翟成波,趙莉
(山西大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,山西 太原 030006)
三階兩點邊值問題非平凡解的存在唯一性
翟成波,趙莉
(山西大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,山西 太原 030006)
研究一類新型的三階兩點邊值問題,利用新的不動點定理給出了這類邊值問題非平凡解的存在唯一性,并舉例說明結(jié)論的合理性。
非平凡解;三階微分方程;存在唯一性;φ-(h,e)-凹算子
最近非線性三階微分方程引起人們的極大興趣,已經(jīng)獲得一些好的結(jié)論,見文獻[1-10]。這些文章中所用的辦法有錐拉伸錐壓縮不動點定理,不動點指數(shù)定理,打靶法,Schauder不動點定理等。文獻中考察的多為三階微分邊值問題的正解,討論了正解的存在性與多重性,但對其唯一性討論很少,幾乎沒有。因此,本文將考察三階微分方程非平凡解的存在唯一性,這種結(jié)論也包含了正解的存在唯一性。我們的辦法是新的不動點定理。
本文討論一類新型的三階兩點邊值問題:
(1)
其中b>0是一個常數(shù),f∶[0,1]×R→R連續(xù)。當(dāng)b=0時,這類問題在文獻中被討論過,給出了正解的存在性,但唯一性沒有。當(dāng)b>0時,這類問題沒有被討論過,我們將給出其非平凡解的存在唯一性。因此,本文的結(jié)論以及方法都是新的,對人們研究非線性邊值問題起到了很好的參考作用。
設(shè)(E,‖·‖)是實Banach空間,P是E中的一個錐,則P導(dǎo)出了E中的半序:
x≤y?y-x∈P,記θ是E中的零元。若存在常數(shù)M>0,對于x,y∈E且θ≤x≤y就有‖x‖≤M‖y‖,則稱P是正規(guī)的,M稱為正規(guī)常數(shù)。
算子A∶E→E滿足:x≤y?Ax≤Ay,則稱A是單調(diào)遞增的。
定義1[11]算子A∶Ph,e→E滿足:對任意x∈Ph,e以及λ∈(0,1),存在φ(λ)>λ使得A(λx+(λ-1)e)≥φ(λ)Ax+(φ(λ)-1)e,則稱A是一個φ-(h,e)-凹算子。
引理1[11]假設(shè)P是正規(guī)的,算子A∶Ph,e→E是單調(diào)遞增的φ-(h,e)-凹算子,Ah∈Ph,e,那么A在Ph,e中有唯一不動點x*。此外,對任意w0∈Ph,e,作迭代序列wn=Awn-1,n=1,2,…,則必有‖wn-x*‖→0(n→∞)。
引理2 假設(shè)f∶[0,1]×(-∞,+∞)→(-∞,+∞)是連續(xù)的,那么下列邊值問題:
(2)
(3)
證明 利用積分與邊界條件即可得到。
引理3 格林函數(shù)G(t,s)具有下列性質(zhì):
定理1 假設(shè)
(H2)對λ∈(0,1),存在φ(λ)>λ使得
(H3)f(t,0)≥0且f(t,0)在[0,1]上不恒為0.
則有:邊值問題(1)在Ph,e中有唯一非平凡解u*,這里e(t),h(t)如上所述。此外,對于w0∈Ph,e,作迭代序列
就有wn(t)→u*(t)(n→∞).
證明 首先,對于t∈[0,1],
即e∈P且有e≤h.此外,Ph,e={u∈C[0,1]|u+e∈Ph}.
由引理2可知,邊值問題(1)等價于如下的積分問題
對于u∈Ph,e,λ∈(0,1),由(H2)可得
φ(λ)Au(t)+[φ(λ)-1]e(t).
因此可得A(λu+(λ-1)e)≥φ(λ)Au+[φ(λ)-1]e,u∈Ph,e,λ∈(0,1).所以,A是φ-(h,e)-凹算子。
最后,證明Ah∈Ph,e.由Ph,e的定義,只需證明Ah+e∈Ph.由引理3以及(H1),(H3)可知,
記
s.
由(H1)及引理3可得,
r1h(t)≤Ah(t)+e(t)≤r2h(t),t∈[0,1].
即r1h≤Ah+e≤r2h,因而就有Ah+e∈Ph.
顯然,由(H3)可知,u*(t)在[0,1]不恒為0.即u*(t)是(1)的一個非平凡解。
此外,對任意的w0∈Ph,e,序列wn=Awn-1,n=1,2,…滿足wn(t)→u*(t)(n→∞).
