9]分析了土壤穩(wěn)滲率對(duì)溝灌灌水質(zhì)量的影響,結(jié)果表明考慮土壤穩(wěn)滲率變異性的灌水均勻度低于未考慮其變異評(píng)價(jià)結(jié)果的20%以上;繳錫云等[10]研究表明考慮土壤入滲參數(shù)變異性的灌水效率相對(duì)于未考慮時(shí)降低了10%左右,灌水均勻度降低20%以上;白美健等[11]研究表明土壤入滲變異性對(duì)灌溉均勻度和灌溉效率影響較大,且變異越強(qiáng)畦灌質(zhì)量越差;Nie等[12]以修正Kostiakov入滲公式為基礎(chǔ),建立了考慮土壤入滲變異影響的畦灌灌水質(zhì)量評(píng)價(jià)模型;上述研究表明土壤入滲變異性對(duì)灌水質(zhì)量的影響顯著,在實(shí)際的應(yīng)用中不容忽視,應(yīng)在畦灌灌水質(zhì)量評(píng)價(jià)和灌水方案設(shè)計(jì)時(shí)充分考慮其影響,但以往對(duì)于考慮農(nóng)田土壤入滲變異條件下如何確定畦灌灌水技術(shù)要素的方法缺乏相應(yīng)的研究。基于此,本文以文獻(xiàn)[12]所建的考慮土壤入滲變異條件下的畦灌灌水質(zhì)量評(píng)價(jià)模型為基礎(chǔ),通過(guò)擴(kuò)展模型的使用范圍,分析土壤入滲變異性對(duì)畦灌灌水質(zhì)量的影響,提出考慮農(nóng)田土壤入滲變異條件下入畦單寬流量的確定方法,以期進(jìn)一步提高畦灌灌水質(zhì)量,為畦灌系統(tǒng)設(shè)計(jì)和管理提供理論依據(jù)和技術(shù)支撐。
畦灌土壤水分分布主要取決于灌水過(guò)程中不同位置處入滲時(shí)間的差異和土壤入滲特性的變異特征,其不同位置處入滲時(shí)間的差異可根據(jù)水流消退和推進(jìn)過(guò)程數(shù)據(jù)求得,而土壤入滲變異性可采用入滲公式中各參數(shù)的變異表征??紤]土壤入滲變異條件下的畦灌灌水質(zhì)量評(píng)價(jià)模型分析與計(jì)算過(guò)程詳見(jiàn)文獻(xiàn)[12],此處僅概括總結(jié)。
1.1 畦灌入滲時(shí)間變異性
畦灌水流推進(jìn)和消退過(guò)程,分別采用冪函數(shù)和一元二次函數(shù)表征,即
式中at和rt分別為水流推進(jìn)和消退時(shí)間,min;x為水流至畦首距離,m;p、r、a、b和c均為經(jīng)驗(yàn)系數(shù),可利用水流運(yùn)動(dòng)過(guò)程資料采用多點(diǎn)回歸擬合得到。根據(jù)研究可得畦灌過(guò)程中整個(gè)田面平均入滲時(shí)間和入滲時(shí)間方差[13],即
式中L為畦田長(zhǎng)度,m;μt為田面平均入滲時(shí)間,min;為整個(gè)田面入滲時(shí)間方差,min2
1.2 畦灌土壤入滲變異性
采用修正Kostiakov公式[14]描述畦灌過(guò)程中的土壤入滲過(guò)程,即
式中Z為單位面積累積入滲量,mm;t為入滲時(shí)間,min;k為入滲系數(shù),mm/minα;α為入滲指數(shù);0f為穩(wěn)滲率,mm/min;其參數(shù)可通過(guò)田間入滲試驗(yàn)或利用水流運(yùn)動(dòng)資料推求。關(guān)于土壤入滲變異性已取得了較多研究成果,其中白美健等[15]和聶衛(wèi)波等[16]分別以雙環(huán)入滲試驗(yàn)資料為基礎(chǔ),研究結(jié)果均表明式(5)中入滲指數(shù)α的變異性最小,它主要與土壤質(zhì)地等因素有關(guān),而農(nóng)田尺度土壤質(zhì)地相對(duì)均一,使得入滲指數(shù)α較為穩(wěn)定,故可取均值,且與180Z(180 min的累積入滲量)無(wú)相關(guān)性;而入滲系數(shù)k和0f與180Z具有顯著的相關(guān)性,可借助k和0f的變異性描述土壤入滲變異特征,但采用多變量(k和0f)給其分析帶來(lái)了較大困難。因此,通過(guò)對(duì)式(5)進(jìn)行歸一化處理可簡(jiǎn)化該問(wèn)題的研究,具體計(jì)算過(guò)程參見(jiàn)文獻(xiàn)[17],可得
式中CV為畦田所有測(cè)點(diǎn)歸一化因子F的變異系數(shù)。通過(guò)分析式(8)和式(9)可知,若CV=0,則可得均質(zhì)土壤條件下,畦灌過(guò)程中整個(gè)田面累積入滲量的方差計(jì)算公式,即
1.3 畦灌灌水質(zhì)量評(píng)價(jià)指標(biāo)計(jì)算模型
畦灌灌水質(zhì)量評(píng)價(jià)指標(biāo)通常包括灌水效率Ea、儲(chǔ)水效率Es和灌水均勻度Du,其中Du表征田間灌溉水在田面各點(diǎn)分布的均勻程度,可根據(jù)下式計(jì)算[12],即
式中σZ為畦灌過(guò)程中整個(gè)田面累積入滲量的標(biāo)準(zhǔn)差,mm。根據(jù)Mateos等[9]研究成果,可得畦灌灌水效率Ea和儲(chǔ)水效率Es指標(biāo)計(jì)算公式,即
