孫元宏 高雪瑩 趙興敏 隋 標(biāo) 王鴻斌 趙蘭坡
(吉林農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,吉林省商品糧基地土壤資源可持續(xù)利用重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130118)
添加玉米秸稈對(duì)白漿土重組有機(jī)碳及團(tuán)聚體組成的影響*
孫元宏 高雪瑩 趙興敏 隋 標(biāo) 王鴻斌 趙蘭坡?
(吉林農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,吉林省商品糧基地土壤資源可持續(xù)利用重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130118)
研究添加有機(jī)物料后,土壤重組有機(jī)碳含量變化及其對(duì)土壤團(tuán)聚體組成的影響,對(duì)于科學(xué)評(píng)價(jià)秸稈還田對(duì)土壤的培肥作用及其環(huán)境效應(yīng)具有重要意義。采用室內(nèi)培養(yǎng)試驗(yàn),培養(yǎng)120 d,研究耕作白漿土耕層土壤和母質(zhì)層中添加不同比例秸稈對(duì)土壤重組有機(jī)碳積累量、團(tuán)聚體組成及各粒級(jí)團(tuán)聚體中有機(jī)碳分布的影響。結(jié)果表明:隨秸稈施用量增加,耕層土壤和母質(zhì)的重組有機(jī)碳含量均呈同步增加趨勢(shì),耕層土壤和母質(zhì)相比,重組有機(jī)碳增量差異不大,兩者增量差值僅為0.34 g kg-1,但兩者的有機(jī)碳增率差異很大,耕層土壤僅為85.51%,母質(zhì)則高達(dá)556.23%。說(shuō)明在成土過(guò)程中,耕層土壤中有機(jī)質(zhì)的累積會(huì)降低其固碳潛力,而在母質(zhì)層中,其固碳“位點(diǎn)”處于“空置”狀態(tài),因此有很強(qiáng)的固碳潛力。同時(shí),秸稈的添加,促進(jìn)了土壤中小粒徑團(tuán)聚體(<0.25 mm)向大團(tuán)聚體(>0.25 mm)的轉(zhuǎn)化,耕層土壤和母質(zhì)土壤在秸稈添加量為3%和2%時(shí)大團(tuán)聚體中有機(jī)碳的貢獻(xiàn)率最高,分別為69.90%和65.48%。在白漿土中添加玉米秸稈培養(yǎng)后,其母質(zhì)的固碳能力大于耕層土壤。
白漿土;成土母質(zhì);玉米秸稈;有機(jī)碳;重組;團(tuán)聚體
白漿土是吉林省和黑龍江省的重要土壤資源[1],總面積約為5.27×106hm2。該土壤主要分布于平緩起伏的階地或臺(tái)地地形上,腐殖質(zhì)累積和白漿化過(guò)程是白漿土的主要成土過(guò)程[2]。白漿土的黏粒礦物組成以蛭石和伊利石為主,具有質(zhì)地黏重、陽(yáng)離子交換量較高等特性[3],這也為白漿土有機(jī)碳的累積及有機(jī)無(wú)機(jī)復(fù)合體的形成奠定了物質(zhì)基礎(chǔ)[4]。自然白漿土一經(jīng)開(kāi)墾后,易發(fā)生水土流失,腐殖質(zhì)層變薄,有機(jī)質(zhì)含量迅速下降等問(wèn)題[5]。因此,耕作白漿土一直被列為低產(chǎn)土壤,玉米產(chǎn)量一般在7 500~9 000 kg hm-2[6]。肥力低、酸性強(qiáng)、通透性差、易旱易澇是白漿土肥力低下的主要表現(xiàn)[7]。在眾多的改良措施中,以提高土壤有機(jī)質(zhì)含量為主要目標(biāo)的秸稈還田措施是當(dāng)前白漿土改良培肥的主要農(nóng)藝措施[8]。
研究證明,秸稈還田對(duì)于提高土壤有機(jī)質(zhì)含量,改善土壤腐殖質(zhì)組成,促進(jìn)大粒徑團(tuán)聚體形成,改良土壤的理化及生物學(xué)性質(zhì)等具有顯著作用[9-10]。將秸稈混合還田是發(fā)揮土壤固碳性能、提升有機(jī)碳含量、減少溫室氣體排放的環(huán)境友好型土壤培肥措施。但由于土壤的類(lèi)型、開(kāi)墾年限、種植制度及培肥管理措施等的不同,土壤礦質(zhì)膠體的組成、有機(jī)質(zhì)含量及理化性質(zhì)等均有很大差異,勢(shì)必會(huì)造成土壤的固碳性能和潛力上差異。因此,揭示不同耕作土壤的固碳性能和潛力,科學(xué)地評(píng)價(jià)秸稈還田措施對(duì)土壤的培肥效果及環(huán)境效應(yīng)具有重要科學(xué)意義,同時(shí)對(duì)以秸稈還田措施為核心環(huán)節(jié)的低成本、環(huán)境友好型耕作模式的構(gòu)建提供重要理論支撐。
土壤中的重組有機(jī)碳是與土壤礦質(zhì)膠體結(jié)合的有機(jī)無(wú)機(jī)復(fù)合的碳[11],重組有機(jī)碳是土壤有機(jī)碳的主要賦存形式,也是衡量土壤固碳性能的重要指標(biāo)[12]。研究土壤中添加秸稈后重組有機(jī)碳含量的變化,可揭示土壤的固碳性能及有機(jī)無(wú)機(jī)復(fù)合能力。目前,有關(guān)東北玉米主產(chǎn)區(qū)主要耕作土壤的重組有機(jī)碳含量及其對(duì)秸稈還田的響應(yīng)等研究資料尚不多見(jiàn),生產(chǎn)上已有的各種秸稈還田方法的技術(shù)效果評(píng)價(jià)缺少科學(xué)依據(jù),無(wú)法橫向比較,給技術(shù)推廣部門(mén)帶來(lái)很大困惑,嚴(yán)重制約了秸稈還田技術(shù)的推廣。針對(duì)這一需求,我們以東北玉米主產(chǎn)區(qū)主要耕作土壤之一的白漿土為研究對(duì)象,在田間調(diào)查的基礎(chǔ)上,設(shè)置了添加玉米秸稈的恒溫培養(yǎng)試驗(yàn),以揭示在外源秸稈供應(yīng)充足的條件下,自身有機(jī)碳含量較高的耕層土壤尚存的固碳潛力和幾乎不含有機(jī)碳的母質(zhì)層的固碳潛力,為白漿土固碳增匯型秸稈還田技術(shù)的構(gòu)建提供理論依據(jù)。
