張 輝 李 鵬魯克新 任宗萍 王 添 湯珊珊 王飛超
(西安理工大學(xué)西北旱區(qū)生態(tài)水利工程國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,西安 710048)
凍融作用對(duì)坡面侵蝕及泥沙顆粒分選的影響*
張 輝 李 鵬?魯克新 任宗萍 王 添 湯珊珊 王飛超
(西安理工大學(xué)西北旱區(qū)生態(tài)水利工程國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,西安 710048)
為了探究?jī)鐾梁徒鈨鐾翆?duì)水力侵蝕的影響,利用室內(nèi)模擬降雨試驗(yàn)對(duì)凍土和解凍土兩種坡面的坡面侵蝕過(guò)程及泥沙顆粒分選特征進(jìn)行了研究。結(jié)果表明:在降雨條件下,相對(duì)于解凍坡面(TS),凍土坡面(FS)的產(chǎn)流時(shí)間提前了173s,而產(chǎn)流量、產(chǎn)沙量分別增加了9%和105%;兩種坡面侵蝕過(guò)程中的土壤顆粒平均重量直徑(MWD)大小次序均為濺蝕顆粒>徑流沖刷泥沙顆粒,且凍土坡面濺蝕顆粒及沖刷泥沙顆粒MWD均顯著大于解凍土坡面(p<0.05);隨著降雨進(jìn)行,解凍土坡面侵蝕泥沙中的黏粒、細(xì)粉粒含量呈先迅速增大后減少的趨勢(shì);粗粉粒和砂粒含量則呈先減小后增大的趨勢(shì),侵蝕泥沙逐漸向粗顆粒發(fā)展;而凍土坡面各粒級(jí)顆粒隨時(shí)間變化相對(duì)穩(wěn)定。研究成果可為進(jìn)一步揭示凍融作用下坡面水力侵蝕機(jī)理提供一定的參考依據(jù)。
模擬降雨;凍土/解凍土;濺蝕;徑流沖刷;顆粒分選
凍融作用是指氣候的日、年和多年變化可能導(dǎo)致特定氣候區(qū)域的地球表層一定范圍內(nèi)土壤的凍結(jié)和融化作用[1]。黃河中游地處溫帶中緯度地區(qū),每年約有105~125 d的氣溫在0℃以下,多年平均年降水量300~600 mm,滿足凍融侵蝕發(fā)生的氣候條件[2]。已有研究表明,凍融作用能有效地改變土壤結(jié)構(gòu)[3-4],從而影響土壤的可蝕性;當(dāng)土壤處于凍結(jié)狀態(tài)時(shí),土壤水因結(jié)冰而發(fā)生的體積膨脹會(huì)破壞土壤顆粒之間的連結(jié)性,從而改變土壤顆粒的大小分布[5];凍融作用將導(dǎo)致土壤顆粒大小呈減小的趨勢(shì)[6-7],而這將對(duì)水力侵蝕造成很大影響。
在凍土解凍期,由于解凍土層和凍結(jié)土層的存在,坡面土壤可蝕性與未凍融和完全解凍坡面可蝕性存在較大差異[8],而前人的研究成果主要關(guān)注凍融前、后土壤可蝕性的變化,而對(duì)凍結(jié)狀態(tài)下土壤可蝕性研究較少[9-12],同時(shí)凍土和解凍土的土壤可蝕性差異尚不清楚。有研究表明,凍土解凍后,抗剪強(qiáng)度下降,土壤可蝕性增加[11-13];坡面凍土初始解凍深度越小,則前期侵蝕率越大,侵蝕總量越大[8],因此,相對(duì)于解凍土坡面,凍土坡面更易發(fā)生侵蝕,而這種現(xiàn)象發(fā)生的具體原因目前尚不明確。
在侵蝕過(guò)程中的侵蝕泥沙顆粒粒徑分布能夠很好地反映侵蝕的變化過(guò)程[14]。在侵蝕開(kāi)始階段,侵蝕泥沙中的黏粒、粉粒含量較高;隨著侵蝕時(shí)間的延長(zhǎng),泥沙顆粒逐漸變粗,最后趨于穩(wěn)定[15]。吳鳳至等[16]研究發(fā)現(xiàn),濺蝕階段侵蝕泥沙中2~50 μm顆粒含量較高;細(xì)溝間侵蝕階段的粗顆粒減少、細(xì)顆粒增多。吳新亮等[17]研究發(fā)現(xiàn),侵蝕泥沙顆粒分布主要受黃土母質(zhì)和降雨侵蝕力的影響,且兩者的影響差異較大。坡面侵蝕泥沙顆粒的粒徑分布取決于土壤質(zhì)地、降雨特性、徑流類型、凍融作用、地形特征等很多因素[18-20],而這些因素也導(dǎo)致侵蝕泥沙顆粒分選規(guī)律存在很大差異。其中,凍融作用能夠破壞土壤顆粒之間的粘結(jié)力[5],改變土壤原狀顆粒大小,進(jìn)而導(dǎo)致土壤顆粒容易發(fā)生分離。在水力侵蝕與凍融侵蝕復(fù)合作用下,坡面侵蝕及侵蝕泥沙顆粒分選規(guī)律會(huì)與單一的水力侵蝕作用有很大不同,然而,這種復(fù)合侵蝕作用下的侵蝕及泥沙分選過(guò)程目前尚不清楚。
由于下墊面條件差異和氣候變化等原因,黃河中游局部地區(qū)之間的解凍期存在較大差異,而這種差異會(huì)影響該區(qū)域的土壤侵蝕情況,進(jìn)而影響侵蝕泥沙的輸移規(guī)律。本研究的主要目的是利用室內(nèi)模擬降雨試驗(yàn)明確凍土坡面和解凍土坡面的水力侵蝕過(guò)程以及坡面侵蝕泥沙顆粒分選特征的差異,為進(jìn)一步揭示凍融作用下坡面土壤水蝕機(jī)理提供一定的參考依據(jù)。
1.1 試驗(yàn)材料
試驗(yàn)用土為西安郊區(qū)黃土,顆粒組成黏粒1.06%、粉粒93.58%和砂粒5.36%,土壤質(zhì)地為粉砂質(zhì)壤土,有機(jī)質(zhì)含量為(3.0±0.1)g kg-1。試驗(yàn)土槽采用木質(zhì)土槽,土槽內(nèi)部尺寸為0.9m×0.45m×0.15m(長(zhǎng)×寬×高)。試驗(yàn)凍土裝置采用澳柯瑪DW-40W300超低溫冰箱,凍土溫度為-40℃~-10℃,外形尺寸為1.15 m×0.72 m× 0.84 m(長(zhǎng)×寬×高)。模擬降雨裝置采用西安理工大學(xué)水資源研究所研制的由供水管路、恒壓供水箱、針管式降雨器和控制閥等組成的針管式降雨裝置。