式中rU為標(biāo)準(zhǔn)正態(tài)分布條件下的計(jì)劃灌水量,mm;rP為入滲水量大于rU時(shí)累計(jì)概率密度函數(shù);rZ為計(jì)劃灌水量,mm。rP和rU可分別根據(jù)下式計(jì)算
式中U為標(biāo)準(zhǔn)正態(tài)分布條件下的累積入滲量,mm。
1.4 畦灌模擬及單寬流量?jī)?yōu)化
WinSRFR軟件是美國(guó)水保實(shí)驗(yàn)室開(kāi)發(fā)的一維地面灌溉模擬模型,它是集地面灌溉評(píng)價(jià)、設(shè)計(jì)和模擬為一體的綜合性分析軟件[22-23]。大量學(xué)者研究表明WinSRFR軟件能夠很好地模擬地面灌溉水流運(yùn)動(dòng)過(guò)程和灌水質(zhì)量指標(biāo)[24-26]。因此,本文采用WinSRFR軟件模擬畦灌過(guò)程,模擬分為2種情景模式,即情景1:均質(zhì)土壤條件下畦灌過(guò)程模擬;情景2:考慮土壤變異條件下畦灌過(guò)程模擬。以軟件模擬結(jié)果作為基準(zhǔn),驗(yàn)證文中方法估算灌水質(zhì)量指標(biāo)的可靠性。
由于畦灌灌水質(zhì)量所采用的3個(gè)評(píng)價(jià)指標(biāo)往往相互矛盾,且在評(píng)價(jià)指標(biāo)制定時(shí)還需考慮存在極值的情況。因此,采用與文獻(xiàn)[27]類似的方法,以灌水質(zhì)量評(píng)價(jià)指標(biāo)幾何平均值最大作為準(zhǔn)則,即
式中Y為畦灌灌水質(zhì)量綜合指標(biāo)。以往通常選取可控的灌水流量和灌水時(shí)間來(lái)提高灌水質(zhì)量,但在土壤入滲變異性的影響下,基于畦田均質(zhì)土壤條件下優(yōu)化的結(jié)果可能無(wú)法保證水流推進(jìn)至田塊尾部。因此,考慮田間實(shí)際情況和優(yōu)化結(jié)果的實(shí)用性,本文在優(yōu)化均質(zhì)土壤和異質(zhì)土壤2種情景模式下的灌水技術(shù)要素時(shí),其灌水時(shí)間均采用水流推進(jìn)至畦尾停水,主要通過(guò)選取合理的入畦單寬流量提高灌水質(zhì)量。
1.5 畦灌試驗(yàn)
畦灌試驗(yàn)B1~B4于2016年1月在陜西省武功縣進(jìn)行,種植作物為冬小麥,該試驗(yàn)地點(diǎn)經(jīng)、緯度分別為108°03′06′E,34°21′32′N。土壤質(zhì)地為粉砂質(zhì)壤土,平均干容重為1.51 g/cm3;試驗(yàn)前測(cè)定畦田坡降為3‰,入畦流量用三角薄壁堰測(cè)定求得,計(jì)劃灌水量100 mm (B1~B4田塊實(shí)際灌水量分別為125, 150, 115和119 mm);畦田中每隔10 m設(shè)立觀測(cè)點(diǎn)并記錄水流推進(jìn)和消退時(shí)間;灌水前、后1 d,沿畦長(zhǎng)方向每隔10 m處采集土樣測(cè)定土壤含水率,其中B1和B2畦田各設(shè)置9個(gè)土壤含水率取樣點(diǎn),B3和B4畦田各設(shè)置7個(gè)取樣點(diǎn),采集深度分別為0.1、0.2、0.3、0.4、0.6、0.8、1.0 m,收集土壤灌前和灌后不同位置和深度處的含水率數(shù)據(jù),基于文獻(xiàn)[28]的方法計(jì)算灌水質(zhì)量評(píng)價(jià)指標(biāo)(Ea、Es和Du),簡(jiǎn)稱實(shí)測(cè)值。沿畦長(zhǎng)方向每隔10 m處設(shè)置雙環(huán)入滲試驗(yàn)點(diǎn),土壤入滲參數(shù)根據(jù)實(shí)測(cè)入滲數(shù)據(jù)確定,結(jié)果見(jiàn)表1。已有文獻(xiàn)[27,29]研究表明,田面糙率的變異性對(duì)地面灌溉水流運(yùn)動(dòng)過(guò)程和灌水質(zhì)量影響較小。因此,在WinSRFR模擬過(guò)程中,田面糙率采用本文試驗(yàn)條件相類似冬小麥畦灌試驗(yàn)代表值0.100[26]。同時(shí),采用文獻(xiàn)[30]的畦灌試驗(yàn)資料B5~B9進(jìn)行分析。田間畦灌試驗(yàn)在河北省吳橋縣彭莊村進(jìn)行,種植作物為棉花,試驗(yàn)區(qū)經(jīng)、緯度分別為116°22′02′E,37°39′N。土壤質(zhì)地為粉壤土,平均干容重為1.43 g/cm3,田面坡降為1.3‰,水源為地下水,計(jì)劃灌水量60 mm。試驗(yàn)過(guò)程中觀測(cè)水流推進(jìn)和消退過(guò)程、入畦流量、田面水深等基礎(chǔ)數(shù)據(jù)。畦田各項(xiàng)基本參數(shù)見(jiàn)表1。
表1 不同畦田灌水試驗(yàn)基本參數(shù)Table 1 Basic parameters of border irrigation experiments for different border fields
2.1 畦田灌水質(zhì)量評(píng)價(jià)模型驗(yàn)證
