亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于應(yīng)力松弛實驗對服役25Cr35Ni型耐熱鋼的高溫性能評估

        2017-08-16 09:17:19李會芳程從前曹鐵山
        材料工程 2017年8期
        關(guān)鍵詞:持久性服役壽命

        許 軍,李會芳,程從前,曹鐵山,趙 杰

        (大連理工大學 材料科學與工程學院,遼寧 大連 116024)

        基于應(yīng)力松弛實驗對服役25Cr35Ni型耐熱鋼的高溫性能評估

        許 軍,李會芳,程從前,曹鐵山,趙 杰

        (大連理工大學 材料科學與工程學院,遼寧 大連 116024)

        以服役的25Cr35Ni型鋼為對象,研究利用應(yīng)力松弛實驗開展高溫性能評估的方法以及對持久性能的預測效果。結(jié)果表明:由于高溫服役后晶界處碳化物出現(xiàn)網(wǎng)鏈狀和奧氏體基體內(nèi)二次碳化物明顯粗化,25Cr35Ni型耐熱鋼持久性能降低。通過得到的不同溫度和應(yīng)力的松弛蠕變速率曲線及外推關(guān)系,結(jié)合松弛蠕變速率-斷裂時間關(guān)系方程,可以實現(xiàn)由松弛實驗及少量蠕變持久實驗開展持久壽命評估。與基于高溫持久實驗的預測結(jié)果比較,兩者吻合較好。

        25Cr35Ni型耐熱鋼;應(yīng)力松弛;壽命預測;TTP參數(shù)法

        高溫材料廣泛應(yīng)用于電站設(shè)備、石油化工和航空航天等行業(yè)[1-3],材料的持久壽命受到普遍關(guān)注。為充分發(fā)掘材料的使用潛力,進而節(jié)約資源提高經(jīng)濟效益,工程上通常采用蠕變持久實驗結(jié)合TTP參數(shù)法進行壽命預測[4-6]。TTP參數(shù)法綜合考慮了溫度T和應(yīng)力σ與持久斷裂時間tr之間的關(guān)系,將斷裂時間和實驗溫度表示成一個互補的參數(shù),即P(σ)=f(tr,T)。該參數(shù)法可以將不同應(yīng)力和溫度的持久實驗數(shù)據(jù)整理到一條較窄的數(shù)據(jù)帶內(nèi),從而依據(jù)數(shù)據(jù)帶主曲線的趨勢來外推材料持久壽命。因為蠕變持久實驗周期長且耗材量大,制約了新材料開發(fā)和服役材料剩余壽命的快速評估[7],所以研究和開發(fā)高效準確的持久壽命評估方法尤為重要。高溫應(yīng)力松弛實驗作為測試高溫變形的方法之一,與蠕變變形存在密切聯(lián)系[8-10]。由于應(yīng)力松弛實驗能夠在短時間獲得較多的蠕變信息,因而采用應(yīng)力松弛實驗方法來評估材料持久壽命[11-14]。利用松弛實驗預測蠕變持久性能的工作主要集中在兩個方面:一方面是預測蠕變變形,一些學者利用松弛實驗信息結(jié)合理論模型,擬合出參數(shù)方程來預測材料蠕變變形[15,16];另一方面是預測持久壽命,通常用松弛蠕變速率關(guān)聯(lián)斷裂時間[17],Woodford曾采用規(guī)定斷裂應(yīng)變的方法計算失效壽命[18,19]。然而在已有報道中,利用松弛實驗預測持久壽命的處理方式較少,并且應(yīng)用的范圍較窄。

        本工作以服役近2年的連退爐輻射管材為研究對象,分析服役前后材料顯微組織的變化,討論預應(yīng)變及溫度對其高溫松弛行為的影響作用。分別利用松弛實驗和TTP參數(shù)法評估該管材的剩余壽命,分析采用松弛實驗進行壽命預測的可行性。