1.2 試驗(yàn)設(shè)計(jì)
首先將自然風(fēng)干后的供試土樣過(guò)10 mm篩,剔除根系、石塊等雜物;而后對(duì)過(guò)篩后的土樣進(jìn)行悶土,使其質(zhì)量含水量達(dá)到15%左右,并保持土樣內(nèi)水分均勻。填土前,首先在土槽底部鋪1層紗布,再裝入2 cm厚的天然沙,以保證試驗(yàn)用土的透水性與天然坡面接近;然后根據(jù)設(shè)計(jì)的干容重1.2 g cm-3按照式(1)計(jì)算出所需土樣質(zhì)量;按照每層土厚5 cm進(jìn)行分層填裝;在填完每一層土后,將表土略整粗糙后填裝下一層土,以保證上、下兩層土樣結(jié)合緊密。在距坡頂30 cm和60 cm處的土壤表層以下3 cm處各布設(shè)一個(gè)溫度探頭,以測(cè)定土壤凍結(jié)時(shí)的溫度變化特征。
式中,m為所需裝土量,kg;B為干容重,取1.2 g cm-3;w為土壤質(zhì)量含水量,取15%;l為土槽長(zhǎng),m;b為土槽寬,m;h為土槽深,m。
試驗(yàn)于2015年6月在西安理工大學(xué)西北旱區(qū)生態(tài)水利工程國(guó)家重點(diǎn)試驗(yàn)室培育基地雨洪侵蝕大廳完成。試驗(yàn)設(shè)計(jì)坡度為12°,設(shè)計(jì)雨強(qiáng)為1.0 mm min-1,降雨空間分布均勻度控制在80%以上。
1.3 試驗(yàn)方法
室內(nèi)試驗(yàn)分為凍土坡面模擬降雨試驗(yàn)和解凍土坡面模擬降雨試驗(yàn)2個(gè)部分,降雨歷時(shí)均為60 min。具體過(guò)程如下:將填土后的土槽放入凍土裝置,在-18℃環(huán)境下連續(xù)凍結(jié)24 h,保證距表層3 cm處的溫度達(dá)到-5℃~-6℃之間。第一組試驗(yàn),將冷凍處理結(jié)束后的土槽立即放在模擬降雨裝置下進(jìn)行凍土坡面模擬降雨試驗(yàn)。第二組試驗(yàn),將冷凍處理結(jié)束后的土槽放在室溫下解凍24 h后放在模擬降雨裝置下進(jìn)行解凍土坡面模擬降雨試驗(yàn)。每組試驗(yàn)重復(fù)3次,試驗(yàn)結(jié)果取3次試驗(yàn)數(shù)據(jù)的平均值。
在模擬降雨試驗(yàn)開(kāi)始前,將濺蝕板插入試驗(yàn)?zāi)静鄣膬蓚?cè),用于收集試驗(yàn)過(guò)程中的濺蝕泥沙顆粒;用水準(zhǔn)儀校正試驗(yàn)土槽的坡度;進(jìn)行雨強(qiáng)率定工作,當(dāng)雨強(qiáng)滿足(1.0±0.05)mm min-1時(shí),開(kāi)始模擬降雨試驗(yàn)。在試驗(yàn)過(guò)程中,當(dāng)土槽出水口開(kāi)始產(chǎn)流后,記錄產(chǎn)流時(shí)間,每隔5 min用高錳酸鉀測(cè)量1次坡面徑流流速;每1 min收集1次土槽出水口處的全部渾水樣品,用精度為0.01g的電子天平測(cè)定渾水總重量后,放置在烘箱中65℃烘干并稱重測(cè)得每1 min的坡面產(chǎn)沙量,進(jìn)而推求每1 min的產(chǎn)流量。坡面產(chǎn)流后更換第1次濺蝕板,以后每隔10 min更換1次;將換下的濺蝕板水平放置,待風(fēng)干24 h后收集濺蝕泥沙顆粒。將烘干后徑流泥沙和風(fēng)干后的濺蝕泥沙收集備測(cè)。
1.4 數(shù)據(jù)處理與分析
采用激光粒度儀測(cè)量泥沙樣品的機(jī)械組成,激光粒度儀型號(hào)為Mastersizer2000,測(cè)定的范圍為0~2 mm[18]。泥沙顆粒機(jī)械組成的粒徑分級(jí)采用中國(guó)制土壤質(zhì)地分級(jí)標(biāo)準(zhǔn),即:黏粒(<0.002 mm)、細(xì)粉粒(0.002~0.02 mm)、粗粉粒(0.02~0.05 mm)、砂粒(0.05~0.25 mm)和粗砂粒(>0.25 mm)。在試驗(yàn)中采用平均重量直徑(MWD)表示侵蝕泥沙的顆粒大小分布狀況,具體過(guò)程為:假設(shè)各粒級(jí)泥沙顆粒密度相同,泥沙顆粒平均重量直徑(MWD)在數(shù)值上等于各粒級(jí)顆粒的體積百分比乘以該粒級(jí)范圍的算數(shù)平均值的總和,以此通過(guò)體積重量直徑求得各泥沙顆粒的平均重量直徑[20-22]。
采用Excel2010和SPSS18.0進(jìn)行試驗(yàn)數(shù)據(jù)分析,通過(guò)Origin8.0進(jìn)行繪圖,采用SPSS18.0對(duì)相關(guān)數(shù)據(jù)進(jìn)行ANOVA方差分析和t檢驗(yàn)。
2.1 兩種坡面侵蝕過(guò)程特征
試驗(yàn)結(jié)果表明,在模擬降雨條件下,凍土坡面和解凍土坡面的產(chǎn)流量、產(chǎn)沙量顯著不同(表1)。由表1中可以看出,凍土坡面的產(chǎn)流時(shí)間較解凍土坡面提前了173 s。兩種坡面狀態(tài)下的產(chǎn)流強(qiáng)度隨時(shí)間變化的趨勢(shì)相似(圖1a):在產(chǎn)流開(kāi)始后的10 min內(nèi),凍土坡面和解凍土坡面的產(chǎn)流強(qiáng)度均迅速增加,平均增加速率分別為0.042、0.036 L m-2min-1;在產(chǎn)流開(kāi)始后的10~21 min內(nèi),凍土坡面和解凍土坡面的產(chǎn)流強(qiáng)度緩慢增長(zhǎng),坡面的產(chǎn)流強(qiáng)度平均增加速率分別為0.004、0.007 L m-2min-1;在產(chǎn)流開(kāi)始21min以后,凍土坡面和解凍土坡面的產(chǎn)流強(qiáng)度分別逐漸趨近于0.49、0.47 L m-2min-1。在整個(gè)產(chǎn)流過(guò)程中,凍土坡面的產(chǎn)流強(qiáng)度始終大于解凍土坡面(圖1a),凍土坡面的產(chǎn)流量、平均流速分別為解凍土坡面的1.09倍、1.35倍(表1)。