1.1 供試材料
供試土壤為中位黃土質(zhì)白漿土,是吉林省分布面積最大的代表性白漿土亞類(lèi)。于2015年春季采自吉林省永吉縣一拉溪鎮(zhèn)賈河村一農(nóng)戶(hù)的玉米田,該田塊玉米連作年限已有20余年,常年施用化肥,不施有機(jī)肥。近3年化肥(N-P2O5-K2O∶24-15-15三元素復(fù)合肥)施用量平均為750 kg hm-2,玉米產(chǎn)量平均在8 500 kg hm-2,屬中產(chǎn)田。用蛇形采樣法采集耕層混合土樣,深度為0~20 cm;于剖面150~200 cm之間采集母質(zhì)層混合樣品。將上述耕層和母質(zhì)層土樣帶回室內(nèi),經(jīng)自然風(fēng)干過(guò)2 mm篩子備用,其理化性質(zhì)見(jiàn)表1。供試玉米秸稈取自吉林農(nóng)業(yè)大學(xué)實(shí)驗(yàn)田,樣品經(jīng)風(fēng)干粉碎過(guò)1 mm篩子備用。其有機(jī)碳含量486.1 g kg-1,全氮5.29 g kg-1,全磷5.88 g kg-1,全鉀7.80 g kg-1,C / N 91.9。
1.2 培養(yǎng)試驗(yàn)
培養(yǎng)試驗(yàn)共設(shè)8個(gè)處理,秸稈添加量占土壤和秸稈總質(zhì)量的百分比分別為:0%、0.5%、1%、2%、3%、5%、10%、15%,每個(gè)處理重復(fù)3次。稱(chēng)取不同比例的秸稈粉和供試土壤共500 g于塑料薄膜上,混合均勻,用蒸餾水將混合樣含水量調(diào)節(jié)至30%后轉(zhuǎn)移至體積為1 200 ml方形帶蓋(蓋上留有通氣孔)塑料盒(15.6 cm×11 cm×7 cm)中,稱(chēng)重后放在25 ℃的恒溫培養(yǎng)箱中培養(yǎng)120 d,在此期間,每隔5 d補(bǔ)水至恒重,到期取出風(fēng)干備用。
1.3 分析方法
土壤重組的提取方法采用比重分組法[13],具體操作:稱(chēng)取過(guò)0.25 mm篩風(fēng)干土樣10.00 g于100 ml離心管中,加入相對(duì)密度為1.8的重液(ZnBr2和蒸餾水添加比約為1∶1,用比重計(jì)測(cè)量其相對(duì)密度并調(diào)節(jié)至1.8 g cm-3)25 ml,連續(xù)震蕩1 h。處理后的土樣以3 000 r min-1轉(zhuǎn)速離心10 min。將離心管中輕組置于有濾紙的玻璃漏斗中過(guò)濾,離心管內(nèi)繼續(xù)加重液重復(fù)上述步驟至輕組無(wú)有機(jī)物為止。離心管中重組用95%乙醇洗滌3次,再用蒸餾水洗2次,離心管中土樣低溫烘干稱(chēng)重,將烘干的土樣研磨過(guò)0. 25 mm篩,備用。
土壤團(tuán)聚體分級(jí)方法采用濕篩法[14],利用自動(dòng)振蕩篩( 套篩直徑2、1、0.25、0.106 mm)。具體操作:稱(chēng)取風(fēng)干土樣 100.00 g于 2 mm 篩上,在室溫下用蒸餾水浸潤(rùn)5 min,然后以30 次每分鐘速度在蒸餾水中振蕩2 min,上下振幅為40 mm,將篩上的團(tuán)聚體沖洗到燒杯中,獲得 >2 mm、2~1 mm、1~0.25 mm、0.25~0.106mm的水穩(wěn)性團(tuán)聚體,而<0.106 mm 水穩(wěn)性團(tuán)聚體則需在筒內(nèi)沉降48 h,棄去清液后,將團(tuán)聚體轉(zhuǎn)移至燒杯中。將各級(jí)團(tuán)聚體上漂浮的秸稈撈出,將盛有團(tuán)聚體的燒杯置于50 ℃電熱板上烘干、稱(chēng)重,計(jì)算各粒級(jí)團(tuán)聚體的百分?jǐn)?shù),各級(jí)團(tuán)聚體磨細(xì)過(guò)0. 25 mm篩備用。
表1 供試土壤的理化性質(zhì)Table 1 Physical and chemical properties of studied soil
土壤有機(jī)碳測(cè)定采用重鉻酸鉀氧化外加熱法,陽(yáng)離子交換量測(cè)定采用乙酸銨法,pH測(cè)定采用電位法,全氮測(cè)定采用硫酸消煮—?jiǎng)P氏定氮法,機(jī)械組成測(cè)定采用吸管法和篩分法。
1.4 數(shù)據(jù)處理
文中數(shù)據(jù)采用Excel進(jìn)行數(shù)據(jù)處理,采用SPSS 22.0軟件最小顯著性差異法(LSD)進(jìn)行顯著性差異比較,圖形用Origin 2017進(jìn)行分析處理。
2.1 添加玉米秸稈對(duì)白漿土重組有機(jī)碳含量的影響
供試白漿土耕層及母質(zhì)層土壤添加不同量的玉米秸稈后,重組有機(jī)碳均發(fā)生了明顯變化(圖1),各處理的重組有機(jī)碳含量均隨秸稈添加量的增加而相應(yīng)升高。耕層土壤的重組有機(jī)碳含量曲線(xiàn)位于母質(zhì)層土壤的上方,說(shuō)明耕層土壤各處理的重組有機(jī)碳含量均明顯高于母質(zhì)層。
圖1 不同秸稈添加量對(duì)耕層土壤和母質(zhì)重組有機(jī)碳含量的影響Fig. 1 Effects of stalk incorporation on content of organic carbon of heavy fraction in the top soil and parent material relative to incorporation rate