        1 實驗材料與方法

        本實驗材料P1來源于服役近2年的連退爐輻射管,其化學成分列于表1。實驗選材為25Cr35Ni型耐熱鋼,屬于典型HP系列合金。樣品經(jīng)10%(質(zhì)量分數(shù))草酸溶液電解腐蝕(5V,10s),利用MEF-3型金相顯微鏡(OM)觀察微觀組織。按照GB/T 2039-1997標準制作蠕變和松弛實驗試樣,其中蠕變試樣直徑和標距長度分別為5mm和25mm,松弛試樣直徑和標距長度分別為5mm和30mm。

        蠕變持久實驗采用RD-50電子式持久蠕變試驗機,控制溫差不超過±1℃。采用對裝光柵測微傳感器測量變形量,精度控制小于±0.0002mm。實驗溫度為871℃,實驗應(yīng)力分別為50,55,60,65,70MPa。應(yīng)力松弛實驗采用SHIMADZU液壓伺服疲勞試驗機,外掛保溫爐溫度控制在±3℃范圍內(nèi)。采用位移控制應(yīng)變加載,應(yīng)變速率為0.0025s-1。在871℃和927℃下,進行了預應(yīng)變分別為0.4%,0.8%,1.2%,1.6%,2.0%,2.5%和3.0%的松弛實驗,以分析預應(yīng)變對實驗結(jié)果穩(wěn)定性的影響。之后采用數(shù)據(jù)穩(wěn)定性較好的2%預應(yīng)變,對同一根試樣依次進行871,900,927,960℃的應(yīng)力松弛實驗,實驗流程符合GB/T 10120-1996標準要求。

        2 結(jié)果與分析

        2.1 微觀組織轉(zhuǎn)變

        圖1為連退爐管材的顯微組織形貌。圖1(a),(b)為原始組織形貌,其由奧氏體基體和共晶組織組成。共晶組織主要分布在樹枝晶間,枝晶間碳化物為層狀或骨架狀,基體中有零星細小的析出相,與其他HP系列合金[21-23]相似。圖1(c),(d)為材料P1的顯微組織形貌,其晶界或枝晶界上的第二相多為網(wǎng)狀,部分為鏈狀或塊狀,表示該材料組織在服役后發(fā)生了明顯的粗化。

        圖1 連退爐管的顯微組織 (a),(b)原始組織;(c),(d)P1Fig.1 Microstructures of the radiant tube (a),(b)as-received material;(c),(d)P1

        2.2 應(yīng)力松弛實驗及松弛蠕變曲線的轉(zhuǎn)換

        應(yīng)力松弛實驗是在恒定應(yīng)變量下獲取應(yīng)力與時間關(guān)系,不同的預應(yīng)變及溫度均對松弛行為產(chǎn)生一定影響。871℃和927℃時,不同預應(yīng)變對應(yīng)力松弛-時間關(guān)系的影響如圖2所示??芍瑫r刻的剩余松弛應(yīng)力隨著預應(yīng)變的增大而升高,當預應(yīng)變達到2.0%后,預應(yīng)變對剩余松弛應(yīng)力的影響作用較小,松弛曲線近乎一致,應(yīng)力松弛達到穩(wěn)定狀態(tài)。另外,不同溫度下應(yīng)力松弛的穩(wěn)定狀態(tài)也用所差異。這種松弛行為與材料屬性和溫度相關(guān),溫度和材料的差異決定材料的松弛穩(wěn)定狀態(tài)的不同[9,24]。 本工作選擇2.0%預應(yīng)變量進行不同溫度下松弛行為的對比(圖3)。在圖3(a)中,初始應(yīng)力隨溫度升高而降低,剩余應(yīng)力隨著時間延長而降低,約1000s后,松弛開始進入穩(wěn)態(tài)松弛階段。不同溫度間應(yīng)力松弛極限存在差異,主要是由于溫度越高熱激活過程的位錯運動動力越大,以至于松弛極限應(yīng)力越低[25]。