凍土坡面與解凍土坡面的侵蝕過(guò)程表現(xiàn)出明顯的差異(圖1b),在降雨過(guò)程中,凍土坡面的產(chǎn)沙強(qiáng)度始終顯著大于解凍坡面,同時(shí)凍土坡面的產(chǎn)沙量是解凍坡面的2.05倍;在產(chǎn)流開(kāi)始的0~5min內(nèi),凍土坡面的產(chǎn)沙強(qiáng)度隨著產(chǎn)流時(shí)間的延長(zhǎng)呈顯著增加趨勢(shì),并在第4分鐘達(dá)到峰值19.45 g m-2min-1,前5分鐘的平均產(chǎn)沙強(qiáng)度是解凍土坡面的4.67倍;而解凍土坡面的產(chǎn)沙強(qiáng)度在第10分鐘時(shí)才達(dá)到峰值8.81 g m-2min-1。在凍土坡面和解凍土坡面的產(chǎn)沙強(qiáng)度達(dá)到峰值后,隨著降雨歷時(shí)的延長(zhǎng),坡面產(chǎn)沙強(qiáng)度一直呈現(xiàn)減小趨勢(shì)。
凍土坡面和解凍土坡面的產(chǎn)沙量存在顯著差異的原因可能是:一方面,在降雨開(kāi)始時(shí),凍土坡面的土體處于凍結(jié)狀態(tài),固體冰晶的存在導(dǎo)致土壤孔隙度減小,坡面存在不透水層或弱透水層,水力傳導(dǎo)度降低[23],坡面入滲能力下降,導(dǎo)致在短時(shí)間內(nèi)形成較大的坡面徑流,徑流侵蝕力較強(qiáng);另一方面,在降雨過(guò)程中,凍土坡面不斷加速解凍為水力侵蝕提供了較多的可蝕性物質(zhì),而解凍土坡面無(wú)凍結(jié)層,入滲能力相對(duì)較大,在降雨過(guò)程中極易形成結(jié)皮[24],在一定程度上減少了侵蝕物質(zhì)來(lái)源,導(dǎo)致徑流含沙量降低。因此,從物質(zhì)來(lái)源以及侵蝕動(dòng)力兩方面來(lái)說(shuō),凍土坡面形成的徑流量較大,且侵蝕物質(zhì)來(lái)源于不斷解凍的坡面土壤,故凍土坡面的侵蝕產(chǎn)沙量相對(duì)較大。Sharratt等[25]與周麗麗等[26]通過(guò)降雨試驗(yàn)分析認(rèn)為,在凍土層解凍時(shí)期,凍土層離地表越近,則產(chǎn)流量越大,含沙量越高,這與本文的研究結(jié)果基本一致。試驗(yàn)觀測(cè)結(jié)果表明,在模擬降雨過(guò)程中,凍土坡面和解凍土坡面始終未發(fā)生細(xì)溝侵蝕,侵蝕類型僅有濺蝕和面蝕。坡面侵蝕的產(chǎn)沙過(guò)程主要是坡面徑流對(duì)降雨濺散土壤的輸移和對(duì)坡面表層土壤的剝蝕[20]。一般而言,坡面侵蝕速率隨降雨歷時(shí)的增加而減?。?7],產(chǎn)流初期的侵蝕產(chǎn)沙強(qiáng)度較大,隨后逐漸減小,這與本試驗(yàn)所觀察到的現(xiàn)象也基本相同。
圖1 凍土坡面(FS)和解凍土坡面(TS)的產(chǎn)流強(qiáng)度(a)和產(chǎn)沙強(qiáng)度(b)隨時(shí)間的變化Fig. 1 Temporal variations of runoff rate(a)and sediment yield intensity(b)on frozen and thawed soil slopes
表1 相同模擬降雨條件下凍土坡面(FS)和解凍土坡面(TS)的產(chǎn)流產(chǎn)沙試驗(yàn)結(jié)果Table 1 Runoff rate and sediment yield intensity on frozen(FS)and thawed slopes(TS)under simulated rainfall
2.2 坡面侵蝕泥沙顆粒分選特征
2.2.1 侵蝕過(guò)程中泥沙顆粒平均重量直徑(MWD)變化規(guī)律 圖2表示凍土坡面、解凍土坡面的土壤平均重量直徑(MWD)的試驗(yàn)結(jié)果。從圖2中可以看出,在模擬降雨試驗(yàn)過(guò)程中,凍土坡面和解凍土坡面MWD大小均表現(xiàn)為:濺蝕顆粒>沖刷泥沙顆粒。
由MWD的統(tǒng)計(jì)結(jié)果可以看出,凍土坡面沖刷泥沙顆粒MWD的變化范圍為18.16~21.79 μm,平均值為19.89 μm,而濺蝕顆粒MWD的變化范圍為23.46~27.73 μm,平均值為26.40 μm;解凍土坡面沖刷泥沙顆粒MWD變化范圍為15.58~22.19 μm,平均值為19.33μm,而濺蝕顆粒MWD的變化范圍為23.92~27.29 μm,平均值為25.32 μm。
t檢驗(yàn)結(jié)果表明,凍土坡面和解凍土坡面的濺蝕顆粒MWD顯著大于沖刷泥沙顆粒MWD(p<0.01);解凍土坡面濺蝕、沖刷泥沙的MWD分別與本底土壤顆粒的MWD間表現(xiàn)出極顯著性差異(p<0.01),凍土坡面沖刷泥沙顆粒MWD顯著小于土壤本底物顆粒(p<0.01),但濺蝕顆粒與本底物顆粒之間并沒(méi)有顯著性差異。ANOVA方差分析結(jié)果表明,凍土坡面侵蝕過(guò)程中的濺蝕、沖刷泥沙顆粒MWD均顯著大于解凍土坡面(p<0.05),這可能與土壤凍結(jié)作用和徑流的分選作用有關(guān)。