由圖2可見(jiàn),隨秸稈添加量的增加,耕層與母質(zhì)層各處理的重組有機(jī)碳含量與未添加秸稈處理(對(duì)照)的重組有機(jī)碳含量的差值(簡(jiǎn)稱(chēng)為“重組有機(jī)碳增量”)及其相對(duì)于對(duì)照的增加比率(重組有機(jī)碳增率)是有一定差異的。耕層土壤重組有機(jī)碳增量隨秸稈添加量的增加而緩慢增加,在秸稈添加量高達(dá)15%的處理中,耕層土壤的重組有機(jī)碳增量為11.92 g kg-1,母質(zhì)層土壤的重組有機(jī)碳增量為12.26 g kg-1,兩者的絕對(duì)增量差值為0.34 g kg-1,差異不是很大。但兩者的有機(jī)碳增率則有很大差異,前者僅為85.51%,后者高達(dá)556.23%,即5.56倍,說(shuō)明母質(zhì)的固碳能力及潛力遠(yuǎn)遠(yuǎn)高于耕層土壤。
秸稈還田是提升土壤有機(jī)質(zhì)含量有效措施[15-16],但土壤有機(jī)碳提升的幅度取決于秸稈的還田數(shù)量和性質(zhì),同時(shí)也與土壤的固碳性能及其所處的氣候環(huán)境有關(guān)[17]。土壤中的黏粒是有機(jī)無(wú)機(jī)復(fù)合體形成的重要基礎(chǔ)物質(zhì),是土壤中碳素固定的主要載體[18-19]。本研究中,隨秸稈添加量的增加,供試的白漿土耕層及其成土母質(zhì)的重組有機(jī)碳含量均呈相應(yīng)增加態(tài)勢(shì),即使在有機(jī)碳含量高達(dá)15.94 g kg-1耕層土壤中,秸稈添加量高達(dá)15%的情況下,其重組有機(jī)碳含量仍然呈現(xiàn)明顯上升趨勢(shì),遠(yuǎn)未達(dá)飽和點(diǎn)。相比之下,母質(zhì)的固碳潛力更大。有研究表明,在不同有機(jī)碳含量的黑土中,加入不同比例秸稈的條件下,土壤重組有機(jī)碳含量均升高,在低有機(jī)碳含量的土壤中施入秸稈對(duì)有機(jī)碳的提升效果更為明顯,本研究結(jié)果與其一致[20]。在供試的母質(zhì)中,其黏粒含量高達(dá)45.13%,而其有機(jī)質(zhì)含量?jī)H為1.61 g kg-1,黏粒膠體大量的固碳“位點(diǎn)”呈空置狀態(tài),致使其固碳潛力遠(yuǎn)大于耕層土壤。在母質(zhì)土壤中,當(dāng)外援秸稈碳供應(yīng)充足時(shí),秸稈在短時(shí)間內(nèi)就可轉(zhuǎn)化為土壤的重組有機(jī)碳,進(jìn)而可大幅提升母質(zhì)中重組有機(jī)碳含量。目前,白漿土區(qū)培肥改良的主要措施是玉米秸稈的全量還田,本研究結(jié)果可以看出,這種措施連年實(shí)施不會(huì)造成土壤固碳容量的飽和而喪失固碳能力,亦不會(huì)增加秸稈還田條件下的碳排放。
圖2 隨秸稈添加量增加耕層土壤和母質(zhì)重組有機(jī)碳增加的關(guān)系Fig. 2 Relationship of increment of organic carbon of heavy fraction in the top soil and parent material with incorporation rate of corn stalk
2.2 添加玉米秸稈對(duì)白漿土團(tuán)聚體組成的影響
表2表明,供試的白漿土耕層土壤及母質(zhì)中添加玉米秸稈后,其團(tuán)聚體的組成是以1~0.25 mm和2~1 mm粒徑為主體,不同秸稈添加量的處理間有很大差異。隨著秸稈添加量的增加,母質(zhì)層土壤中的>0.25 mm的團(tuán)粒含量均呈顯著增加趨勢(shì),耕層土壤在5%秸稈添加量時(shí)含量最高。其中,>2 mm的大團(tuán)聚體含量均呈現(xiàn)出先增加后減少的趨勢(shì),在母質(zhì)中,秸稈添加量為10%處理的大團(tuán)聚體含量最高,耕層土壤則在5%時(shí)達(dá)最大;2~1 mm粒徑團(tuán)聚體含量則呈現(xiàn)出隨秸稈添加量的增加而逐漸增加的趨勢(shì);在母質(zhì)中,各添加秸稈處理的1~0.25 mm均小于未添加秸稈的對(duì)照,在耕層土壤中變化趨勢(shì)不明顯。無(wú)論是耕層土壤或是在母質(zhì)中,<0.25 mm微團(tuán)聚體含量均隨秸稈添加量的增加而呈減少的趨勢(shì)。
土壤中添加有機(jī)物料后,增加了總有機(jī)碳和重組有機(jī)碳的含量,必然會(huì)引起團(tuán)聚體組成的變化。有學(xué)者在黑土中加入4%的秸稈條件下培養(yǎng)180 d,大團(tuán)聚體含量相比對(duì)照增加了10倍左右[21]。仇建飛等[22]研究證明添加秸稈促進(jìn)了大團(tuán)聚體的形成,在添加量為5%條件下大團(tuán)聚體的含量較3%增加顯著,微團(tuán)聚體含量隨秸稈添加量的增加而降低。而本研究中,大團(tuán)聚體含量不是無(wú)限度升高的,造成此差異的原因是因?yàn)榍叭嗽囼?yàn)中玉米秸稈的添加量遠(yuǎn)不及本研究的添加量高。過(guò)量秸稈并不能使>2 mm粒級(jí)團(tuán)聚體含量一直增加,是因?yàn)楫?dāng)秸稈過(guò)多時(shí)阻礙了小團(tuán)聚體的相互團(tuán)聚,而當(dāng)秸稈量較大時(shí)微生物量隨著氮源的減少而競(jìng)爭(zhēng)加大,導(dǎo)致微生物活性下降,微生物量也是影響土壤顆粒團(tuán)聚的重要因素[23]。
農(nóng)田中有機(jī)物料的施入為微生物提供了豐富的碳源,微生物在分解秸稈的過(guò)程中產(chǎn)了易分解態(tài)的有機(jī)質(zhì)(糖類(lèi)、有機(jī)酸、腐殖物質(zhì))等,這些物質(zhì)將小團(tuán)聚體膠結(jié)在一起形成大團(tuán)聚體[24]。同時(shí),添加秸稈促進(jìn)了真菌和細(xì)菌的繁衍,微團(tuán)粒在與菌絲和根系的相互作用纏繞下形成大團(tuán)聚體[25]。而土壤的團(tuán)粒結(jié)構(gòu)是作物高產(chǎn)的條件之一[26],土壤團(tuán)聚體對(duì)維持和穩(wěn)定土壤肥力有著重要作用。