        圖2 不同預應(yīng)變下應(yīng)力松弛-時間關(guān)系曲線 (a)871℃;(b)927℃Fig.2 Stress relaxation-time curves with various pre-strains (a)871℃;(b)927℃

        圖3 不同溫度時應(yīng)力松弛-時間(a)及松弛蠕變速率-應(yīng)力(b)曲線Fig.3 Stress relaxation-time(a)and relaxation strain rate-stress(b) curves at different temperatures

        應(yīng)力松弛過程中總應(yīng)變保持恒定,隨時間變化部分彈性應(yīng)變逐漸轉(zhuǎn)變?yōu)樗苄詰?yīng)變,并引起應(yīng)力下降,其模型為:

        (1)

        式中:εe為彈性應(yīng)變;εp為塑性應(yīng)變;ε0為總應(yīng)變;σ為應(yīng)力;E為彈性模量;C為常數(shù)。

        將式(1)對時間微分即可得到松弛蠕變方程,即

        (2)

        通過式(2),將應(yīng)力松弛-時間曲線轉(zhuǎn)換為松弛蠕變速率-應(yīng)力關(guān)系曲線,如圖3(b)所示,其變化規(guī)律與松弛行為相對應(yīng)。蠕變速率隨溫度升高而增大,且隨著應(yīng)力的降低而減小??梢钥闯觯谳^短時間內(nèi)松弛實驗涵蓋了10-4~101h-1的蠕變速率信息。

        2.3 基于應(yīng)力松弛實驗和蠕變持久實驗的高溫持久性能評估

        2.3.1 基于應(yīng)力松弛實驗的高溫持久性評估

        圖4 不同溫度時應(yīng)力-RTP參數(shù)的關(guān)系Fig.4 Relationship between stress and RTP parameter at different temperatures

        由于松弛實驗不能直接反應(yīng)斷裂時間,采用松弛實驗預測壽命時需要將松弛蠕變信息與斷裂時間數(shù)據(jù)關(guān)聯(lián)起來。相同應(yīng)力下松弛蠕變速率與斷裂時間的關(guān)系曲線如圖5所示??梢钥吹剑p對數(shù)條件下的松弛蠕變速率與斷裂時間服從較好的線性關(guān)系。

        圖5 斷裂時間-松弛蠕變速率關(guān)系曲線Fig.5 Rupture time-relaxation strain rate curve

        2.3.2 基于蠕變持久實驗的持久性能評估

        采用蠕變持久實驗分析材料的持久性能時,目前通常采用TTP參數(shù)法[4,26]。Manson-Harford關(guān)系作為典型的TTP參數(shù)法之一[27],其表達式為:

        (3)

        式中:tr為斷裂時間(h);T為實驗溫度(K);lgta和Ta為材料常數(shù)。根據(jù)報道[4],25Cr35Ni耐熱鋼的典型lgta和Ta值分別為20.465和0。由此,服役近2年的材料P1的Mason-Haferd參數(shù)可表示為PM-H(σ)=(lgtr-20.465)/(T-0)。

        采用PM-H(σ)參數(shù)將蠕變持久數(shù)據(jù)歸一化到一條數(shù)據(jù)帶中,如圖6所示。隨著應(yīng)力的減小,斷裂時間逐漸增大,材料P1在蠕變持久性能上也呈現(xiàn)明顯的下降趨勢,圖6中同時列出了前期該管材的持久性能[20],可以看到兩者處于同一數(shù)據(jù)帶中,均位于未服役材料持久性能曲線的下方,其偏離程度表征了材料高溫持久性能劣化的程度[28]。結(jié)合圖1組織分析,對于未服役的材料,分布在晶界或枝晶界上的骨架狀碳化物對高溫下晶界的滑移起到阻礙作用,從而提高了材料高溫下的晶界強度[29],同時晶內(nèi)彌散分布的細小碳化物顆粒能夠阻礙晶內(nèi)位錯的運動,因而提高材料的抗蠕變特性。經(jīng)過高溫長時服役后,材料組織發(fā)生老化損傷,沿晶界的骨架結(jié)構(gòu)消失,晶界碳化物聚集長大呈網(wǎng)鏈狀[30],晶內(nèi)第二相粒子分布不均勻并發(fā)生粗化,因此相對于原始材料,服役后材料持久性能明顯下降。