2.2.2 不同粒級(jí)泥沙顆粒含量的變化規(guī)律 為進(jìn)一步揭示坡面侵蝕泥沙顆粒分選過(guò)程,對(duì)凍土坡面和解凍土坡面侵蝕過(guò)程中的不同粒級(jí)泥沙粒徑含量進(jìn)行了統(tǒng)計(jì)(表2、圖3),結(jié)果表明兩種坡面條件下各粒級(jí)泥沙顆粒含量有所不同。根據(jù)t檢驗(yàn)分析結(jié)果,在整個(gè)降雨過(guò)程中,凍土坡面和解凍土坡面濺蝕泥沙和沖刷泥沙中的黏粒、細(xì)粉粒含量顯著大于本底物(p<0.01);不同粒級(jí)的泥沙顆粒含量大小依次為沖刷泥沙>濺蝕泥沙>本底物;粗粉粒、砂粒含量顯著小于本底物(p<0.01),泥沙顆粒含量大小依次為沖刷泥沙<濺蝕<本底物,因此,濺蝕、細(xì)溝間侵蝕對(duì)土壤顆粒的分選作用不同,細(xì)溝間侵蝕對(duì)細(xì)小顆粒的分選能力大于濺蝕。凍土坡面濺蝕泥沙中的細(xì)粉粒含量大于解凍土坡面,而其他粒級(jí)的泥沙顆粒含量均小于解凍土坡面,說(shuō)明凍結(jié)作用改變了濺蝕對(duì)土壤顆粒的分選作用。此外,沖刷泥沙各粒級(jí)平均含量的ANOVA檢驗(yàn)結(jié)果表明,在降雨過(guò)程中,凍土坡面黏粒、粗粉粒的平均含量顯著大于解凍土坡面(p<0.01),細(xì)粉粒含量顯著小于解凍土坡面(p<0.05),而兩者沙粒含量之間無(wú)顯著差異。以上分析結(jié)果表明,在凍土坡面和解凍土坡面水力侵蝕條件下,黏粒和細(xì)粉粒等細(xì)顆粒更容易被坡面徑流輸移帶走,而凍土坡面相對(duì)于解凍坡面更容易侵蝕黏粒和粗粉粒,即<2 μm和>20 μm的泥沙顆粒,解凍坡面更容易侵蝕2~20 μm的細(xì)粉粒。
圖2 凍土坡面FS(a)和解凍土坡面TS(b)3種顆粒平均重量直徑(MWD)隨時(shí)間的變化Fig. 2 Temporal variation of mean weight diameter(MWD)of 3 fractions of soil particles on frozen and thawed soil slopes
圖3表示凍土坡面和解凍土坡面沖刷泥沙中各粒級(jí)泥沙百分含量隨時(shí)間的變化規(guī)律。從圖3中可以看出,在產(chǎn)流開(kāi)始時(shí),解凍土坡面侵蝕泥沙中的黏粒、細(xì)粉粒含量呈先迅速增大后減小的趨勢(shì),而粗粉粒和砂粒含量呈先減小后增大的趨勢(shì)。因此,在坡面侵蝕過(guò)程中,凍土坡面侵蝕泥沙隨著降雨時(shí)間的延長(zhǎng)逐漸向粗顆粒發(fā)展;在坡面出口產(chǎn)流后的前21min內(nèi),解凍土坡面的細(xì)粉粒含量大于凍土坡面(圖3b),而粗粉粒含量小于凍土坡面(圖4c);凍土坡面侵蝕泥沙顆粒含量隨著降雨時(shí)間的延長(zhǎng)并無(wú)明顯變化規(guī)律。
表2 各粒級(jí)顆粒平均百分含量Table 2 Average percentage of each fraction of soil particles in content(%)
圖3 凍土坡面和解凍土坡面中黏粒(a)、細(xì)粉粒(b)、粗粉粒(c)、砂粒(d)含量隨時(shí)間的變化規(guī)律Fig. 3 Temporal variation of clay(a),fine silt(b),coarse silt(c),sand(d)contents in percentage on the frozen and thawed soil slopes
解凍土坡面的徑流侵蝕動(dòng)力相對(duì)較小,徑流對(duì)顆粒的分選性較好,土體表面細(xì)顆粒物質(zhì)在產(chǎn)流開(kāi)始后的較短時(shí)間內(nèi)被徑流挾帶并輸運(yùn)至坡面出口,導(dǎo)致細(xì)顆粒物質(zhì)含量在降雨初期迅速升高,隨著降雨繼續(xù),細(xì)顆粒物質(zhì)消耗殆盡而粗顆粒含量逐漸增加(圖3b)。對(duì)于凍土坡面來(lái)說(shuō),坡面處于凍結(jié)狀態(tài),坡面入滲能力較低[24],產(chǎn)流量較大,徑流侵蝕動(dòng)力較大,對(duì)粗顆粒的輸移作用較強(qiáng)。因此,在降雨過(guò)程中,伴隨著坡面凍土加速解凍,侵蝕顆粒不斷釋放,使得徑流中的泥沙顆粒組成處于相對(duì)穩(wěn)定狀態(tài),這說(shuō)明凍土坡面在一定程度上改變了侵蝕泥沙顆粒的分選特征,降低了徑流對(duì)泥沙顆粒的分選作用,導(dǎo)致不同粒級(jí)的泥沙顆粒的變化幅度較小。
在模擬降雨條件下,相對(duì)于解凍土坡面,凍土坡面產(chǎn)流時(shí)間提前了173s,而坡面徑流量、產(chǎn)沙量分別增加了9%和105%。在坡面侵蝕過(guò)程中,濺蝕顆粒、本底物顆粒的MWD顯著大于沖刷泥沙顆粒MWD(p<0.01);解凍土坡面濺蝕泥沙顆粒MWD顯著小于本底物顆粒,而凍土坡面濺蝕泥沙顆粒MWD與本底物顆粒之間沒(méi)有顯著性差異。此外,凍土坡面濺蝕、沖刷泥沙顆粒MWD均顯著大于解凍土坡面(p<0.05)。解凍土坡面侵蝕泥沙中的黏粒、細(xì)粉粒含量隨著降雨歷時(shí)的延長(zhǎng)呈先迅速增大后減小的趨勢(shì);而粗粉粒和砂粒含量呈先減小后增大的趨勢(shì);隨著降雨歷時(shí)的延長(zhǎng),解凍土坡面侵蝕泥沙逐漸向粗顆粒發(fā)展,而凍土坡面侵蝕泥沙中的各粒級(jí)顆粒在侵蝕過(guò)程中變化相對(duì)穩(wěn)定。