文獻(xiàn)[12]已對(duì)表1中各畦田的土壤入滲特性進(jìn)行了分析,并對(duì)歸一化處理的修正Kastiakov入滲公式,即式(6)的可靠性進(jìn)行了驗(yàn)證(歸一化處理后累積入滲估算值與實(shí)測(cè)值決定系數(shù)R2=0.98,均方根誤差為0.74 cm),在此不再贅述。以表1中的畦灌試驗(yàn)資料為基礎(chǔ),采用式(8)和式(10)分別計(jì)算異質(zhì)土壤和均質(zhì)土壤(CV=0)情景模式下田面累積入滲量的方差σZ21和σZ2
2,結(jié)合式(11)、式(12)和式(13)可得相應(yīng)條件下畦灌灌水質(zhì)量評(píng)價(jià)指標(biāo)計(jì)算值,并與田間實(shí)測(cè)值進(jìn)行對(duì)比,結(jié)果見(jiàn)表2。由表2可知,采用文中模型計(jì)算的土壤入滲變異條件下畦灌灌水質(zhì)量指標(biāo)與實(shí)測(cè)值具有高的一致性,其B1~B4畦田Du、Ea和Es的相對(duì)誤差均值分別為5.40%、6.33%和5.53%,表明文中模型估算畦灌灌水質(zhì)量指標(biāo)具有高的精度,可較好地反映田間實(shí)際的灌溉水分布情況。而采用文中模型估算的均質(zhì)土壤條件下,即CV=0的畦灌灌水質(zhì)量指標(biāo)與實(shí)測(cè)值具有較為顯著的差異性,其中Du相對(duì)誤差均值為15.42%,而Ea和Es的誤差均值相對(duì)較小,分別為9.98%和5.66%,原因可能為:1)B1~B4畦田灌水量均大于計(jì)劃灌水量(Zr=100 mm ),其中B2畦田灌水量最大為150 mm,B3最小為115 mm,即使土壤存在變異性,但過(guò)高的灌水量使得不同土壤條件下所計(jì)算的Ea和Es值基本一致,從而導(dǎo)致計(jì)算值與實(shí)測(cè)值相對(duì)誤差較??;2)B1~B4畦田歸一化因子F的變異系數(shù)CV值相對(duì)較?。ū?),B1畦田的CV最大,但僅為0.145,其在一定程度上也使得均質(zhì)土壤條件下,估算的畦田灌水質(zhì)量指標(biāo)aE和sE與實(shí)測(cè)值之間的差異較小。對(duì)比文中模型計(jì)算的異質(zhì)土壤和均質(zhì)土壤情景模式下灌水質(zhì)量指標(biāo),結(jié)果表明畦灌過(guò)程中的土壤變異性對(duì)uD的影響最為敏感,對(duì)aE和sE的影響相對(duì)較小,兩者基本一致,但需注意過(guò)高的灌水量可能降低了土壤變異性對(duì)aE和sE的影響。
表2 畦田B1~B4灌水質(zhì)量指標(biāo)計(jì)算值與實(shí)測(cè)值對(duì)比Table 2 Calculated irrigation performance indicators compared with measured values of B1-B4 border fields
為進(jìn)一步驗(yàn)證文中方法估算畦灌灌水質(zhì)量指標(biāo)的可靠性。采用式(11)、式(12)和式(13)分別計(jì)算表1中異質(zhì)土壤和均質(zhì)土壤(CV=0)情景模式下灌水質(zhì)量指標(biāo),并與對(duì)應(yīng)情景模式下WinSRFR軟件模擬值進(jìn)行對(duì)比,結(jié)果見(jiàn)圖1。其中B1~B4畦田采用試驗(yàn)所用入畦流量和停水時(shí)間,B5~B9畦田由于文獻(xiàn)[30]未給出具體數(shù)據(jù),在模擬過(guò)程中入畦單寬流量分別采用3.0、5.0和7.0 L/(s·m),水流推進(jìn)至畦尾停水。由圖1可見(jiàn),畦灌灌水質(zhì)量計(jì)算值與對(duì)應(yīng)情景模式下WinSRFR軟件模擬值具有較高的一致性,均分布在直線1∶1 兩側(cè),其中異質(zhì)土壤條件下,所有畦田灌水質(zhì)量指標(biāo)Du、Ea和Es的計(jì)算值與模擬值比較,兩者相對(duì)誤差(指各點(diǎn)相對(duì)誤差絕對(duì)值的平均,下同)分別為7.08%、5.80%和4.49%;均質(zhì)土壤條件下,所有畦田灌水質(zhì)量指標(biāo)Du、Ea和Es的計(jì)算值與模擬值相對(duì)誤差分別為4.18%、8.12%和1.99%。由此可知,采用文中式(11)、式(12)和式(13)計(jì)算異質(zhì)土壤和均質(zhì)土壤情景模式下畦灌灌水質(zhì)量指標(biāo)均具有高的可靠性。
2.2 土壤變異性對(duì)畦灌灌水質(zhì)量的影響
畦灌過(guò)程中土壤水分分布主要取決于整個(gè)田面累積入滲量的方差σZ2,通過(guò)計(jì)算不同變異項(xiàng)所占方差σZ2的比例,有助于理解土壤變異性對(duì)畦灌過(guò)程的影響,其中B5~B9畦田水流運(yùn)動(dòng)過(guò)程采用WinSRFR軟件模擬,入畦單寬流量分別采用3.0、5.0和7.0 L/(s·m),水流推進(jìn)至畦尾停水,結(jié)果見(jiàn)表3。
