亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        燃煤電廠細(xì)顆粒物排放粒徑分布特征

        2017-08-09 00:42:46武亞鳳陳建華蔣靖坤鄧建國(guó)馬子珍鐘連紅中國(guó)環(huán)境科學(xué)研究院環(huán)境標(biāo)準(zhǔn)研究所北京000清華大學(xué)環(huán)境學(xué)院北京00084北京市環(huán)境保護(hù)科學(xué)研究院北京0007
        環(huán)境科學(xué)研究 2017年8期
        關(guān)鍵詞:燃用電除塵器冷器

        武亞鳳, 陳建華*, 蔣靖坤, 鄧建國(guó), 馬子珍, 鐘連紅.中國(guó)環(huán)境科學(xué)研究院環(huán)境標(biāo)準(zhǔn)研究所, 北京 000 .清華大學(xué)環(huán)境學(xué)院, 北京 00084 .北京市環(huán)境保護(hù)科學(xué)研究院, 北京 0007

        燃煤電廠細(xì)顆粒物排放粒徑分布特征

        武亞鳳1, 陳建華1*, 蔣靖坤2, 鄧建國(guó)2, 馬子珍2, 鐘連紅31.中國(guó)環(huán)境科學(xué)研究院環(huán)境標(biāo)準(zhǔn)研究所, 北京 100012 2.清華大學(xué)環(huán)境學(xué)院, 北京 100084 3.北京市環(huán)境保護(hù)科學(xué)研究院, 北京 100037

        目前細(xì)顆粒物區(qū)域污染已成為普遍現(xiàn)象,控制燃煤電廠細(xì)顆粒物的排放是控制大氣中細(xì)顆粒物的重要途徑之一,而了解燃煤電廠細(xì)顆粒物的排放粒徑分布及其形成的可能原因和影響因素顯得尤為重要. 針對(duì)浙江某電廠660 MW燃煤機(jī)組,在120、100、90和85 ℃四種不同運(yùn)行工況下,采用Dekati ELPI+對(duì)電除塵器入口和出口以及煙囪60 m橫斷面處煙塵進(jìn)行多平臺(tái)同步采樣測(cè)試,以研究該電廠所排放細(xì)顆粒物的粒徑分布特征、不同工況下細(xì)顆粒物的排放濃度及其變化規(guī)律. 結(jié)果表明:①不同工況下,電除塵器出口和煙囪60 m橫斷面處顆粒物數(shù)濃度都主要集中在亞微米態(tài)(粒徑<1 μm),并隨粒徑增大而數(shù)濃度快速減小. ②隨著煙冷器出口煙氣溫度的降低,煙氣經(jīng)過除塵裝置后,無論是顆粒數(shù)濃度還是質(zhì)量濃度均有一定程度的下降,但當(dāng)煙氣溫度降至90 ℃時(shí),繼續(xù)降溫對(duì)電除塵器除塵效果的影響基本趨于恒定. ③無論燃用設(shè)計(jì)煤還是校驗(yàn)煤,當(dāng)煙冷器出口煙氣溫度相對(duì)較低時(shí),經(jīng)脫硫后積聚模態(tài)顆粒物質(zhì)量濃度較除塵后有明顯增加;而煙氣溫度較高時(shí),呈現(xiàn)出脫硫后較除塵后粗模態(tài)顆粒物質(zhì)量濃度增長(zhǎng)的現(xiàn)象. ④當(dāng)原煙氣稀釋倍數(shù)從7倍增至10倍時(shí),6~27 nm粒徑段顆粒物數(shù)濃度呈指數(shù)倍增長(zhǎng),說明稀釋過程主要影響納米級(jí)顆粒物的數(shù)濃度. ⑤燃用設(shè)計(jì)煤,煙冷器出口煙氣溫度90 ℃時(shí),電除塵器對(duì)PM1的去除效果最明顯為63.9%~99.8%,可見降低電除塵器入口運(yùn)行煙溫,可促進(jìn)其對(duì)亞微米態(tài)顆粒物的捕集率.

        細(xì)顆粒物(PM2.5); 粒徑分布; 稀釋比; 煙冷器

        近年來為有效控制電廠燃煤鍋爐細(xì)顆粒物和氣態(tài)污染物的排放,包括選擇性催化還原脫硝(SCR)、高效靜電除塵器以及濕法脫硫裝置在內(nèi)的煙氣控制設(shè)備已得到普遍使用[1- 3]. 不僅控制了煙氣中SO2和NOx的濃度含量,以減少后續(xù)二次顆粒物的潛在生成,同時(shí)對(duì)排放的一次顆粒物具有一定去除和淋洗作用[4]. 但在脫硫過程中會(huì)同時(shí)增加水溶性PM2.5的排放,從而大幅影響細(xì)顆粒物的化學(xué)組分以及粒徑分布特征. Meij[5]對(duì)荷蘭大型燃煤電廠濕法脫硫后煙氣顆粒物來源分析表明,其中40%來源于飛灰,10%為石膏顆粒,50%為飽和的石膏蒸汽液滴,其中氣相蒸汽液滴一般在熱交換過程中進(jìn)一步轉(zhuǎn)化為氣溶膠顆粒. 王琿等[6]研究表明,煙氣經(jīng)過WFGD,出口煙氣中新增的石灰石與石膏顆粒分別占顆粒物質(zhì)量的47.5%和7.9%.

        細(xì)顆粒物中典型的組分水溶性離子濃度含量與煙氣溫度、含氧量有密切關(guān)系[7]. 而這些組分通常大部分存在于可凝結(jié)顆粒物中. 胡月琪等[8]研究北京燃煤電廠顆粒物排放特征,燃煤電廠煙氣凈化工藝設(shè)施為低氮燃燒+SCR脫硝+靜電除塵+布袋除塵+石灰石石灰-石膏濕法脫硫,脫硫后煙氣與省煤器后的旁路熱煙氣進(jìn)行熱交換,使煙氣溫度提高至88 ℃,對(duì)原煙氣稀釋20倍,測(cè)試結(jié)果表明,一次可過濾顆粒物(FPM)所占比例較低為7.4%,而可凝結(jié)顆粒物(CPM)占總顆粒物濃度比例高達(dá)92.6%,可見針對(duì)高溫?zé)煔?,稀釋過程中會(huì)生成大量的可凝結(jié)顆粒物,而該研究中CPM濃度占總顆粒物濃度比例相對(duì)較高,也可能與EPA202采集可凝結(jié)顆粒物的方法有關(guān),該方法捕集了大量在實(shí)際環(huán)境空氣中無法凝結(jié)的SO2氣體. 總之,燃煤電廠細(xì)顆粒物的排放與燃燒工況以及后續(xù)控制裝置均有密切關(guān)系.