[1] 李述訓(xùn),南卓銅,趙林. 凍融作用對(duì)系統(tǒng)與環(huán)境間能量交換的影響. 冰川凍土,2002,24(2):109—115
Li S X,Nan Z T,Zhao L. Impact of freezing and thawed on energy exchange between the system and environment(In Chinese). Journal of Glaciology and Geocryology,2002,24(2):109—115
[2] 王隨繼. 黃河中游凍融侵蝕的表現(xiàn)方式及其產(chǎn)沙能力評(píng)估. 水土保持通報(bào),2004,24(6):1—5
Wang S J. Characteristics of freeze and thaw weathering and its contribution to sediment yield in middle yellow river basin(In Chinese). Bulletin of Soil and Water Conservation,2004,24(6):1—5
[3] Pawluk S. Freeze-thaw effects on granular structure reorganization for soil materials of varying texture and moisture content. Canadian Journal of Soil Science,1988,68(3):485—494
[4] 王恩姮,趙雨森,夏祥友,等. 凍融交替后不同尺度黑土結(jié)構(gòu)變化特征. 生態(tài)學(xué)報(bào),2014,34(21):6287—6296
Wang E H,Zhao Y S,Xia X Y,et al. Effects of freeze-thaw cycles on black soil structure at different size scales(In Chinese). Acta Ecologica Sincia,2014,34(21):6287—6296
[5] Bullock M S,Nelson S D,Kemper W D. Soil cohesion as affected by freezing,water content,time and tillage. Soil Science Society of America Journal,1988,52(3):770—776
[6] Wang E H,Cruserichard M,Chen X W,et al. Effects of moisture condition and freeze/thaw cycles on surface soil aggregate size distribution and stability. Canadian Journal of Soil Science,2011,92(3):529—536
[7] Yang X M,Wander M M. Temporal changes in dry aggregate size and stability:Tillage and crop effects on a silty loam Mollisol in Illinois. Soil & Tillage Research,1998,49(3):173—183
[8] 范昊明,張瑞芳,武敏,等. 草甸土近地表解凍深度對(duì)坡面降雨侵蝕影響研究. 水土保持學(xué)報(bào),2010,24(3):5—8
Fan H M,Zhang R F,Wu M,et al. Study on sloping land rainfall erosion affected by thaw depth of nearsurface meadow soil(In Chinese). Journal of Soil and Water Conservation,2010,24(3):5—8
[9] Oztas T,F(xiàn)ayetorbay F. Effect of freezing and thawed processes on soil aggregate stability. Catena,2003,52(1):1—8
[10] Skidmore E L,Thompson C A. Winter-associated changes in dry-soil aggregation as influenced by management. Soil Science Society of America Journal,1993,57(6):1568—1572
[11] Ting J M,Martin R T,Ladd C C. Mechanisms of strength for frozen sand. Journal of Geotechnical Engineering,1983,109(10):1286—1302
[12] 范昊明,張瑞芳,周麗麗,等. 氣候變化對(duì)東北黑土凍融作用與凍融侵蝕發(fā)生的影響分析. 干旱區(qū)資源與環(huán)境,2009,23(6):48—53