2.3 添加玉米秸稈對(duì)土壤各級(jí)團(tuán)聚體有機(jī)碳的影響
從圖3、圖4可看出,將秸稈添施入到土壤中,使土壤各粒級(jí)有機(jī)碳含量均明顯升高。白漿土耕層土壤和母質(zhì)土壤隨著秸稈施用量的增加,在>2 mm、2~1 mm粒級(jí)團(tuán)聚體的有機(jī)碳含量均呈現(xiàn)出先增加后減少的趨勢(shì),當(dāng)秸稈施用量為10%時(shí)有機(jī)碳含量最高。在1~0.25 mm、0.25~0.106 mm、<0.106 mm粒級(jí)的團(tuán)聚體中,無(wú)論是耕層土壤還是母質(zhì)土壤均表現(xiàn)為隨秸稈施用量的增加土壤有機(jī)碳含量逐漸升高的趨勢(shì)。從圖3可知,各粒級(jí)團(tuán)聚體未加秸稈處理較加0.5%秸稈處理的有機(jī)碳含量高,是因?yàn)楦麑油寥涝袡C(jī)碳含量較高,在加入少量秸稈后產(chǎn)生“激發(fā)效應(yīng)”促進(jìn)原有機(jī)碳的分解。添加適量秸稈能顯著提高大團(tuán)聚體(>0.25 mm)中有機(jī)碳的貢獻(xiàn)率,耕層土壤和母質(zhì)土壤分別在秸稈添加量為3%和2%時(shí)大團(tuán)聚體中有機(jī)碳的含量最高,分別為69.90%和65.48%。此外,母質(zhì)土壤在施入少量秸稈時(shí)各級(jí)有機(jī)碳增幅迅速增加,耕層土壤在添加量為5%以上的秸稈時(shí)增幅才顯著,說(shuō)明添加外源碳對(duì)母質(zhì)層土壤有機(jī)碳的增加更為顯著,而對(duì)本底有機(jī)碳含量較高的土壤在達(dá)到一定量時(shí)增幅才明顯。
表2 不同用量玉米秸稈條件下耕層土壤和母質(zhì)的團(tuán)聚體組成Table 2 Composition of soil aggregates in the top soil and parent material relative to incorporation rate of corn stalk(%)
圖3 不同秸稈用量條件下耕層土壤不同粒級(jí)的含碳量Fig. 3 Carbon content in soil aggregates in the top soil relative to incorporation rate of corn stalk and particle size
圖4 不同秸稈用量條件下母質(zhì)層不同粒級(jí)的含碳量Fig. 4 Carbon content in soil aggregates in the parent material relative to incorporation rate of corn stalk and particle size
添加秸稈引起了土壤中團(tuán)聚體含量的變化,也必定會(huì)導(dǎo)致團(tuán)聚體中碳的分布發(fā)生變化。郝翔翔等[27]研究發(fā)現(xiàn),在土壤中連續(xù)施用8年秸稈后,各粒級(jí)團(tuán)聚體內(nèi)有機(jī)碳含量普遍提高,土壤中大團(tuán)聚體有機(jī)碳的貢獻(xiàn)率顯著增加,而微團(tuán)聚體有機(jī)碳的貢獻(xiàn)率則明顯減少。孫漢印等[28]研究了在不同秸稈還田模式下土壤團(tuán)聚中有機(jī)碳的變化,結(jié)果表明秸稈還田增加了>2 mm和0.25~0.053 mm粒級(jí)團(tuán)聚體中有機(jī)碳的貢獻(xiàn)率。國(guó)外學(xué)者采用C14標(biāo)記玉米秸稈,證明在大團(tuán)聚體中殘留的玉米秸稈碳量較其他粒級(jí)的有機(jī)碳高的多[29]。本研究中適量的秸稈能增加大團(tuán)聚體中有機(jī)碳的貢獻(xiàn)率,是因?yàn)楫?dāng)添加外源有機(jī)碳進(jìn)入土壤時(shí),大團(tuán)聚體成為微生物活動(dòng)的主要場(chǎng)所[30],增大了碳被土壤固定的機(jī)率。其次,小團(tuán)聚體向大團(tuán)聚體團(tuán)聚的過(guò)程中也導(dǎo)致了碳的遷移。趙蘭坡等[4]研究表明,有機(jī)質(zhì)在積累的過(guò)程中先于較細(xì)顆粒中積累,當(dāng)吸附位點(diǎn)飽和,而有機(jī)質(zhì)仍較豐富時(shí),在較大顆粒中有機(jī)質(zhì)的積累便增多。而當(dāng)秸稈量過(guò)多時(shí)大團(tuán)聚體中有機(jī)碳的貢獻(xiàn)率卻降低了,可能是因?yàn)殡S著秸稈添加量的增加,秸稈與土壤的比例逐漸變大,秸稈碳與土壤結(jié)合的點(diǎn)位變少,且大量秸稈充斥著土壤阻礙了其碳的遷移所致。
與未添加玉米秸稈相比,隨著秸稈添加量的增加,耕層土壤和母質(zhì)層土壤重組有機(jī)碳量均顯著增加,且母質(zhì)層土壤重組有機(jī)碳增率遠(yuǎn)高于耕層土壤;無(wú)論是耕層還是母質(zhì)層土壤,施入秸稈促進(jìn)了土壤中大團(tuán)聚體的形成,但隨秸稈添加量增加到一定程度>2 mm粒級(jí)團(tuán)聚體含量不再增加反而降低;添加玉米秸稈提高了耕層土壤和母質(zhì)層土壤各級(jí)團(tuán)聚體的有機(jī)碳含量,適宜的秸稈添加量可顯著提高大團(tuán)聚體中有機(jī)碳對(duì)土壤總有機(jī)碳的貢獻(xiàn)率,且添加外源碳對(duì)母質(zhì)層土壤各粒級(jí)有機(jī)碳含量的增加更為明顯;母質(zhì)在其幾乎不含有機(jī)碳的情況下,固碳能力高于耕層土壤。