        徐飛等[9]針對(duì)一臺(tái)440 th大型燃煤循環(huán)流化床鍋爐,研究了煤質(zhì)、鍋爐負(fù)荷、n(Ca)n(S)以及含氧量等運(yùn)行參數(shù)對(duì)顆粒物排放特征的影響. 劉小偉等[10]研究了燃燒過程中不同含氧量對(duì)可吸入顆粒物形成以及排放特征的影響. DU等[11]采用低壓撞擊器研究660 MW煤粉爐鍋爐負(fù)荷對(duì)細(xì)顆粒物排放特征的影響. Nielsen等[12]采用多平臺(tái)采樣方法研究了電廠諸多影響顆粒物生成的過程. 從燃煤電廠機(jī)組規(guī)模影響來看,單臺(tái)容量在300 MW以下的燃煤機(jī)組是粗顆粒物(PM>10)的主要來源,而在300 MW以上的燃煤機(jī)組對(duì)PM2.5排放貢獻(xiàn)(64.6%)較大[13],可見靜電除塵器和濕法脫硫裝置對(duì)細(xì)顆粒物特別是PM1的去除效果并不理想,因此電廠燃煤鍋爐仍是環(huán)境空氣中細(xì)顆粒物的主要來源之一. 鑒于細(xì)顆粒物對(duì)大氣環(huán)境和人體健康的危害性,研究燃煤電廠細(xì)顆粒物的排放特征及影響因素,對(duì)制訂科學(xué)合理的顆粒物控制政策具有重要意義.

        國(guó)內(nèi)外學(xué)者針對(duì)火電廠顆粒物的排放特征已從諸多角度進(jìn)行了詳細(xì)研究,但目前對(duì)不同運(yùn)行煙氣溫度下,各除塵設(shè)備前后顆粒物的排放特征研究相對(duì)較少,為了解和掌握單臺(tái)660 MW超超臨界機(jī)組運(yùn)行煙氣溫度以及燃用煤種對(duì)細(xì)顆粒物粒徑排放特征的影響方式,通過調(diào)節(jié)煙冷器,更換燃用煤種,分別對(duì)不同工況下靜電除塵器前后以及煙囪60 m橫斷面處煙氣顆粒物粒徑分布特征進(jìn)行比對(duì)研究,以期為掌握我國(guó)大容量燃煤源細(xì)顆粒物排放特征奠定基礎(chǔ).

        1 測(cè)試電廠和儀器設(shè)備

        測(cè)試電廠為浙江某電廠一臺(tái)660 MW高效超超臨界燃煤機(jī)組,機(jī)組類型:煤粉爐,煙囪高度200 m. 汽機(jī)入口蒸汽參數(shù)28 MPa620 ℃. 后續(xù)采用國(guó)際先進(jìn)的低低溫電除塵加高效脫硫除塵方案進(jìn)行煙氣治理. 測(cè)試使用的儀器設(shè)備為Dekati ELPI+和DI1000稀釋系統(tǒng). 采樣期間,燃煤鍋爐運(yùn)行負(fù)荷、燃燒狀態(tài)及煙氣凈化系統(tǒng)運(yùn)行狀態(tài)保持穩(wěn)定,通過調(diào)節(jié)ELPI+限流孔p=40.0 mbar(1 mbar=100 Pa),采樣流量控制在10 Lmin.

        2 樣品采集方案

        2.1 采樣工況

        采樣過程中,燃煤鍋爐機(jī)組負(fù)荷為660 MW. 根據(jù)灰分含量不同,燃用煤種分為設(shè)計(jì)煤和校驗(yàn)煤,經(jīng)煤質(zhì)分析,兩種煤的全硫含量相等均為0.56%. 燃用設(shè)計(jì)煤種下煙冷器出口煙氣溫度分為85、90、100、120 ℃;燃用校驗(yàn)煤煙冷器出口煙氣溫度分為90和120 ℃,見表1. 煙冷器[14]即低溫省煤器裝置,利用排煙余熱加熱凝結(jié)水,加熱后的凝結(jié)水返回低壓加熱器,從而提高機(jī)組效率,降低耗煤,同時(shí)又降低煙氣溫度,提高除塵效率. 實(shí)驗(yàn)用煤煤質(zhì)分析見表2.

        表1 不同采樣工況變化

        表2 燃煤電廠設(shè)計(jì)煤和校驗(yàn)煤煤質(zhì)

        2.2 測(cè)試流程及采樣點(diǎn)位

        針對(duì)設(shè)計(jì)煤和校驗(yàn)煤這兩種煤質(zhì),在對(duì)應(yīng)工況下,采用Dekati ELPI+于電除塵器前后以及煙囪60 m 橫斷面3個(gè)采樣點(diǎn)位進(jìn)行細(xì)顆粒物質(zhì)量濃度和粒數(shù)濃度同步測(cè)試,測(cè)試流程見圖1.

        圖1 測(cè)試流程及采樣點(diǎn)位Fig.1 Testing process and sample points

        2.3 樣品采集及計(jì)算公式

        (1)

        式中:ηi為除塵設(shè)備i粒徑段的分級(jí)效率,%;Cci為除塵設(shè)備出口煙道內(nèi)i粒徑段顆粒物濃度,mgm3;Cji為除塵設(shè)備入口煙道內(nèi)i粒徑段顆粒物濃度,mgm3;i為ELPI+各收集板捕集顆粒物對(duì)應(yīng)的粒粒徑段.

        2.4 質(zhì)量保證與質(zhì)量控制

        采樣過程中,煙氣進(jìn)入稀釋系統(tǒng)前,對(duì)粒徑大于10 μm的顆粒物進(jìn)行預(yù)切割,避免大顆粒物在稀釋通道內(nèi)因重力沉降、熱遷移擴(kuò)散等影響稀釋混合效果. 為防止被污染,樣品采集結(jié)束后,采樣膜放入干凈的膜盒中,用鋁箔紙進(jìn)行包裹,帶回恒溫恒濕實(shí)驗(yàn)室進(jìn)行恒重及后續(xù)的稱量,并與空白膜進(jìn)行對(duì)比.