圖1 異質(zhì)土壤和均質(zhì)土壤條件下畦灌灌水質(zhì)量指標(biāo)計(jì)算值與WinSRFR軟件模擬值比較Fig. 1 Calculated irrigation performance values were compared with simulated values by WinSRFR under heterogeneity soil and homogeneity soil condition
表3 畦灌土壤入滲變異占田面累積入滲量方差的比例Table 3 Proportion of soil infiltration variability in cumulative infiltration variance of border irrigation
由表3可知,土壤入滲變異項(xiàng)在整個(gè)田面累積入滲量的方差σZ2所占比例很高,其中最小為B5畦田在單寬流量為7.0 L/(s·m)時(shí)的56.71%,最大為B7畦田在單寬流量為5.0 L/(s·m)時(shí)的95.68%,這與Oyonarte等[8]對(duì)影響溝灌灌水質(zhì)量變異源分析結(jié)果類似,但其土壤入滲變異所占比例范圍(45%~71%)小于本文研究成果,原因?yàn)槠浞治鲞^(guò)程中還考慮了濕周和濕周與灌水時(shí)間交互作用變異的影響,而對(duì)于畦灌過(guò)程而言,可不考慮上述因素影響,故使得土壤入滲變異項(xiàng)所占比例進(jìn)一步增大。由此表明,在畦灌灌水質(zhì)量評(píng)價(jià)過(guò)程中,需充分考慮土壤入滲變異性的影響,反之會(huì)使灌水質(zhì)量指標(biāo)計(jì)算值偏大,導(dǎo)致不能很好地反映田間實(shí)際。
通過(guò)對(duì)式(11)~式(13)分析可知,畦灌灌水質(zhì)量指標(biāo)與田面累積入滲量的方差有關(guān),通過(guò)降低方差值,則可提高其灌水質(zhì)量。而與土壤入滲變異項(xiàng)和田面入滲時(shí)間變異項(xiàng)密切相關(guān),其中土壤入滲變異項(xiàng)所占方差比例很高,而土壤入滲變異是客觀存在的,其入滲參數(shù)值和表征其變異的方差值較難改變,但可對(duì)田面平均入滲時(shí)間μt進(jìn)行控制;對(duì)于田面入滲時(shí)間變異項(xiàng),可通過(guò)降低μt和對(duì)其進(jìn)行控制。通過(guò)分析式(3)和式(4)可知,畦灌中μt和值取決于畦長(zhǎng)L和水流運(yùn)動(dòng)過(guò)程??紤]田間實(shí)際情況,畦長(zhǎng)L通常采用田塊實(shí)際長(zhǎng)度;而水流運(yùn)動(dòng)過(guò)程是入畦流量、田面坡度、糙率和土壤入滲等特征的綜合反映[31],對(duì)于具體畦田而言,田面坡度和土壤入滲特性通常采用實(shí)際值,而灌水過(guò)程中田面糙率值與入畦流量和田面坡度等有關(guān),故通過(guò)選取入畦流量作為控制變量,盡可能地降低畦灌中μt和值,從而減小土壤變異對(duì)畦灌灌水質(zhì)量的影響。同時(shí)結(jié)合表3中B5~B9畦田可知,在其他條件不變的情況下,通過(guò)調(diào)整入畦單寬流量,結(jié)果表明田面累積入滲量的方差σ2有著顯著的變化,這進(jìn)一步支撐了可選取入畦流量
Z作為控制變量結(jié)論,為通過(guò)優(yōu)化入畦單寬流量來(lái)提高畦灌灌水質(zhì)量奠定了基礎(chǔ)。
2.3 入畦單寬流量?jī)?yōu)化
對(duì)于均質(zhì)土壤合理的入畦流量確定已有較多研究成果,若能建立異質(zhì)土壤合理的入畦流量與均質(zhì)土壤優(yōu)化結(jié)果之間的關(guān)系,則可簡(jiǎn)化問(wèn)題的研究。因此,采用式(11)~式(13)分別計(jì)算不同入畦單寬流量條件下異質(zhì)土壤和均質(zhì)土壤(CV=0)的灌水質(zhì)量指標(biāo),并根據(jù)式(17)求出綜合指標(biāo)Y,其中水流運(yùn)動(dòng)過(guò)程采用WinSRFR軟件模擬,入畦單寬流量分別采用2.0、3.0、4.0、5.0、6.0、7.0和8.0 L/(s·m),水流推進(jìn)至畦尾停水,結(jié)果見(jiàn)表4。由表4可知,無(wú)論是異質(zhì)土壤還是均質(zhì)土壤條件下,畦灌灌水質(zhì)量綜合指標(biāo)Y均隨入畦單寬流量的增大呈現(xiàn)出先增加后減小的趨勢(shì),符合拋物線型函數(shù)特征,其決定系數(shù)R2最小為0.727(P<0.05),表明具有較高的擬合精度。對(duì)擬合所得函數(shù)進(jìn)行求解,可分別求得異質(zhì)土壤和均質(zhì)土壤情景模式下各畦田最優(yōu)的入畦單寬流量,結(jié)果見(jiàn)表5和圖2。
表4 不同入畦單寬流量條件畦灌灌水質(zhì)量綜合指標(biāo)Table 4 Comprehensive irrigation performance indicator of border irrigation under different discharge per unit width