[1] 孟慶英,張春峰,賈會(huì)彬,等. 不同機(jī)械改土方式對(duì)白漿土物理特性及酶活性的影響. 土壤學(xué)報(bào),2016,53(2):552—559
Meng Q Y,Zhang C F,Jia H B,et al. Effects of mechanical soil amelioration method on physical properties of and enzyme activity in planosol(In Chinese). Acta Pedologica Sinica,2016,53(2):552—559
[2] 熊毅,李慶逵. 中國(guó)土壤. 2版. 北京:科學(xué)出版社,1987:355-356
Hseung Y,Li Q K. Soils of China(In Chinese). 2nd ed. Beijing:Science Press,1987:355—356
[3] 趙蘭坡,井上克弘,吉田稔. 吉林省主要耕作土壤的黏粒礦物組成.土壤學(xué)報(bào),1993,30(3):267—273
Zhao L P,Katsuhiro L,Minorn Y. Composition of clay mineral in some main cultivated soil in Jilin Province(In Chinese). Acta Pedologica Sinica,1993,30(3):267—273
[4] 趙蘭坡,馬晶,楊學(xué)明,等. 耕作白漿土有機(jī)無(wú)機(jī)復(fù)合體腐殖質(zhì)組成及類(lèi)型. 土壤學(xué)報(bào),1997,34(1):28—41
Zhao L P,Ma J,Yang X M,et al. Composition and types of humus in different particle fractions of arable albic soil(In Chinese). Acta Pedologica Sinica,1997,34(1):28—41
[5] 吉林省土壤肥料總站. 吉林土壤. 北京:中國(guó)農(nóng)業(yè)出版社,1998:137—144
Soil and Fertilizer Station of Jilin Province. Jilin soil(In Chinese). Beijing:China Agriculture Press,1998:137—144
[6] 朱寶國(guó),張春峰,賈會(huì)彬,等. 白漿土心土間隔改良對(duì)土壤理化性狀及作物產(chǎn)量的影響. 土壤通報(bào),2014,45(3):704—710
Zhu B G,Zhang C F,Jia H B,et al. Effect of subsoil mixing interval on physical and chemical characteristics and yield of crops in planosol(In Chinese). Chinese Journal of Soil Science,2014,45(3):704—710
[7] 賈會(huì)彬,劉峰,趙德林,等. 白漿土某些理化特性與改良的研究. 土壤學(xué)報(bào),1997,34(2):130—137
Jia H B,Liu F,Zhao D L,et al. Research on some physical-chemical properties and improvement of planosols(In Chinese). Acta Pedologica Sinica,1997,34(2):130—137
[8] 于德清,丁慶堂,關(guān)熙銘,等. 種植牧草在白漿土改良中的作用. 應(yīng)用生態(tài)學(xué)報(bào),1993,4(1):37—41
Yu D Q ,Ding Q T,Guan X M,et al. Role of planting grass in albic soil amelioration(In Chinese).Chinese Journal of Applied Ecology,1993,4(1):37—41
[9] 趙蘭坡. 施用作物秸稈對(duì)土壤的培肥作用. 土壤通報(bào),1996,27(2):76—78
Zhao L P. Effect of crop straw on soil fertility(In Chinese). Chinese Journal of Soil Science,1996,27(2):76—78
[10] 李成芳,寇志奎,張枝盛,等. 秸稈還田對(duì)免耕稻田溫室氣體排放及土壤有機(jī)碳固定的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào). 2011,30(11):2362—2367
Li C F,Kou Z K,Zhang Z S,et al. Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields(In Chinese). Journal of Agro-Environment Science,2011,30(11):2362—2367
[11] 熊毅. 土壤膠體. 2冊(cè):土壤膠體研究法. 北京:科學(xué)出版社,1985:44—48
Hseung Y. Soil colloid. 2nd vol. Experiment approach of soil colloid(In Chinese). Beijing:Science Press,1985:44—48