        3 結(jié)果與討論

        3.1 不同工況下脫硫塔前、后顆粒物粒徑分布變化

        3.1.1 不同工況下脫硫塔前顆粒物粒徑分布

        燃用設(shè)計(jì)煤在不同工況下電除塵器后顆粒物數(shù)濃度和質(zhì)量濃度粒徑譜分布見圖2. 由圖2可知,當(dāng)煙冷器全部退出運(yùn)行后,其出口煙氣溫度約120 ℃,除塵后即脫硫塔入口顆粒物數(shù)濃度和質(zhì)量濃度均相對(duì)較高. 顆粒物數(shù)濃度主要集中在1 μm以下[16],并隨粒徑增大而快速減小,在1 μm處粒數(shù)濃度有增加趨勢(shì). LIU等[17]研究也表明,燃煤電廠鍋爐排放的核模態(tài)顆粒物數(shù)濃度占主導(dǎo)地位. 另外,由圖2可知,煙冷器出口煙溫為120 ℃工況下,粒徑小于1 μm的顆粒物質(zhì)量濃度呈雙峰分布,峰值在0.13和0.5 μm處. 隨著溫度降低,無論是顆粒物數(shù)濃度還是質(zhì)量濃度都有明顯的下降,這與文獻(xiàn)報(bào)道[18]一致,但顆粒物數(shù)濃度仍主要集中在亞微米態(tài). 對(duì)日本不少大型火電廠研究表明:煙氣溫度從125 ℃冷卻到85 ℃,其飛灰比電阻可從1012Ω·cm降至1010Ω·cm,這樣可大幅提高電除塵器的收集效率[19],從而佐證了筆者所得結(jié)論. 由圖2可以看出,當(dāng)煙冷器出口煙氣溫度分別為90和85 ℃時(shí),除塵后顆粒物的數(shù)濃度粒徑分布基本一致;且當(dāng)煙溫為85 ℃時(shí),顆粒物質(zhì)量濃度在粒徑>0.3 μm范圍內(nèi)反而增加. 可推測(cè)煙冷器出口運(yùn)行煙溫降低到一定程度,電除塵器對(duì)顆粒物的去除效果基本趨于恒定. 但對(duì)于煙冷器布置在電除塵器入口前這種布置方式最大的風(fēng)險(xiǎn)就是腐蝕,因?yàn)橥ǔ=?jīng)過煙冷器后煙氣溫度基本降低到酸露點(diǎn)溫度,煙氣中SO3極易冷凝為硫酸液滴. 雖然經(jīng)過電除塵器的高塵區(qū),煙塵中含有大量的堿性物質(zhì),會(huì)與硫酸液滴發(fā)生中和反應(yīng)生成硫酸鹽顆粒物,但中和反應(yīng)的徹底性并未得到考證.

        圖2 燃用設(shè)計(jì)煤除塵后PM10數(shù)濃度和質(zhì)量濃度粒徑譜分布Fig.2 Number and mass concentration size distributions of PM10 outlet of electrostatic precipitator when designed coal used

        燃用校驗(yàn)煤煙冷器出口分別為90和120 ℃煙溫下,除塵后煙氣顆粒物數(shù)濃度和質(zhì)量濃度粒徑譜分布如圖3所示. 可以看出煙氣溫度為90 ℃時(shí),顆粒物的數(shù)濃度和質(zhì)量濃度相對(duì)較低. 高溫?zé)煔饨?jīng)過煙冷器后,隨著溫度的降低,煙氣體積變小,飛灰比電阻降低,大幅提高電除塵器對(duì)0.1~1 μm粒徑段顆粒物的收集效率,與燃用設(shè)計(jì)煤種有類似的去除效果. 燃用校驗(yàn)煤煙冷器出口90 ℃工況下,顆粒物的質(zhì)量濃度在亞微米模態(tài)也呈雙峰分布,峰值分別為0.21 μm附近、0.5 μm附近;但在粗模態(tài)有兩個(gè)弱峰.

        3.1.2 不同工況下脫硫塔后顆粒物粒徑分布

        圖3 燃用校驗(yàn)煤除塵后PM10數(shù)濃度和質(zhì)量濃度粒徑譜分布Fig.3 Number and mass concentration size distributions of PM10 outlet of electrostatic precipitator when checked coal used

        圖4 燃用設(shè)計(jì)煤脫硫后PM10數(shù)濃度和質(zhì)量濃度粒徑譜分布Fig.4 Number and mass concentration size distributions of PM10 after the desulfurization device when designed coal used

        圖5 燃用校驗(yàn)煤脫硫后PM10數(shù)濃度和質(zhì)量濃度粒徑譜分布Fig.5 Number and mass concentration size distribution of PM10 after the desulfurization device when checked coal used

        燃用設(shè)計(jì)煤和燃用校驗(yàn)煤脫硫后數(shù)濃度和質(zhì)量濃度粒徑譜分布分別見圖4、5. 由圖4、5可知,無論燃用設(shè)計(jì)煤還是校驗(yàn)煤,煙冷器全部退出后,采用Dekati ELPI+測(cè)試結(jié)果表明,納米級(jí)細(xì)顆粒物數(shù)濃度可達(dá)1010cm-3量級(jí),而其他煙氣溫度下納米級(jí)顆粒物數(shù)濃度僅有107cm-3量級(jí). 與燃用設(shè)計(jì)煤除塵后煙氣中納米級(jí)顆粒物數(shù)濃度隨煙氣溫度變化規(guī)律基本一致,針對(duì)全硫含量為0.56%的煤質(zhì),推測(cè)運(yùn)行煙溫對(duì)電除塵器除塵效率影響比重較大. B?ck[20]研究表明,通常靜電除塵器的運(yùn)行煙溫為150 ℃左右,而該溫度區(qū)間恰恰處于飛灰比電阻較大區(qū)域內(nèi). 對(duì)于低硫煤(硫含量為0.52%)當(dāng)靜電除塵器入口煙氣溫度降低到100 ℃或者更低(酸露點(diǎn)以下),可使比電阻大幅下降,硫酸霧在大顆粒物表面的凝結(jié)會(huì)進(jìn)一步協(xié)同降低比電阻,起到煙氣調(diào)質(zhì)的效果. 同時(shí)煙氣溫度降低,煙氣體積減小,反過來使停留時(shí)間增加,數(shù)濃度較大的納米級(jí)硫酸霧滴有足夠時(shí)間相互碰撞并向大顆粒物遷移,進(jìn)而促進(jìn)電除塵器對(duì)大顆粒物和納米級(jí)顆粒物的協(xié)同控制. 即降低電除塵器入口煙氣溫度,呈現(xiàn)出納米級(jí)顆粒物數(shù)濃度大幅降低的效果. 燃用設(shè)計(jì)煤,當(dāng)煙冷器出口煙氣溫度降低至100 ℃后,繼續(xù)降溫,不同粒徑段顆粒物數(shù)濃度譜分布基本一致. 在4種工況中,該工況下煙囪顆粒物質(zhì)量濃度反而最大,主要集中在0.8~10 μm.