Fan H M,Zhang R F,Zhou L L,et al. Impact of climate change on freeze-thaw function and freezethaw erosion in black soil region of northeast China(In Chinese). Journal of Arid Land Resources and Environment,2009,23(6):48—53
[13] Gatto L W. Soil freeze-thaw-induced changes to a simulated rill:Potentia limpacts on soil erosion. Geomorphology,2000,32(1):147—160
[14] Wang L,Shi Z H,Wang J,et al. Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes:A case study of clay loam soil from the Loess Plateau,China. Journal of Hydrology,2014,512(512):168—176
[15] Slattery M C,Burt T P. Particle size characteristics of suspended sediment in hillslope runoff and stream flow. Earth Surface Processes and Landforms,1997,22(8):705—719
[16] 吳鳳至,史志華,岳本江,等. 坡面侵蝕過(guò)程中泥沙顆粒特性研究. 土壤學(xué)報(bào),2012,49(5):1235—1240
Wu F Z,Shi Z H,Yue B J,et al. Particle characteristics of sediment in erosion on hillslope(In Chinese).Acta Pedologica Sinica,2012,49(5):1235—1240
[17] 吳新亮,魏玉杰,李朝霞,等. 亞熱帶地區(qū)幾種紅壤坡面侵蝕泥沙的物質(zhì)組成特性. 土壤學(xué)報(bào),2014,51(5):1223—1233
Wu X L,Wei Y J,Li C X,et al. Composition of sediments of erosion from different red soil slopes in subtropical area(In Chinese). Acta Pedologica Sinica,2014,51(5):1223—1233
[18] 湯珊珊,李鵬,任宗萍,等. 模擬降雨下覆沙坡面侵蝕顆粒特征研究. 土壤學(xué)報(bào),2016,53(1):39-47
Tang S S,Li P,Ren Z P,et al. Particle size composition of sediment from sand-covered slope under simulated rainfall(In Chinese). Acta Pedologica Sinica,2016,53(1):39—47
[19] 李占斌,李社新,任宗萍,等. 凍融作用對(duì)坡面侵蝕過(guò)程的影響. 水土保持學(xué)報(bào),2015,29(5):56—60
Li Z B,Li S X,Ren Z P,et al. Effects of freezingthawing on hillslope erosion process(In Chinese). Journal of Soil and Water Conservation,2015,29(5):56—60
[20] 蔣芳市,黃炎和,林金石,等. 坡度和雨強(qiáng)對(duì)崩崗崩積體侵蝕泥沙顆粒特征的影響. 土壤學(xué)報(bào),2014,51(5):974—982
Jiang F S,Huang Y H,Lin J S,et al. Effect of slope gradient and rainfall intensity on particle size composition of erosion sediment from colluvial deposits of benggang(In Chinese). Acta Pedologica Sinica,2014,51(5):974—982
[21] 楊帆,張洪江,程金花,等. 華北土石山區(qū)坡面濺蝕和片蝕泥沙顆粒特征研究. 水土保持學(xué)報(bào),2016,30(3):71—77
Yang F,Zhang H J,Cheng J H,et al. The sediment particles characteristics of splash and sheet wash in rocky mountain area of northern China(In Chinese). Journal of Soil and Water Conservation,2016,30(3):71—77