即
證畢。
由定理1的證明以及文[12]中的定理3,易得:
定理2 假設(shè)
(H4)f∶[0,1]×[0,+∞)→[0,+∞)連續(xù),關(guān)于第二變量遞增;
(H5)對于λ∈(0,1),存在φ(λ)>λ,滿足f(t,λx)≥φ(λ)f(t,x),t∈[0,1],x∈[0,+∞);
(H6)f(t,0)在[0,1]上不恒為0.
那么,如下的三階微分方程邊值問題:
在Ph中具有唯一的正解u*,其中h(t)=t-t2.并且對任意w0∈Ph,迭代序列
必收斂于u*(t),這里G(t,s)由(3)給出。
例1 考慮如下的三階微分方程邊值問題:
(4)
此外,
f(t,λx+(λ-1)y)={9e(t)[λx+(λ-1)y]+e(t)}
[1] Anderson D R,Davis J M.Multiple Solutions and Eigenvalues for Third-order Right Focal Boundary Value Problems[J].JMathAnalAppl,2002,267:135-157.DOI:10.1006/jmaa.2001.7756.
[2] Feng X F,Feng H Y,Bai D L.Eigenvalue for a Singular Third-order Three-point Boundary Value Problem[J].ApplMathComput,2013,219:9783-9790.DOI:10.1016/j.amc.2013.03.107.
[3] Feng Y Q,Liu S Y.Solvability of a Third-order Two-point Boundray Value Problem[J].ApplMathLett,2005,18:1034-1040.DOI:10.1016/j.aml.2004.04.016.
[4] Guo L J,Sun J P,Zhao Y H.Existence of Positive Solutions for Nonlinear Third-order Three-point Boundary Value Problems[J].NonlinearAnal,2008,68(10):3151-3158.DOI:10.1016/j.na.2007.03.008.
[5] Li Y H,Guo Y P,Li G G.Existence of Positive Solutions for Systems of Nonlinear Third-order Differential Equations[J].CommunNonlinearSciNumerSimulat,2009,14:3792-3797.DOI:10.1016/j.cnsns.2009.02.019.
[6] Lin X L,Zhao Z Q.Iterative Technique for a Third-order Differential Equation with Three-point Nonlinear Boundary Value Conditions[J].ElectJQualTheoryDiffEqu,2016,12:1-10.DOI:10.14232/ejqtde.2016.1.12.
[7] Padhi S.On the Asymptotic Behaviour of Solutions of Third Order Delay Differential Equations[J].GeorgianMathematicalJournal,2015,2:369-376.DOI 10.1007/s12215-014-0169-3.
[8] Wang F,Cui Y.On the Existence of Solutions for Singular Boundary Value Problem of Third-order Differential Equations[J].MathematicaSlovaca,2015,60(4):485-494.DOI:10.2478/s12175-010-0027-5.
[9] Xie W Y,Pang H H.The Shooting Method and Integral Boundary Value Problems of Third-order Differential Equation[J].AdvDifferEqu,2016:138.DOI:10.1186/s13662-016-0824-4.
[10] Zhao C,Zhou Q.On the Asymptotic Behavior of Solutions for a Third-order Nonlinear Differential Equation[J].VietnamJMath,2011,39(1): 71-77.
[11] Zhai C B,Wang L.φ-(h,e)-concave Operators and Applications[J].JMathAnalAppl,2017,454:571-584.DOI:10.1016/j.jmaa.2017.05.010.
[12] Zhai C B,Wang F.Properties of Positive Solutions for the Operator EquationAx=λxand Applications to Fractional Differential Equations with Integral Boundary Conditions[J].AdvDiffEqua,2015:1-10.DOI:10.1186/s13662-015-0704-3.
Existence and Uniqueness of Nontrivial Solutions for Third-order Two-point Boundary Value Problems
ZHAI Chengbo,ZHAO Li
(School of Mathematical Sciences,Shanxi University,Taiyuan 030006,China)
This paper considers a new form of third-order two-point boundary value problem. By using a new fixed point theorem, the existence and uniqueness of nontrivial solutions for the boundary value problem is obtained. In addition, an example is given to illustrate the main result.
nontrivial solutions;third-order differential equation;existence and uniqueness;φ-(h,e)-concave operator
10.13451/j.cnki.shanxi.univ(nat.sci.).2017.03.004
2017-05-10;
2017-05-24
國家自然科學(xué)基金(11201272);山西省自然科學(xué)基金(2015011005)
翟成波(1977-),男,博士,教授,主要研究方向:非線性泛函分析與微分方程。E-mail:cbzhai@sxu.edu.cn
O175
A
0253-2395(2017)03-0416-05