由表5和圖2可知,基于異質(zhì)土壤條件下優(yōu)化所得各田塊入畦單寬流量與均質(zhì)土壤條件下基本一致,兩者差別較小,其均勻分布在1∶1線兩則(R2=0.94,P<0.05),表明基于均質(zhì)土壤入滲條件下優(yōu)化的入畦單寬流量結(jié)果,可用于異質(zhì)土壤條件下畦灌灌水流量設(shè)計(jì),能夠保證高的灌水質(zhì)量。通過(guò)分析式(8)和式(10)可知,由于土壤入滲變異是客觀存在的,通過(guò)優(yōu)化入畦單寬流量,可降低畦灌過(guò)程中μt和,即減小了田面累積入滲量的方差值,可使畦灌灌水質(zhì)量達(dá)到最優(yōu)。因此,從理論分析的角度而言,基于異質(zhì)土壤和均質(zhì)土壤條件下優(yōu)化的入畦單寬流量應(yīng)符合1∶1的線性關(guān)系,其為上述研究成果提供了理論基礎(chǔ)。
根據(jù)表5中優(yōu)化所得的入畦單寬流量,分別采用文中模型方法和WinSRFR軟件對(duì)各畦田灌水質(zhì)量指標(biāo)進(jìn)行計(jì)算,再根據(jù)式(17)求得綜合指標(biāo)Y,結(jié)果列于表5。由表5可知,無(wú)論是異質(zhì)土壤還是均質(zhì)土壤情景模式下,采用文中模型計(jì)算的Y值與WinSRFR軟件模擬值基本一致,相對(duì)誤差均小于10%,其中異質(zhì)土壤條件下,所有畦田兩者之間相對(duì)誤差均值為2.48%,均質(zhì)土壤條件下為1.67%,進(jìn)一步表明采用文中模型計(jì)算異質(zhì)土壤和均質(zhì)土壤條件下的畦灌灌水質(zhì)量指標(biāo)是可靠的,具有高的計(jì)算精度。但同時(shí)發(fā)現(xiàn)部分畦田根據(jù)最優(yōu)入畦流量計(jì)算的Y小于表4中的數(shù)值,原因?yàn)椴捎脪佄锞€型函數(shù)存在一定的擬合誤差。但總體而言,根據(jù)優(yōu)化的入畦單寬流量,各畦田均可獲得高的畦灌灌水質(zhì)量。
表5 異質(zhì)土壤和均質(zhì)土壤條件下入畦單寬流量?jī)?yōu)化結(jié)果及對(duì)應(yīng)灌水質(zhì)量綜合指標(biāo)Y值Table 5 Optimization results of discharge per unit width under heterogeneity and homogeneity soil and their corresponding comprehensive irrigation performance indicator Y values
圖2 均質(zhì)與異質(zhì)土壤入畦單寬流量?jī)?yōu)化結(jié)果比較Fig.2 Comparison of discharge per unit width optimization results in homogeneity and heterogeneity soil
本文采用數(shù)值模擬與理論分析相結(jié)合的方法,分析了土壤入滲變異對(duì)畦灌灌水質(zhì)量的影響,得出如下結(jié)論:
1)擴(kuò)展了考慮土壤入滲變異條件下畦灌灌水質(zhì)量指標(biāo)估算模型的適用范圍。采用畦灌試驗(yàn)和數(shù)值模擬相結(jié)合的方法,對(duì)畦灌灌水質(zhì)量估算模型進(jìn)行了驗(yàn)證,結(jié)果表明無(wú)論是異質(zhì)土壤還是均質(zhì)土壤情景模式下,灌水質(zhì)量指標(biāo)計(jì)算值與田間實(shí)測(cè)值和WinSRFR軟件模擬值均具有高的一致性,其相對(duì)誤差均小于10%。
2)分析了土壤入滲變異和入滲時(shí)間變異對(duì)畦灌灌水質(zhì)量的影響。結(jié)果表明土壤入滲變異對(duì)畦灌灌水質(zhì)量的影響很大,所占比例為56.71%~95.68%,故在灌水質(zhì)量評(píng)價(jià)過(guò)程中需充分考慮其影響;通過(guò)選取入畦流量作為優(yōu)化變量,可降低入滲時(shí)間變異對(duì)畦灌灌水質(zhì)量的影響,有助于提高畦灌灌水質(zhì)量。
3)提出了考慮農(nóng)田土壤變異下入畦單寬流量的確定方法。結(jié)果表明基于異質(zhì)土壤和均質(zhì)土壤條件下優(yōu)化的入畦單寬流量符合1∶1的線性關(guān)系,即均質(zhì)土壤入滲條件下優(yōu)化的入畦單寬流量,可用于異質(zhì)土壤條件下畦灌灌水流量設(shè)計(jì)。
本文研究過(guò)程中采用水流至畦尾停水的方式,未考慮改水成數(shù)、田面糙率和田面平整度等因素,其對(duì)文中結(jié)果可能有一定的影響,還需做進(jìn)一步研究。