[12] Swanston C W,Caldwell B A,Homann P S,et al. Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils. Soil Biology & Biochemistry,2002,34:1121—1130
[13] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京:中國(guó)農(nóng)業(yè)科技出版社,2000:116—119
Lu R K. Analytical methods for soil and agro-chemistry(In Chinese). Beijing:China Agricultural Science and Technology Press,2000:116—119
[14] Cambardella C A,Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal,1993,57:1071—1076
[15] 潘劍玲,代萬(wàn)安,尚占環(huán),等. 秸稈還田對(duì)土壤有機(jī)質(zhì)和氮素有效性影響及機(jī)制研究進(jìn)展. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2013,21(5):526—535
Pan J L,Dai W A,Shang Z H,et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability (In Chinese). Chinese Journal of Eco-Agriculture,2013,21(5):526—535
[16] 矯麗娜,李志洪,殷程程,等. 高量秸稈不同深度還田對(duì)黑土有機(jī)質(zhì)組成和酶活性的影響. 土壤學(xué)報(bào),2015,52(3):665—672
Jiao L N,Li Z H ,Yin C C,et al. Effect of incorporation on crop straw on composition of soil organic matter and enzyme and activity in black soil relative to depth and rate of the incorporation (In Chinese). Acta Pedologica Sinica,2015,52(3):665—672
[17] Ye R Z,Doane T A,Morris J,et al. The effect of rice straw on the priming of soil organic matter and methane production in peat soils. Soil Biology & Biochemistry,2015,81:98—107
[18] Huntington T. Carbon sequestration in an aggrading forest ecosystem in the Southern USA. Soil Science Society of America Journal,1995,59:1459—1467
[19] Richter H,Lorenz W,Bahadir M. The global equivalence ratio conception laboratory scale combustion experiments. Chemosphere,1999,39(4):555—562
[20] 張雷. 有機(jī)物料、溫度和土壤水分對(duì)黑土有機(jī)碳分解的影響. 哈爾濱:東北農(nóng)業(yè)大學(xué),2004
Zhang L. Effects of organic material,temperature and soil moisture on organic carbon decomposition of black soil(In Chinese). Harbin:Northeast Agricultural University,2004
[21] 關(guān)松,竇森,胡永哲,等. 添加玉米秸稈對(duì)黑土團(tuán)聚體碳氮分布的影響. 水土保持學(xué)報(bào),2010,24(4):187—191
Guan S,Dou S,Hu Y Z,et al. Effects of application of corn stalk on distribution of C and N in black soil aggregates(In Chinese). Journal of Soil and Water Conservation,2010,24(4):187—191
[22] 仇建飛,竇森,邵晨,等. 添加玉米秸稈培養(yǎng)對(duì)土壤團(tuán)聚體胡敏酸數(shù)量和結(jié)構(gòu)特征的影. 土壤學(xué)報(bào),2011,48(4):781—787
Qiu J F,Dou S,Shao C,et al. Effects of corn stalk application on quantity and structural characteristics of humus acid in soil aggregates(In Chinese). Acta Pedologica Sinica,2011,48(4):781—787
[23] 李娜,韓曉增,尤孟陽(yáng),等. 土壤團(tuán)聚體與微生物相互作用研究. 生態(tài)環(huán)境學(xué)報(bào),2013,22(9):1625—1632 Li N,Han X Z,You M Y,et al. Research review on soil aggregates and microbes(In Chinese). Ecology and Environmental Sciences,2013,22(9):1625—1632