        3.2 同一工況下電除塵前、后以及脫硫后顆粒物質(zhì)量濃度粒徑譜分布

        圖6 煙冷器出口90和120 ℃下煙氣顆粒物質(zhì)量濃度分布Fig.6 Mass concentration size distributions at the temperature of 90 and 120 ℃ outlet of the low-temperature economizer

        同一工況下電除塵前、后以及脫硫后顆粒物質(zhì)量濃度粒徑譜分布見圖6.由圖6可知,當(dāng)燃用設(shè)計(jì)煤種,煙冷器出口溫度為90 ℃時(shí),煙氣經(jīng)過脫硫塔后粒徑<1.26 μm的顆粒物質(zhì)量濃度較除塵后有明顯的反彈現(xiàn)象;而當(dāng)煙冷器出口溫度為120 ℃時(shí),煙氣經(jīng)過脫硫塔粒徑>1.26 μm的顆粒物質(zhì)量濃度較除塵后有增加趨勢(shì). 燃用校驗(yàn)煤煙冷器出口煙氣溫度90和120 ℃下,相對(duì)除塵后,煙囪60 m橫斷面處的顆粒物質(zhì)量濃度有類似的變化趨勢(shì). 即無論燃用設(shè)計(jì)煤還是校驗(yàn)煤,當(dāng)煙冷器出口煙氣溫度相對(duì)較低時(shí),經(jīng)脫硫后積聚模態(tài)顆粒物質(zhì)量濃度較除塵后有明顯增加;而煙氣溫度較高時(shí),呈現(xiàn)出脫硫后較除塵后粗模態(tài)顆粒物質(zhì)量濃度增長(zhǎng)的現(xiàn)象. 煙溫較低條件下煙囪排放煙氣中積聚模態(tài)顆粒物反彈可能是因?yàn)槊褐械穆却蟛糠忠月入x子形式存在[21],這部分氯在燃燒過程中80%在400 ℃前以HCl形式析出. 燃煤電廠鍋爐出口通常通過噴射NH3進(jìn)行脫硝,過量的NH3與煤燃燒產(chǎn)生的氯化氫氣體在低溫高濕條件下,生成氯化銨二次細(xì)顆粒物[22]. 在選擇性催化脫硝過程中,少量SO2在催化劑作用下,轉(zhuǎn)化為SO3,并與煙氣中的水蒸氣生成硫酸霧,并且還原劑NH3、HCl與硫的化合物共存時(shí),借助氧氣和水,可加速硫酸鹽的生成[23]. 當(dāng)電除塵器前煙氣溫度為90 ℃時(shí),氨鹽、硫酸鹽,硫酸霧滴等納米級(jí)的顆粒物存在凝結(jié)增長(zhǎng)現(xiàn)象,大幅增加靜電除塵器對(duì)積聚模態(tài)顆粒物的收集效率,與LI等[24]研究結(jié)果一致. LI等[24]通過調(diào)節(jié)低壓省煤器負(fù)荷,實(shí)現(xiàn)運(yùn)行煙溫從127 ℃到90 ℃的變化,以研究煙溫對(duì)靜電除塵器收集效率的影響,結(jié)果表明,隨著煙溫的降低,顆粒物的含水量和粘性力增加;通過掃描電子顯微鏡觀察,95 ℃下煙氣中顆粒物表面存在化學(xué)反應(yīng)和凝結(jié)現(xiàn)象;隨著煙氣溫度降低,電除塵器灰斗中收集的顆粒物中值粒徑大幅降低. 因此90 ℃工況下煙氣經(jīng)過濕法脫硫裝置后,脫硫漿液雖然對(duì)一次顆粒物具有一定淋洗作用,但石膏顆粒,脫硫漿液滴的夾帶,極易使積聚模態(tài)顆粒物反彈,而抵消了電除塵器對(duì)其去除作用. Saarnio等[16]研究表明,經(jīng)過濕法脫硫后SO42-PM1和Ca2+PM1的值上升更為明顯(表明主要增加較細(xì)的顆粒物),也佐證了筆者所得結(jié)論. 煙冷器出口120 ℃下,脫硫后相對(duì)除塵后細(xì)顆粒質(zhì)量濃度進(jìn)一步降低,表明脫硫塔對(duì)煙塵也具有一定的去除效果,且高溫條件下,這種去除作用強(qiáng)于脫硫漿液等的攜帶作用.

        3.3 不同稀釋比對(duì)顆粒物數(shù)濃度粒徑分布的影響

        電廠運(yùn)行工況為燃用校驗(yàn)煤,煙冷器出口溫度120 ℃,脫硫后煙氣溫度約50 ℃,機(jī)組負(fù)荷660 MW. 在煙囪60 m橫斷面處,通過調(diào)節(jié)對(duì)原煙氣的稀釋比,采用芬蘭Dekati ELPI+和DI1000稀釋系統(tǒng)對(duì)稀釋混合后煙氣顆粒物數(shù)濃度進(jìn)行在線測(cè)試,以研究零空氣(經(jīng)高效過濾器過濾和干燥后的潔凈空氣)稀釋對(duì)高溫高濕煙氣中細(xì)顆粒物粒數(shù)濃度的影響規(guī)律. 顆粒物數(shù)濃度的監(jiān)測(cè)點(diǎn)位與測(cè)試顆粒物質(zhì)量濃度的一致,通過ELPI+專用Excel轉(zhuǎn)化宏導(dǎo)出不同稀釋比下各粒徑段顆粒物數(shù)濃度. 為提高測(cè)試精確度,各稀釋比下,粒徑分布穩(wěn)定后,原煙氣導(dǎo)出平行數(shù)濃度3組,7倍稀釋比下導(dǎo)出平行數(shù)濃度4組,10倍稀釋比下導(dǎo)出平行數(shù)濃度8組,同一稀釋比下不同粒徑段顆粒物數(shù)濃度取平行數(shù)濃度算術(shù)均值. 零空氣對(duì)原煙氣的稀釋倍數(shù)通過調(diào)節(jié)空氣壓縮機(jī)壓力(p)來實(shí)現(xiàn):當(dāng)p=0.1 MPa時(shí),稀釋空氣對(duì)煙囪60 m橫斷面處原煙氣的稀釋倍數(shù)為7倍;當(dāng)