        圖6 服役后材料P1的持久性能及主曲線Fig.6 Experimental data and the master curve of as-serviced P1 material

        主曲線的擬合需根據(jù)數(shù)據(jù)分布的特點,選擇合適的方程來關(guān)聯(lián),為使擬合曲線能反映出性能劣化的總體變化趨勢,采用式(4)進行回歸分析,擬合主曲線如圖6中虛線所示,決定系數(shù)為0.979。若給定爐管服役的應(yīng)力及溫度,即可根據(jù)主曲線外推出服役的壽命。

        lgσ=a+b×PM-H(σ)+c×exp(d×PM-H(σ))

        (4)

        式中:a,b,c,d為擬合系數(shù),為常數(shù)。

        2.3.3 兩種方法持久壽命評估結(jié)果的對比

        通過圖4的應(yīng)力-RTP參數(shù)關(guān)系和圖5所示的斷裂時間-松弛蠕變速率關(guān)系方程,可實現(xiàn)通過應(yīng)力松弛實驗數(shù)據(jù)預測不同溫度和應(yīng)力條件下的蠕變持久壽命。圖7為基于SRT與CRT預測持久壽命的對比?!癝RT-cul”分別代表由松弛實驗數(shù)據(jù)預測的871℃和927℃持久壽命曲線??梢钥吹?,應(yīng)力相對較低時,由松弛數(shù)據(jù)預測的斷裂時間略高于實驗值,應(yīng)力相對較高時則略低于實驗結(jié)果。除了上述方法外,本工作也對目前的“以松弛蠕變速率達到規(guī)定應(yīng)變的時間作為失效時間”的方法進行對比分析。本文將“規(guī)定應(yīng)變”分別設(shè)為0.15和0.3,以其除以松弛蠕變速率得到圖7中所示的預測曲線SRT-0.15和SRT-0.3??芍?,其與未服役材料主曲線的變化趨勢一致,且實驗數(shù)據(jù)點分布在兩條預測曲線間。871℃時,高應(yīng)力的主曲線與應(yīng)變量為0.3的預測曲線相符合,在低應(yīng)力時傾向于應(yīng)變量為0.15的曲線,但927℃時的預測曲線此傾向不明顯。根據(jù)上述兩種情況下的應(yīng)用,可見短時應(yīng)力松弛實驗可以作為材料高溫持久性能分析的參考方法。

        圖7 基于SRT與CRT預測持久壽命的對比 (a)871℃;(b)927℃Fig.7 Comparison on the creep rupture life predicted based on SRT and CRT(a)871℃;(b)927℃

        3 結(jié)論

        (1)服役近2年的連退爐輻射管發(fā)生嚴重的劣化,材料晶界處第二相明顯趨近于網(wǎng)鏈狀,且奧氏體基體內(nèi)的二次碳化物粗化明顯。材料服役后蠕變高溫持久性能降低,明顯偏離原始材料持久性能主曲線。

        (2)在871℃和927℃,當松弛的預應(yīng)變量小于2%時,應(yīng)力松弛隨預應(yīng)變增加而增大。當松弛的預應(yīng)變量超過2%時,松弛曲線基本穩(wěn)定,對預應(yīng)變量不敏感。

        (3)利用松弛蠕變速率-溫度綜合參數(shù),可以歸一化不同應(yīng)力和溫度下的松弛蠕變速率,從而開展數(shù)據(jù)外推。結(jié)合蠕變速率-斷裂時間的關(guān)系,即可由松弛實驗及一定量的蠕變持久實驗實現(xiàn)壽命評估?;谒沙趯嶒灥念A測結(jié)果與實驗結(jié)果吻合良好。

        [1] 馬洛寧,王天佑,張崢.短時氧化對定向凝固高溫合金不同取向腐蝕性能的影響[J].材料工程,2016,44(7):78-87.