[22] Issa O M,Bissonnais Y L,Planchon O,et al. Soil detachment and transport on field and laboratoryscale interrill areas:Erosion processes and the sizeselectivity of eroded sediment. Earth Surface Processes and Landforms,2006,31(8):929—939
[23] 鄭秀清,樊貴盛. 土壤含水率對(duì)季節(jié)性凍土入滲特性影響的試驗(yàn)研究. 農(nóng)業(yè)工程學(xué)報(bào),2000,16(6):52—55
Zheng X Q,F(xiàn)an G S. Influence of moisture content on infiltration characteristics in seasonal frozen and thawed soils(In Chinese). Transactions of the Chinese Society of Agricultural Engineering,2000,16(6):52—55
[24] Ran Q H,Shi Z N,F(xiàn)u X D,et al. Impact of rainfall movement on soil crust development. International Journal of Sediment Research,2012,27(4):439—450
[25] Sharratt B S,Lindstrom M J,Benoit G R,et al. Runoff and soil erosion during spring thaw in the northern U.S. Corn Belt. Journal of Soil & Water Conservation,2000,55(4):487—494
[26] 周麗麗,王鐵良,范昊明,等. 未完全解凍層對(duì)黑土坡面降雨侵蝕的影響. 水土保持學(xué)報(bào),2009,23(6):1—4
Zhou L L,Wang T L,F(xiàn)an H M,et al. Effects of incompletely thawed layer on black soil slope rainfall erosion(In Chinese). Journal of Soil and Water Conservation,2009,23(6):1—4
[27] 李建業(yè). 前期土壤含水量與植被覆蓋變化對(duì)坡面細(xì)溝間侵蝕的影響. 陜西楊凌:西北農(nóng)林科技大學(xué),2015
Li J Y. Effect of the changing of antecedent soil moisture and vegetation cover on interrill erosion on the slope surface(In Chinese). Yangling,Shaanxi:Northwest Agriculture and Forestry University,2015
Effects of Freezing and Thawing on Soil Erosion and Sediment Particle Size Fractionation
ZHANG Hui LI Peng?LU Kexin REN Zongping WANG Tian TANG Shanshan WANG Feichao
(State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area,Xi’an University of Technology,Xi’an 710048,China)
【Objective】The Freezing-thawing action refers to daily,annual and secular climate change that might lead to freezing and thawing of the earth’s surface in a certain climatic region. When the soil is frozen,soil water is frozen,too,thus expanding in volume and the expansion destroys the connectivity between soil particles,and hence change particle size distribution of soil particles. And during the thawing period,owing to the existence of both thawed soil layer and frozen soil layer at the same time,the soil differs sharply in erodibility from those completely frozen or thawed. However,studies focused mainly on changes in soil erodibility before and after freezing and thawing and gave little attention to studies on erodibility of frozen soils. Under the joint actions of hydraulic erosion and freezing-thawing erosion,the slope varies sharply in soil erosion and sediment particle size fractionation from those under the single action of hydraulic erosion,however,it is still unclear how soil erosion and sediment particle size fractionation varies under the joint actions.