        p=0.2 MPa時(shí),稀釋倍數(shù)為10倍. 通常在一定稀釋比范圍內(nèi),稀釋空氣稀釋比會(huì)影響原煙氣中的水蒸氣和有機(jī)化合物在顆粒物上吸附冷凝過程,從而影響膜采樣結(jié)果[25]. 不同稀釋比下煙氣顆粒物數(shù)濃度譜分布見圖7. 不同稀釋比下各粒徑段顆粒物粒數(shù)濃度見表3.

        注:Di為粒徑段幾何中值.圖7 不同稀釋比下顆粒物數(shù)濃度譜分布Fig.7 Number concentration distribution at different dilution ratios

        表3 不同稀釋比下不同粒徑段顆粒物數(shù)濃度

        注:Di為粒徑段幾何中值.

        根據(jù)圖7可知,當(dāng)對(duì)煙囪60 m橫斷面處原煙氣稀釋10倍時(shí),煙氣中0.006~0.013 6 μm粒徑段顆粒物數(shù)濃度穩(wěn)定在1.81×109cm-3(算術(shù)平均值)附近;在同樣的工況下,當(dāng)稀釋比降低至7倍時(shí),同樣粒徑段顆粒物數(shù)濃度約為5.43×105cm-3,原煙氣中此粒徑段顆粒物粒數(shù)濃度大約2.12×105cm-3. 隨著稀釋比從7升至10,0.006~0.013 6 μm粒徑段顆粒物粒數(shù)濃度分別約為原煙氣該粒徑段的2.5和104倍,即隨著稀釋比增大,煙溫和濕度逐漸降低,半揮發(fā)性物質(zhì)飽和度增加以及水蒸氣在顆粒物表面的冷凝,導(dǎo)致煙氣中納米級(jí)顆粒物數(shù)濃度驟然增加[26],這些納米級(jí)顆粒物包括一次可凝結(jié)顆粒物以及部分二次細(xì)顆粒物. 根據(jù)不同稀釋比下顆粒物數(shù)濃度譜分布可知,數(shù)濃度譜分布均呈單峰分布,峰值對(duì)應(yīng)的粒徑逐漸減小,分別為0.072、0.027、0.009 μm. 另外,稀釋比對(duì)0.027 μm以下的顆粒物數(shù)濃度影響較大,原煙氣、稀釋7倍、稀釋10倍煙氣中6~27 nm粒徑段顆粒物數(shù)濃度分別約為1.92×106、4.17×106、1.92×109cm-3,呈指數(shù)倍增長(zhǎng),與Myll?ri等[27]研究結(jié)果一致. 因此,稀釋比對(duì)數(shù)濃度粒徑分布和納米級(jí)顆粒物數(shù)濃度有很大影響,增加稀釋比使納米級(jí)顆粒物數(shù)濃度急劇增加[28]. 該過程很好地模擬了高溫高濕煙氣排放到大氣中真實(shí)的混合過程. 分析結(jié)果與伍晨波等[29]研究的稀釋空氣溫度為20 ℃下,一系列稀釋比(10~20)對(duì)顆粒比排放結(jié)果的影響一致. 與Swanson等[30]通過計(jì)算模擬有機(jī)氣體飽和度受稀釋比影響的結(jié)論一致:當(dāng)稀釋比增加,半揮發(fā)性有機(jī)物質(zhì)飽和度增加,煙氣中有機(jī)化合物冷凝吸附量增加. 但與朱少平等[31]研究結(jié)果存在一定差異,朱少平等[31]研究的某發(fā)電廠鍋爐負(fù)荷600 MW,脫硫后煙氣溫度為55 ℃. 將原煙氣分別稀釋74(8.7×8.5)倍和8.7倍,結(jié)果表明,稀釋倍數(shù)為74得到的PM1數(shù)濃度平均約為 215 805 cm-3;而8.7倍的稀釋比下PM1的數(shù)濃度平均值約為 289 762 cm-3,即細(xì)顆粒物數(shù)濃度與稀釋比成反比關(guān)系,可能與壓縮空氣加熱到90 ℃有一定相關(guān)性.

        濕法脫硫后煙氣濕度都相對(duì)較大,測(cè)試過程水滴、半揮發(fā)性物質(zhì)和冷凝水對(duì)顆粒物濃度的影響不容忽視,而稀釋比和稀釋空氣溫度均與水滴、半揮發(fā)性物質(zhì)以及水蒸氣的吸附冷凝情況密切相關(guān)[32]. 因此實(shí)際測(cè)試過程中,應(yīng)根據(jù)實(shí)際情況(煙氣溫度和濕度)選擇合適的稀釋比,以提高測(cè)試結(jié)果的準(zhǔn)確性.

        3.4 靜電除塵器和濕法脫硫裝置分級(jí)除塵效率

        總除塵效率是評(píng)價(jià)除塵設(shè)備的一項(xiàng)重要指標(biāo). 顆粒物的粒徑分布對(duì)除塵器的除塵效率影響較大. 為準(zhǔn)確評(píng)估除塵設(shè)備性能,根據(jù)式(1)計(jì)算得出實(shí)驗(yàn)基準(zhǔn)工況下靜電除塵器和濕法脫硫裝置的分級(jí)除塵效率見圖8.