        MA L N,WANG T Y,ZHANG Z.Influence of short-time oxidation on corrosion properties of directionally solidified superalloys with different orientations[J].Journal of Materials Engineering,2016,44(7):78-87.

        [2] 左平,魏大盛,王延榮.FGH95粉末高溫合金裂紋閉合效應(yīng)及裂紋擴展特性研究[J].材料工程,2015,43(8):56-61.

        ZUO P,WEI D S,WANG Y R.Crack closure behavior and crack propagation characteristic of FGH95 powder metallurgy superalloy[J].Journal of Materials Engineering,2015,43(8):56-61.

        [3] 楊萬鵬,胡本芙,劉國權(quán),等.高性能鎳基粉末高溫合金中γ′相形態(tài)致鋸齒晶界形成機理研究[J].材料工程,2015,43(6):7-13.

        YANG W P,HU B F,LIU G Q,et al.Formation mechanism of serrated grain boundary caused by different morphologies of γ′ phase in a high-performance nickel-based powder metallurgy superalloy[J].Journal of Materials Engineering,2015,43(6):7-13.

        [4] 趙杰.耐熱鋼持久性能的統(tǒng)計分析及可靠性預測[M].北京: 科學出版社,2011.

        [5] RAY A K,KUMAR S,KRISHNA G,et al.Microstructural studies and remnant life assessment of eleven years service exposed reformer tube[J].Materials Science and Engineering: A,2011,529(1):102-112.

        [6] SHRESTHA T,BASIRAT M,CHARIT I,et al.Creep rupture behavior of Grade 91 steel[J].Materials Science and Engineering:A,2013,565:382-391.

        [7] 江馮,李萍,程從前,等.θ投影法和復合模型在預測耐熱鋼蠕變行為的比較分析[J].材料工程,2015,43(7):87-92.

        JIANG F,LI P,CHENG C Q,et al.Comparative analysis of creep behavior prediction of heat resistant steel based on theta projection and composite model[J].Journal of Materials Engineering,2015,43(7):87-92.

        [8] SINHA N K,SINHA S.Stress relaxation at high temperatures and the role of delayed elasticity[J].Materials Science and Engineering:A,2005,393(1-2):179-190.

        [9] LIU P,ZONG Y,SHAN D,et al.Relationship between constant-load creep,decreasing-load creep and stress relaxation of titanium alloy[J].Materials Science and Engineering:A,2015,638:106-113.

        [10] 湛利華,陽凌.時效蠕變與時效應(yīng)力松弛行為轉(zhuǎn)換關(guān)系[J].塑性工程學報,2013,20(3):126-131.

        ZHAN L H,YANG L.Research on conversion relationship between aging creep and aging stress relaxation[J].Journal of Plasticity Engineering,2013,20(3):126-131.

        [11] WOODFORD D A,WERESZCZAK A A,BAKKERW T.Stress relaxation testing as a basis for creep analysis and design of silicon nitride[J].Journal of Engineering for Gas Turbines and Power,2000,122(4):206-211.

        [12] WOODFORD D A.Stress relaxation testing of service exposed IN738 for creep strength evaluation[J].Journal of Engineering for Gas Turbines and Power,2000,122(7):451-456.

        [13] RAO G R,GUPTA O P,PRADHAN B.Application of stress relaxation testing in evaluation of creep strength of a tungsten-alloyed 10% Cr cast steel[J].International Journal of Pressure Vessels and Piping,2011,88(2):65-74.

        [14] BOSE S C,SINGH K,JAYARAMAN G.Application of stress relaxation test methodology for predicting creep life of a large steam turbine rotor steel (1CrMoV)[J].Journal of Testing and Evaluation,2003,31(3):183-195.