[1] 鄭和祥,史海濱,程滿金,等. 畦田灌水質(zhì)量評(píng)價(jià)及水分利用效率分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(6):1-6. Zheng Hexiang, Shi Haibin, Cheng Manjin, et al. Analysis of irrigation efficiency and water use efficiency of border irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 1-6. (in Chinese with English abstract)
[2] Sanchez C A, Zerihun D, Farrell-Poe K L. Management guidelines for efficient irrigation of vegetables usingclosed-end level furrows[J]. Agricultural Water Management, 2009, 96(1): 43-52.
[3] 馬娟娟,孫西歡,郭向紅,等. 畦灌灌水技術(shù)參數(shù)的多目標(biāo)模糊優(yōu)化模型[J]. 排灌機(jī)械工程學(xué)報(bào),2010,28(2):160-163,178. Ma Juanjuan, Sun Xihua, Guo Xianghong, et al. Multi-objective fuzzy optimization model for border irrigation technical parameters[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(2): 160-163, 178. (in Chinese with English abstract)
[4] Koech R K, Smith R J, Gillies M H. Evaluating the performance of a real-time optimisation system for furrow irrigation[J]. Agricultural Water Management, 2014, 142(1): 77-87.
[5] 繳錫云,王維漢,王志濤,等. 基于田口方法的畦灌穩(wěn)健設(shè)計(jì)[J]. 水利學(xué)報(bào),2013,44(3):349-354. Jiao Xiyun, Wang Weihan, Wang Zhitao, et al. Robust design of border irrigation based on the taguchi method[J]. Journal of Hydraulic Engineering, 2013, 44(3): 349-354. (in Chinese with English abstract)
[6] 吳彩麗,徐迪,白美鍵,等. 不同灌水技術(shù)要素組合下畦灌灌水深度的控制目標(biāo)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):67-73. Wu Caili, Xu Di, Bai Meijian, et al. Irrigation water depth control targets under different combination of irrigation technique elements for border irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 67-73. (in Chinese with English abstract)
[7] 白美健,李益農(nóng),涂書芳,等. 畦灌關(guān)口時(shí)間優(yōu)化改善灌水質(zhì)量分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):105-110. Bai Meijian, Li Yinong, Tu Shufang, et al. Analysis on cutoff time optimization of border irrigation to improve irrigated water quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 105-110. (in Chinese with English abstract)
[8] Oyonarte N A, Mateos L, Palomo M J. Infiltration variability in furrow irrigation[J]. Journal of Irrigation and Drainage Engineering, 2002, 128(1): 26-33.
[9] Mateos L, Oyonarte N A. A spreadsheet model to evaluate sloping furrow irrigation accounting for infiltration variability[J]. Agricultural Water Management, 2005, 76(1): 62-75.