        圖8 不同控制設(shè)備顆粒物分級(jí)去除率Fig.8 Particle classification removal efficiency of different control equipment

        對(duì)于燃用設(shè)計(jì)煤,煙冷器出口溫度為90 ℃工況下電除塵器對(duì)0.017~1 μm粒徑段顆粒物的去除率為63.9%~99.8%;對(duì)1~10 μm粒徑段顆粒物的去除率為99.4%~99.8%. 煙氣經(jīng)過電除塵器+濕法脫硫裝置0.017~1 μm粒徑段顆粒物的去除率為-44.4%~96.9%;1~10 μm粒徑段顆粒物的去除率為99.1%~99.9%. 運(yùn)行工況一定條件下,濕法脫硫?qū)煔庵蓄w粒物質(zhì)量濃度影響表現(xiàn)為以下3個(gè)方面:①在脫硫過程中,部分顆粒物被淋洗下來;②在脫硫過程中可能伴隨脫硫液的夾帶,一些小液滴穿過除霧器后干化形成固體顆粒物;③硫酸鹽(CaSO4)、氨鹽〔NH4HSO4、NH4Cl、(NH4)2SO4〕等納米級(jí)顆粒物的成核增長(zhǎng)[27]. 由除塵效率曲線可直觀表征此工況下經(jīng)濕法脫硫設(shè)備后,相對(duì)除塵前PM1的質(zhì)量濃度有明顯增加(可達(dá)44.4%),影響因素②③可能占主導(dǎo)作用. 與SUI等[33]研究結(jié)果一致. SUI等[33]研究表明FGD對(duì)PM1的捕獲不具有顯著性. 由于石灰和石膏顆粒的夾帶,以及在脫硫過程顆粒物的成核使脫硫后細(xì)顆粒物反而有所增加[34- 35].

        對(duì)于燃用設(shè)計(jì)煤,煙冷器出口溫度為120 ℃工況下電除塵器對(duì)0.017~1 μm粒徑段顆粒物的去除率為56.8%~97.1%;對(duì)1~10 μm粒徑段顆粒物的去除率為98.6%~99.9%. 電除塵器+濕法脫硫裝置對(duì)0.017~1 μm粒徑段顆粒物的去除率為84.4%~99.5%;對(duì)1~10 μm粒徑段顆粒物的去除率為98.1%~99.9%. 可知當(dāng)電除塵器入口煙氣溫度較高為120 ℃,0.1~1 μm粒徑段顆粒物荷電效果明顯降低,而影響電除塵器對(duì)亞微米態(tài)顆粒物的總?cè)コ? 該工況下,脫硫漿液對(duì)煙氣中顆粒物的淋洗作用占主導(dǎo),使脫硫后顆粒物去除率進(jìn)一步提高.

        燃用校驗(yàn)煤煙冷器出口溫度為90 ℃工況下,電除塵器和電除塵器+濕法脫硫裝置對(duì)0.017~1 μm粒徑段顆粒物的去除率分別為54.5%~98.9%、86.4%~99.5%;對(duì)1~10 μm粒徑段顆粒物的去除率分別為99.6%~99.9%、99.7%~99.9%. 燃用校驗(yàn)煤煙冷器出口溫度為120 ℃工況下,電除塵器和電除塵器+濕法脫硫裝置對(duì)0.017~1 μm粒徑段顆粒物的去除率分別為52.4%~99.5%、44.1%~99.8%;對(duì)1~10 μm粒徑段顆粒物的去除率分別為99.7%~99.9%、98.0%~99.8%. 對(duì)比4種工況,燃用設(shè)計(jì)煤,煙冷器出口煙氣溫度90 ℃時(shí),電除塵器對(duì)PM1的去除效果最明顯. 但是后續(xù)濕法脫硫過程中可能由于脫硫漿液的夾帶和氨鹽、氯化鹽的成核增長(zhǎng)使PM1的質(zhì)量濃度有所反彈.

        4 結(jié)論

        a) 不同工況下,電除塵器出口和煙囪60 m橫斷面處顆粒物數(shù)濃度都主要集中在亞微米態(tài)(粒徑<1 μm),并隨粒徑增大而數(shù)濃度快速減小.

        b) 隨著煙冷器出口煙氣溫度的降低,煙氣經(jīng)過除塵裝置后,無論是顆粒數(shù)濃度還是質(zhì)量濃度均有一定程度的下降,但當(dāng)煙冷器出口煙氣溫度降低到90 ℃ 時(shí),繼續(xù)降溫對(duì)電除塵器除塵效果的影響基本趨于恒定.

        c) 無論燃用設(shè)計(jì)煤還是校驗(yàn)煤,當(dāng)煙冷器出口溫度相對(duì)較低時(shí),經(jīng)脫硫后積聚模態(tài)顆粒物質(zhì)量濃度較除塵后有明顯增加;而煙氣溫度較高時(shí),呈現(xiàn)出脫硫后較除塵后粗模態(tài)顆粒物質(zhì)量濃度增長(zhǎng)的現(xiàn)象.

        d) 當(dāng)原煙氣稀釋倍數(shù)從7倍增至10倍時(shí),6~27 nm粒徑段顆粒物數(shù)濃度呈指數(shù)倍增長(zhǎng),說明稀釋過程主要影響納米級(jí)顆粒物的數(shù)濃度.

        e) 燃用設(shè)計(jì)煤,煙冷器出口煙氣溫度90 ℃時(shí),電除塵器對(duì)PM1的去除效果最明顯為63.9%~99.8%,可見降低電除塵器入口運(yùn)行煙溫,可促進(jìn)其對(duì)亞微米態(tài)顆粒物的捕集率.

        [1] ZHANG Kangkang,ZHAO Jun,ZHU Yucai,etal.Model predictive control case study:selective catalytic reduction(SCR)system in coal-fired power plant[C]//Technical Committee on Control Theory.CAA Control Conference (CCC),2016 35th Chinese.Chengdu:Technical Committee on Control Theory,2016:4300- 4305.

        [3] 翁衛(wèi)國(guó),嚴(yán)佩,鄔成賢,等.濕法脫硫系統(tǒng)對(duì)煙氣中可吸入顆粒物特性影響的實(shí)驗(yàn)研究[J].環(huán)境污染與防治,2015,37(1):20- 24. WENG Weiguo,YAN Pei,WU Chengxian,etal.Experimental research on properties of inhalable particulate matters affected by wet Flue Gas Desulfurization system[J].Environmental Pollution & Control,2015,37(1):20- 24.