【Method】 Therefore,an indoor experiment was carried out using simulated rainfall to explore effects of freezing/thawing on water erosion during the thawing period on slopes of loess,processes of soil erosion on frozen and thawed slope and particle size fractionation of sediment. 【Result】Results show that affected by rain,runoff initiated 173 seconds earlier on the thawed slope than on the frozen one,while runoff rate and sediment yield was 9% and 105% higher,respectively. In terms of MWD of sediment particles generated during the processes of soil erosion on the two slopes,an order was observed as splash particles>scouring particles,but MWDs of the two types of particles were both significantly higher on frozen soil slopes than on thawed soil slopes(p<0.05). During the erosion process with the rainfall going on,the contents of clay and fine silt increased first and then decreased,but the contents of coarse silt and sand did reversely,on the thawed slopes,while the sediment got dominated with coarse particles. However,particle size fractionation of the sediment on frozen slopes did not vary much with the time going on.【Conclusion】On frozen slopes,the existence of an aquiclude aggravates the soil erosion,but during the hydraulic erosion process,the erosion was low in selectivity of sediment in particle size relative to that on thawed slope. This paper is expected to provide some valuable reference for better understanding the mechanism of soil erosion.
Simulated rainfall;Frozen/thawed soil;Splash erosion;Runoff scouring;Particle size fractionation
S157.1
A
(責(zé)任編輯:檀滿枝)
10.11766/trxb201612020288
* 國(guó)家自然科學(xué)基金項(xiàng)目(41330858,41471226)、陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2016JM4017)共同資助 Supported by the National Natural Science Foundation of China(Nos.41330858,41471226)and Basic Research Program of Natural Sciences of Shaanxi(No.2016JM4017)
? 通訊作者 Corresponding author:李鵬(1974—),男,山東煙臺(tái)人,教授,博士生導(dǎo)師,主要從事水土資源與環(huán)境研究。
E-mail:lipeng74@163.com
張 輝(1991—),男,陜西渭南人,碩士研究生,主要從事水力侵蝕研究。E-mail:zhanghui1017@yeah.net
2016-12-02;
2017-01-19;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-04-13