[24] Sodhi G P S,Beri V,Benbi D K. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice-wheat system. Soil & Tillage Research,2009,103:412—418
[25] Tisdall J M. Possible role of soil microorganisms in aggregation in soils. Plant and Soil,1994,159(1):145—153
[26] 王清奎,汪思龍. 土壤團(tuán)聚體形成與穩(wěn)定機(jī)制及影響因素. 土壤通報(bào),2005,36(3):415—421
Wang Q K,Wang S L. Forming and stable mechanism of soil aggregate and influencing factors(In Chinese). Chinese Journal of Soil Science,2005,36(3):415—421
[27] 郝翔翔,楊春葆,苑亞茹,等. 連續(xù)秸稈還田對(duì)黑土團(tuán)聚體中有機(jī)碳含量及土壤肥力的影響. 中國(guó)農(nóng)學(xué)通報(bào),2013,29(35):263—269
Hao X X,Yang C B,Yuan Y R,et al. Effects of continuous straw returning on organic carbon content in aggregates and fertility of black soil(In Chinese). Chinese Agricultural Science Bulletin,2013,29(35):263—269
[28] 孫漢印,姬強(qiáng),王勇,等. 不同秸稈還田模式下水穩(wěn)性團(tuán)聚體有機(jī)碳的分布及其氧化穩(wěn)定性研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(2):369—376
Sun H Y,Ji Q,Wang Y,et al. The distribution of water-stable aggregate-associated organic carbon and its oxidation stability under different straw returning modes(In Chinese). Journal of Agro-Environment Science,2012,31(2):369—376
[29] Bravo-Garza M R,Voroney P,Bryan R B. Particulate organic matter in water stable aggregates formed after the addition of14C-labeled maize residues and wetting and drying cycles in vertisols. Soil Biology & Biochemistry,2010,42(6):953—959
[30] Jastrow J D,Bouton T W,Miller R M. Carbon dynamics of aggregate associated organic matter estimated by carbon-13 natural abundance. Soil Science Society of America Journal,1996,60:801—807
Effects of Corn Stalk Incorporation on Organic Carbon of Heavy Fraction and Composition of Soil Aggregates in Albic Soil
SUN Yuanhong GAO Xueying ZHAO Xingmin SUI Biao WANG Hongbin ZHAO Lanpo?
(College of Resources and Environment,Jilin Agricultural University,Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases,Changchun 130118,China)
【Objective】The purpose of this study is to illustrate effects of incorporation of organic material on organic carbon of the heavy fraction and composition of soil aggregates in the soil in the hope that the work may be of some important significance to scientific evaluation of the effects of incorporation of crop straw into the soil on soil fertility and the environment.