        [4] MEIJ R,WINKEL B T.The emissions and environmental impact of PM10and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD[J].Fuel Processing Technology,2004,85(6):641- 656.

        [5] MEIJ R.Trace element behavior in coal-fired power plants[J].Fuel Processing Technology,1994,39(1/2/3):199- 217.

        [6] 王琿,宋薔,姚強(qiáng),等.電廠濕法脫硫系統(tǒng)對(duì)煙氣中細(xì)顆粒物脫除作用的實(shí)驗(yàn)研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2008,28(5):1- 7. WANG Hui,SONG Qiang,YAO Qiang,etal.Experimental study on removal effect of Flue Gas Desulfurization system on fine particles from a coal-fired power plant[J].Proceedings of the CSEE,2008,28(5):1- 7.

        [7] 胡月琪,馬召輝,馮亞君,等.北京市燃煤鍋爐煙氣中水溶性離子排放特征[J].環(huán)境科學(xué),2015,36(6):1966- 1974. HU Yueqi,MA Zhaohui,FENG Yajun,etal.Emission characteristics of water-soluble ions in fumes of coal fired boilers in Beijing[J].Environmental Science,2015,36(6):1966- 1974.

        [8] 胡月琪,鄔曉東,王琛,等.北京市典型燃燒源顆粒物排放水平與特征測(cè)試[J].環(huán)境科學(xué),2016,37(5):1653- 1661. HU Yueqi,WU Xiaodong,WANG Chen,etal.Testing of concentration and characteristics of particulate matter emitted from stationary combustion sources in Beijing[J].Environmental Science,2016,37(5):1653- 1661.

        [9] 徐飛,駱仲泱,王鵬,等.440 t/h循環(huán)流化床鍋爐顆粒物排放特性的實(shí)驗(yàn)研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2007,27(29):7- 11. XU Fei,LUO Zhongyang,WANG Peng,etal.Experimental study on the characteristics of particulate matter emitted from a 440 t/h CFB coal-fired boiler[J].Proceedings of the CSEE,2007,27(29):7- 11.

        [10] 劉小偉,徐明厚,于敦喜,等.燃煤過程中氧含量對(duì)可吸入顆粒物形成及排放特性影響的研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2006,26(15):46- 50. LIU Xiaowei,XU Minghou,YU Dunxi,etal.Research on formation and emission of inhalable particulate matters at different oxygen content coal combustion[J].Proceeding of the CSEE,2006,26(15):46- 50.

        [11] DU Qian,DONG Heming,SU Lipeng,etal.Influence of boiler load on generation characteristics of PM2.5generated by a 660 MW pulverized coal boiler[J].Energy & Fuels,2016,30(5):4300- 4306.

        [12] THELLEFSEN NIELSEN M,LIVBJERG H,LANGE FOGH C,etal.Formation and emission of fine particles from two coal-fired power plants[J].Combustion Science and Technology,2002,174(2):79- 113.

        [13] 賀晉瑜,燕麗,雷宇,等.我國(guó)燃煤電廠顆粒物排放特征[J].環(huán)境科學(xué)研究,2015,28(6):862- 868. HE Jinyu,YAN Li,LEI Yu,etal.Emission characteristics of particulate matter from coal-fired power plants in China[J].Research of Environmental Sciences,2015,28(6):862- 868.

        [14] YANG Jin,YIN Jiamin.Application of low temperature economizer in CFB thermal power unit[J].Power System Engineering,2016(3):15- 18.

        [15] 奚旦立,孫裕生.環(huán)境監(jiān)測(cè)[M].4版.北京:高等教育出版社,2010.

        [16] SAARNIO K,FREY A,NIEMI J V,etal.Chemical composition and size of particles in emissions of a coal-fired power plant with Flue Gas Desulfurization[J].Journal of Aerosol Science,2014,73:14- 26.

        [17] LIU Xiaoyu,WANG Wei,LIU Hongjie,etal.Number size distribution of particles emitted from two kinds of typical boilers in a coal-fired power plant in China[J].Energy & Fuels,2010,24(3):1677- 1681.

        [18] WANG Chao,LIU Xiaowei,LI Dong,etal.Measurement of particulate matter and trace elements from a coal-fired power plant with electrostatic precipitators equipped the low temperature economizer[J].Proceedings of the Combustion Institute,2015,35(3):2793- 2800.

        [19] 劉鶴忠,連正權(quán).低溫省煤器在火力發(fā)電廠中的運(yùn)用探討[J].電力勘測(cè)設(shè)計(jì),2010(4):32- 38. LIU Hezhong,LIAN Zhengquan.Application of low temperature saving coal device in generate electricity power plant[J]Electric Power Survey & Design,2010(4):32- 38.

        [21] WILCOX J,ROBLES J,MARSDEN D C J,etal.Theoretically predicted rate constants for mercury oxidation by hydrogen chloride in coal combustion flue gases[J].Environmental Science & Technology,2003,37(18):4199- 4204.

        [22] MACKAY K L,CHANDA A,MACKAY G,etal.Measurement of hydrogen chloride in coal-fired power plant emissions using tunable diode laser spectrometry[J].Journal of Applied Spectroscopy,2016,83:627- 633.

        [23] LI Zhen,JIANG Jingkun,MA Zizhen,etal.Effect of Selective Catalytic Reduction(SCR)on fine particle emission from two coal-fired power plants in China[J].Atmospheric Environment,2015,120:227- 233.

        [24] LI Zhimin,SUN Fengzhong,MA Lei,etal.Low-pressure economizer increases fly ash collection efficiency in ESP[J].Applied Thermal Engineering,2016,93:509- 517.

        [25] 孔少飛,白志鵬,陸炳,等.固定源排放顆粒物采樣方法的研究進(jìn)展[J].環(huán)境科學(xué)與技術(shù),2011,34(12):88- 94. KONG Shaofei,BAI Zhipeng,LU Bing,etal.Progress on sampling methods for particulate matter from stationary sources[J].Environmental Science & Technology(China),2011,34(12):88- 994.

        [26] 顏金培,楊林軍,鮑靜靜,等.氨法脫硫過程煙氣中細(xì)顆粒物的變化特性[J].中國(guó)電機(jī)工程學(xué)報(bào),2009,29(5):21- 26. YAN Jinpei YANG Linjun,BAO Jingjing,etal.Impact property on fine particles from coal combustion in ammonia flue gas desulfurization process[J]Proceeding of the CESS,2009,29(5):21- 26.