        [15] SINHA N K,SINHA S.Stress relaxation at high temperatures and the role of delayed elasticity[J].Materials Science and Engineering:A,2005,393(1-2):179-190.

        [16] GUO J Q,SHI H C,MENG W Z.Prediction methodology of creep performance from stress relaxation measurements[J].Applied Mechanics and Materials,2013,401-403:920-923.

        [17] BOSE S C,SINGH K,SWAMINATHAN J,et al.Prediction of creep life of X10CrMoVNbN-91 (P-91) steel through short term stress relaxation test methodology[J].Materials Science and Technology,2004,20(10):1290-1296.

        [18] DALEO J A,ELLISION K A,WOODFORD D A.Application of stress relaxation testing in metallurgical life assessment evaluations of GTD111 alloy turbine buckets[J].Journal of Engineering for Gas Turbines and Power,1999,12(1):129-137.

        [19] WOODFORD D A.Advances in the use of stress relaxation data for design and life assessment in combustion turbines[J].JSME International Journal,2002,45(1):98-103.

        [20] ZHU Z,CHENG C,ZHAO J,et al.High temperature corrosion and microstructure deterioration of KHR35H radiant tubes in continuous annealing furnace[J].Engineering Failure Analysis,2012,21:59-66.

        [21] SHI S,LIPPOLD J C.Microstructure evolution during service exposure of two cast,heat-resisting stainless steels—HP-Nb modified and 20-32Nb[J].Materials Characterization,2008,59(8):1029-1040.

        [22] De ALMEIDA L H,RIBEIRO A F,Le MAY I.Microstructural characterization of modified 25Cr-35Ni centrifugally cast steel furnace tubes[J].Materials Characterization,2002,49(3):219-229.

        [23] NUNES F C,De ALMEIDA L H,DILLE J,et al.Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels[J].Materials Characterization,2007,58(2):132-142.

        [24] CHANDLER H D.A comparison between steady state creep and stress relaxation in copper[J].Materials Science and Engineering:A,2010,527(23):6219-6223.

        [25] 曹鐵山,方旭東,程從前,等.應(yīng)力松弛方法研究2種HR3C耐熱鋼的高溫蠕變行為[J].金屬學報,2014,50(11):1343-1349.

        CAO T S,FANG X D,CHENG C Q,et al.Creep behavior of two kinds of HR3C heat resistant steels based on stress relaxation tests[J].Acta Metallurgica Sinica,2014,50(11):1343-1349.

        [26] SWAMINATHAN J,GUGULOTH K,GUNJAN M,et al.Failure analysis and remaining life assessment of service exposed primary reformer heater tubes[J].Engineering Failure Analysis,2008,15(4):311-331.

        [27] 趙杰,李東明,方園園.Manson-Haferd常數(shù)的選擇及在蠕變持久壽命預測中的應(yīng)用[J].材料工程,2009,(6):30-34.

        ZHAO J,LI D M,FANG Y Y.Selection of Manson-Haferd constants and its application on rupture life prediction[J].Journal of Materials Engineering,2009,(6):30-34.

        [28] ZHAO J,HAN S Q,XIE S M,et al.Remaining life assessment of a 1Cr5Mo steel by using Z-parameter method[J].Acta Metallurgica Sinica(English Letters),2009,17(4):601-605.

        [29] 郭建亭.高溫合金材料學 (上) 應(yīng)用基礎(chǔ)理論[M].北京:科學出版社,2008.

        [30] UL-HAMID A,TAWANCY H M,MOHAMMED A I,et al.Failure analysis of furnace radiant tubes exposed to excessive temperature[J].Engineering Failure Analysis,2006,13(6):1005-1021.