【Method】An in-lab experiment was carried out incubating for 120 days columns of albic soil with corn stalk incorporated into top soil and parent material at a varying rate,and then analyses done for accumulation of organic carbon of heavy fraction,composition of soil aggregates and distribution of organic carbon in various fractions of soil aggregates as affected by incorporation rate of corn stalk.【Result】It was found that content of the organic carbon of heavy fraction in both the top soil and parent material increased simultaneously with the increasing incorporation rate of corn stalk. The two soils did not differ much in increment of the content of the organic carbon of heavy fraction,showing a slight difference of being only 0.34 g kg-1. However,they varied sharply in increasing rate of organic carbon. In the top soil,organic carbon increased by 85.51% only and in the parent material by 556.23%. It was also found that,the incorporation of stalk promoted transformation of small aggregates(<0.25 mm)to large aggregates(> 0.25 mm)in the soil. When the amount of corn stalk added is too high,>2 mm size aggregates no longer increase but decrease. When corn stalk was incorporated at a rate of 3% and 2%,the fraction of large aggregates contributed the most to the content of organic carbon in the soil reaching up to 69.90% and 65.48%,respectively.【Conclusion】 In this study,the addition of stalk promoted accumulation of organic carbon of heavy fraction and formation of large-sized aggregates and increased organic carbon content in aggregates in various particle-size ,adding the appropriate amount of corn stalk can increase the contribution rate of organic carbon in the large-sized aggregates fractions. Compared to the top soil,that in the parent material soil had organic carbon increased by a far more high rate. The effect of the addition of extraneous carbon increasing organic carbon content in aggregates of all particle sizes was more apparent. The soil in the parent material layer was much higher than the top soil in carbon sequestration capacity,in the case that the former almost contained nil of organic carbon.
Albic soil;Parent material;Corn stalks;Organic carbon;Heavy fraction;Aggregates
S156
A
(責(zé)任編輯:盧 萍)
10.11766/trxb201612130612
* 國(guó)家自然科學(xué)基金項(xiàng)目(41403077)和吉林省科技廳科技支撐計(jì)劃項(xiàng)目(20130204050SF)資助 Supported by the National Natural Science Foundation of China(No. 41403077)and the Science and Technology Support Project of Jilin Province(No. 20130204050SF)
? 通訊作者 Corresponding author,E-mail:zhaolanpo12@163.com
孫元宏(1992—),女,吉林敦化人,碩士研究生,主要從事土壤肥力調(diào)控研究。E-mail:842615166@qq.com
2016-12-13;收到修改日期:2017-01-21;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-04-10