[10] 繳錫云,王維漢,王穎聰,等. 入滲參數(shù)空間變異規(guī)律及其對(duì)畦田灌水質(zhì)量的影響[EB/OL].中國(guó)科技論文在線, 2009-12-28. http://www.paper.edu.cn/releasepaper/content/ 00912-1026. Jiao Xiyun, Wang Wenhan, Wang Yingcong, et al. Spatial variability of infiltration parameters and its impacts on irrigation performance[J/OL]. Sciencepaper Online, 2009-12-28. http://www.paper.edu.cn/releasepaper/content/ 00912-1026. (in Chinese with English abstract)
[11] 白美健,許迪,李益農(nóng). 不同微地形條件下入滲空間變異對(duì)畦灌性能影響分析[J]. 水利學(xué)報(bào),2010,41(6):732-738. Bai Meijian, Xu Di, Li Yinong. Effects of spatial variability of infiltration on basin irrigation performance under different microtopography conditions[J]. Journal of Hydraulic Engineering, 2010, 41(6): 732-738. (in Chinese with English abstract)
[12] Nie W B, Huang H, Ma X Y, et al. Evaluation of closed-end border irrigation accounting for soil infiltration variability[J]. Journal of Irrigation and Drainage Engineering, 2017, 143(6): 04017008. http://dx.doi.org/10.1061/(ASCE)IR.1943-4774. 0001174.
[13] 聶衛(wèi)波,費(fèi)良軍,馬孝義. 基于土壤入滲參數(shù)空間變異性的畦灌灌水質(zhì)量評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(1):100-105. Nie Weibo, Fei Liangjun, Ma Xiaoyi. Evaluation of border irrigation performance based on spatial variability of infiltration parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(1): 100-105. (in Chinese with English abstract)
[14] Walker W R, Skogerboe G V. Surface Irrigation: Theory and Practice[M]. Englewood Cliffs, NJ: Prentice-Hall, 1987.
[15] 白美健,許迪,李益農(nóng),等. 地面灌溉土壤入滲參數(shù)時(shí)空變異性試驗(yàn)研究[J]. 水土保持學(xué)報(bào),2005,19(5):120-123,151. Bai Meijian, Xu Di, Li Yinong. Evaluating spatial and temporal variability of infiltration on field scale under surface irrigation[J]. Journal of Soil and Water Conservation, 2005, 19(5): 120-123, 151. (in Chinese with English abstract)
[16] 聶衛(wèi)波,武世亮,馬孝義,等. 農(nóng)田土壤入滲特性的研究[J]. 干旱地區(qū)農(nóng)業(yè)研究,2013,31(4):31-37. Nie Weibo, Wu Shiliang, Ma Xiaoyi, et al. Research on the soil infiltration characteristics in the field[J]. Agricultural Research in the Arid Areas, 2013, 31(4): 31-37. (in Chinese with English abstract)
[17] 聶衛(wèi)波,武世亮,馬孝義,等. 田塊尺度土壤入滲特性空間變異研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(9):76-83. Nie Weibo, Wu Shiliang, Ma Xiaoyi, et al. Research on field-scale spatial variability of soil infiltration characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(9): 76-83. (inChinese with English abstract)
[18] Sharma M L, Gander G. A, Hunt C G. Spatially variability of infiltration in a watershed[J]. Journal of Hydrology, 1980, 45(1/2): 101-122.
[19] Gillies M H, Smith R J, Raine S R. Evaluating whole field irrigation performance using statistical inference of inter-furrow infiltration variation[J]. Biosystems Engineering, 2011, 110(2): 134-143.
[20] Jaynes D B, Clemmens A J. Accounting for spatially variable infiltration in border irrigation models[J]. Water Resources Research, 1986, 22(8): 1257-1262.
[21] Trout T J. Furrow inflow and infiltration variability impacts on irrigation management[J]. Transactions of the American Society of Agricultural Engineers, 1990, 33(4): 1171-1178
[22] Bautista E, Clemmens A J, Strelkoff T S, et al. Modern analysis of surface irrigation systems with WinSRFR[J]. Agricultural Water Management, 2009, 96(7): 1146-1154.
[23] Bautista E, Clemmens A J, Strelkoff T S, et al. Analysis of surface irrigation systems with WinSRFR-Example application[J]. Agricultural Water Management, 2009, 96(7):1162-1169.
[24] Gonzaleza C, Cerveraa L, Moret-Fernandez D. Basin irrigation design with longitudinal slope[J]. Agricultural Water Management, 2011, 98(10): 1516-1522.
[25] 蔡煥杰,徐家屯,王健,等. 基于WinSRFR模擬灌溉農(nóng)田土壤入滲參數(shù)年變化規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):92-98. Cai Huanjie, Xu Jiatun, Wang Jian, et al. Yearly variation of soil infiltration parameters in irrigated field based on WinSRFR4.1[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 92-98. (in Chinese with English abstract)
[26] Bautista E. Effect of infiltration modeling approach on operational solutions for furrow irrigation[J]. Journal of Irrigation and Drainage Engineering, 2017, 143(6): 06016012. http://dx.doi.org/10.1061/(ASCE)IR.1943-4774. 0001090.
[27] 王維漢,繳錫云,彭世彰,等. 基于穩(wěn)健設(shè)計(jì)理論的畦灌質(zhì)量敏感性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(11):37-42. Wang Weihan, Jiao Xiyun, Peng Shizhang, et al. Sensitivity analysis of border irrigation performance using robust design theory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(11): 37-42. (in Chinese with English abstract)
[28] 汪志農(nóng). 灌溉排水工程學(xué):第1版[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000.
[29] Nie WeiBo, Fei Liangjun, Ma Xiaoyi. Impact of infiltration parameters and Manning roughness on the advance trajectory and irrigation performance for closed-end furrows[J]. Spanish Journal of Agricultural Research, 2014, 12(4): 1180-1191.