        (本文責編:王 晶)

        High Temperature Performance Evaluation of As-serviced 25Cr35Ni Type Heat-resistantSteel Based on Stress Relaxation Tests

        XU Jun,LI Hui-fang,CHENG Cong-qian,CAO Tie-shan,ZHAO Jie

        (School of Materials Science and Engineering,Dalian University of Technology,Dalian 116024,Liaoning,China)

        Based on an as-serviced 25Cr35Ni type steel, the high temperature property evaluation using stress relaxation test(SRT) method and residual life prediction were studied. The results show that creep rupture property decreases because of the formation of network carbides along grain boundaries and coarsening of secondary carbides in the austenitic matrix. Based on the relationship of stress relaxation strain rate curves obtained at different temperatures, and the extrapolation equation of stress relaxation rate-rupture time, it is capable to perform residual life evaluation by combining SRT data and a small amount of creep rupture test(CRT). Good agreement is observed for predicting results performed by current method and traditional method.

        25Cr35Ni type heat-resistant steel;stress relaxation;life prediction;TTP parameter method

        10.11868/j.issn.1001-4381.2015.001284

        TG142.73

        A

        1001-4381(2017)08-0096-06

        國家高技術(shù)研究發(fā)展計劃(863計劃)資助項目(2015AA034402);山西煤基低碳聯(lián)合基金重點資助項目(U1610256)

        2015-10-26;

        2017-03-03

        趙杰(1964-),男,教授,博士,研究方向為材料強度及可靠性,聯(lián)系地址:大連理工大學材料科學與工程學院(116024),E-mail:jiezhao@dlut.edu.cn

        猜你喜歡
        持久性服役壽命
        人類壽命極限應(yīng)在120~150歲之間
        中老年保健(2021年8期)2021-12-02 23:55:49
        湖北省持久性有機物(POPs)產(chǎn)排特性分析
        化工管理(2021年7期)2021-05-13 00:44:56
        具有授粉互惠關(guān)系的非自治周期植物傳粉系統(tǒng)的持久性
        倉鼠的壽命知多少
        材料服役行為研究:助力國家名片——材料服役行為分論壇側(cè)記
        馬烈光養(yǎng)生之悟 自靜其心延壽命
        華人時刊(2018年17期)2018-12-07 01:02:20
        人類正常壽命為175歲
        奧秘(2017年12期)2017-07-04 11:37:14
        2015年中考熱身單項選擇填空精練100題
        一類離散Schoner競爭模型的持久性
        持久性發(fā)疹性斑狀毛細血管擴張一例
        无码天堂亚洲国产av麻豆| 国产成人无码精品久久久露脸| 精品国产乱码久久久久久影片| 国产在线观看入口| 精品少妇人妻久久免费| 日本视频一区二区三区在线观看| 亚洲女同一区二区| 亚洲欧美国产双大乳头| 亚洲AV成人无码天堂| 在线国产丝袜自拍观看| 十八禁视频网站在线观看| 熟妇人妻无码中文字幕| 99久久精品一区二区三区蜜臀| 国产精品一区二区三区三| 制服丝袜一区二区三区| 日韩高清在线观看永久| 思思99热| 中文字幕熟女激情50路| 亚洲成a人v欧美综合天堂| 丰满的少妇xxxxx青青青| 色婷婷久久免费网站| 亚洲国产精品久久久婷婷| 久久婷婷五月国产色综合| 国产美女在线精品免费观看网址 | 亚洲人妻御姐中文字幕| 中文字幕日韩精品有码视频| 成人网站免费大全日韩国产| 偷拍区亚洲区一区二区| 国产高清一区二区三区三州| 日韩精品极品视频在线观看免费 | 中文精品久久久久中文| 在线国产丝袜自拍观看| 大地资源中文第3页| 78成人精品电影在线播放| 91国内偷拍一区二区三区| 国产精品国产亚洲精品看不卡| 日日碰狠狠添天天爽超碰97| 国产欧美亚洲精品第二区首页| 国产精品视频白浆免费视频| 国产男小鲜肉同志免费| 久久免费区一区二区三波多野在|