[30] 繳錫云,王維漢. 溝畦灌溉穩(wěn)健設(shè)計(jì)[M]. 南京:河海大學(xué)出版社,2012.
[31] 王全九,王文焰,張江輝,等. 根據(jù)畦田水流推進(jìn)過(guò)程水力因素確定Philip入滲參數(shù)和田面平均糙率[J]. 水利學(xué)報(bào), 2005,36(1):125-128. Wnag Quanjiu, Wang Wenyan, Zhang Jianghui, et al. Determination of Philip infiltration parameter and Manning roughness according to hydraulic factors in the advance of irrigation water[J]. Journal of Hydraulic Engineering, 2005, 36(1): 125-128. (in Chinese with English abstract)
Optimization of discharge per unit width of border irrigation based on soil infiltration variability
Nie Weibo1, Zhang Fan1, Ma Xiaoyi2, Huang Heng1
(1. Institute of Water Resources, Xi’an University of Technology, Xi’an 710048, China; 2. Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest Agriculture and Forestry University, Yangling, 712100, China)
Field soil infiltration variability has brought difficulties to the design and management of border irrigation system. In the previous researches, the effect of spatial variability of soil infiltration on water movement process and irrigation performance was not taken into consideration, which cannot reflect the actual situation in the field, resulting in the limitation of the improvement of border irrigation performance. In order to solve the above problems, based on the available calculation model of irrigation performance indicators of border irrigation under heterogeneity soil conditions, this study extended the range of the model application, and numerical simulation of border irrigation process were conducted by the WinSRFR software. Additionally, the calculation model was verified combined with the experimental data of border irrigation in Wugong county (108°03′06′E, 34°21′32′N) of Shaanxi Province and Pengzhuang village (116°22′02′E, 37°39′N) in Wuqiao county, Hebei Province. Based on the above researches, the calculation model of this study and theoretical analysis were adopted to analyze the influence of heterogeneity soil on the performance of border irrigation. Moreover, taking the maximum geometric average value of the distribution uniformity, application efficiency and storage efficiency as the optimization function, a method to determine the discharge per unit width under the consideration of soil infiltration variability was proposed. The results showed that through the expanded calculation model of border irrigation performance indicators under soil infiltration variation conditions, the proposed model was suitable not only for calculation the performance of border irrigation under the conditions of soil heterogeneity, but also for the calculation under the condition of homogeneous soil. Under the condition of soil heterogeneity, the calculated values of distribution uniformity, application efficiency and storage efficiency were in good agreement with the measured and simulation values by WinSRFR software, and the relative error was less than 8%. However, under the homogeneity soil condition, the error was relative large between the calculated and the measured values of irrigation performance indicators, of which the relative error of distribution uniformity had the largest value of 15.42%. The results indicated that the influence of soil infiltration variability should be taken into account in the process of irrigation performance evaluation. Otherwise, the results would be deviated from the actual situation in the field. While under the condition of homogeneous soil, the calculated values of irrigation performance and WinSRFR software had high consistency, and the relative error was less than 10%. Soil infiltration variation had a great influence on the performance of border irrigation, accounting for 56.71%-95.68%, and the influence should be taken into account in the process of irrigation performance evaluation. By selecting the discharge per unit width as an optimization variable, the effect of infiltration spatial variation on the performance of border irrigation could be reduced, which contributed to improvement of the border irrigation performance. The optimized discharge per unit width of the heterogeneity soil and homogeneity soil meets the 1:1 liner relationship, that is, the optimal discharge per unit width of the homogeneous soil could be used to the design of the discharge water of border irrigation under heterogeneity soil conditions, which guaranteed a high irrigation performance. The method proposed in this study can better reflect the actual performance of border irrigation, and provide theoretical and technical support for the design and management of border irrigation system.
soils; infiltration; models; border irrigation; variability; numerical simulation; irrigation performance; discharge per unit width
10.11975/j.issn.1002-6819.2017.16.016
S 275.3
A
1002-6819(2017)-16-0119-08
聶衛(wèi)波,張 凡,馬孝義,黃 恒. 基于土壤入滲變異性的畦灌單寬流量?jī)?yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(16):119 -126.
10.11975/j.issn.1002-6819.2017.16.016 http://www.tcsae.org
Nie Weibo, Zhang Fan, Ma Xiaoyi, Huang Heng. Optimization of discharge per unit width of border irrigation based on soil infiltration variability[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(16): 119-126. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.16.016 http://www.tcsae.org
2017-02-06
2017-07-10
國(guó)家自然科學(xué)基金項(xiàng)目(51579205、51209171);國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFC0400203);陜西省自然科學(xué)基金項(xiàng)目(2016JM5053);陜西省教育廳重點(diǎn)實(shí)驗(yàn)室基金(15JS064)
聶衛(wèi)波,男,陜西周至人,副教授,博士,主要從事農(nóng)業(yè)水土工程方面研究。西安 西安理工大學(xué)水資源研究所,710048。
Email:nwbo2000@163.com.