        [28] LIPSKY E,STANIER C O,PANDIS S N,etal.Effects of sampling conditions on the size distribution of fine particulate matter emitted from a pilot-scale pulverized-coal combustor[J].Energy & Fuels,2002,16(2):302- 310.

        [29] 伍晨波,黃德軍,魏厚敏,等.稀釋比和稀釋空氣溫度對(duì)顆粒測(cè)量結(jié)果的影響研究[J].內(nèi)燃機(jī)與配件,2016(9):66- 68. WU Chenbo,HUANG Dejun,WEI Houmin,etal.Influence of dilution ratio and dilution air temperature on particle measurement[J].Internal combustion Engine & Parts,2016(9):66- 68.

        [30] SWANSON J,KITTELSON D.Factors influencing mass collected during 2007 diesel PM filter sampling[J].SAE International Journal of Fuels and Lubricants,2009,2(1):718- 729.

        [31] 朱少平,劉含笑,酈建國(guó),等.電子低壓沖擊器不同稀釋比對(duì)PM2.5排放測(cè)試的影響[J].電力與能源,2014,35(2):141- 143. ZHU Shaoping,LIU Hanxiao,LI Jianguo,etal.Comparative study of ELPI with different dilution ratio to PM2.5emission[J].Power & Energy,2014,35(2):141- 143.

        [32] 段雷,馬子軫,李振,等.燃煤電廠排放細(xì)顆粒物的水溶性無機(jī)離子特征綜述[J].環(huán)境科學(xué),2015,36(3):1117- 1122. DUAN Lei,MA Zizhen,LI Zhen,etal.Characteristics of water soluble inorganic ions in fine particles emitted from coal-fired power plants[J].Environmental Science,2015,36(3):1117- 1122.

        [33] SUI Zifeng,ZHANG Yongsheng,YUE Peng,etal.Fine particulate matter emission and size distribution characteristics in an ultra-low emission power plant[J].Fuel,2016,185:863- 871.

        Size Distribution Characteristics of Fine Particles from a Coal-Fired Power Plant

        WU Yafeng1, CHEN Jianhua1*, JIANG Jingkun2, DENG Jianguo2, MA Zizhen2, ZHONG Lianhong3

        1.Research Institute of Environmental Standard, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 2.School of Environment, Tsinghua University, Beijing 100084, China 3.Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China

        Regional fine particulate matter pollution has become a common phenomenon recently. Controlling the emissions of fine particulate matter from coal-fired power plants is one of the most important ways to control fine particulate matter in the atmosphere. It is especially important to determine the size distribution of fine particles from coal-fired power plants and the possible causes of formation and influencing factors. Based on one 660 MW coal-fired power unit in Zhejiang Province, the Dekati ELPI+ was applied to do multi-platform sampling testing for smoke at the inlet and outlet of the electrostatic precipitator, as well as the cross section of the chimney (60 m) at different operating conditions of 120, 100, 90 and 85 ℃. The goal was to study the size distribution characteristics of fine particles discharged from the power plant and how the emission concentrations of fine particulate matter is affected by different operating conditions. The results showed that: (1) Number concentration of particles was mainly concentrated on submicron modal (aerodynamic diameter smaller than 1 μm); with the increase of particle size, the number concentration rapidly decreased. (2) Both number concentration and mass concentration of fine particles at the outlet of the electrostatic precipitator decreased somewhat with the fall of flue gas temperature at the low-temperature economizer exit; nevertheless, when the temperature was reduced to 90 ℃, collection efficiency of the electrostatic precipitator tended to be roughly constant. (3) Mass concentration of particles at accumulation modal after the desulfurization device was higher than at the outlet of the electrostatic precipitator when the flue gas temperature at the low-temperature economizer exit was lower, regardless of whether designed coal or checked coal was burned. On the contrary, when the temperature was higher, the mass concentration of particles at coarse mode was relatively higher after the desulfurization device. (4) In the dilution ratio range chosen in this study, number concentrations of particles with aerodynamic diameter between 6 nm and 27 nm exponentially increased when the dilution ratio was increased from 7 to 10 times; the conclusion was that the number concentration of nanoparticles was affected mainly during dilution. (5) The removal efficiency (63.9%- 99.8%) of the electrostatic precipitator was the highest for PM1when the flue gas temperature was 90 ℃ after low-temperature economizer when the designed coal was burned. Thus, the trapping of PM1was promoted when the temperature of flue gas was low at the outlet of the electrostatic precipitator.

        fine particles (PM2.5); size distribution; dilution ratio; low-temperature economizer

        2017-02-15

        2017-04-05

        國(guó)家環(huán)境保護(hù)公益性行業(yè)科研專項(xiàng)(201309046);國(guó)家自然科學(xué)基金項(xiàng)目(21277132);北京市環(huán)境保護(hù)科學(xué)研究院院基金項(xiàng)目(2013-B- 02)

        武亞鳳(1991-),女,山西大同人,1135936652@qq.com.

        *責(zé)任作者,陳建華(1970-),女,北京人,研究員,博士,主要從事大氣環(huán)境化學(xué)和環(huán)境標(biāo)準(zhǔn)研究,chenjh@craes.org.com

        X513

        1001- 6929(2017)08- 1174- 10

        A

        10.13198j.issn.1001- 6929.2017.02.42

        武亞鳳,陳建華,蔣靖坤,等.燃煤電廠細(xì)顆粒物排放粒徑分布特征[J].環(huán)境科學(xué)研究,2017,30(8):1174- 1183.

        WU Yafeng,CHEN Jianhua,JIANG Jingkun,etal.Size distribution characteristics of fine particles from a coal-fired power plant[J].Research of Environmental Sciences,2017,30(8):1174- 1183.

        猜你喜歡
        燃用電除塵器冷器
        滑油空冷器壓降控制研究
        CFB鍋爐燃用高熱值動(dòng)力煤的問題和對(duì)策
        昆鋼科技(2022年2期)2022-07-08 06:36:38
        空調(diào)表冷器的研究現(xiàn)狀與發(fā)展趨勢(shì)
        制冷(2019年2期)2019-12-09 08:10:42
        濕式電除塵器安裝質(zhì)量控制
        重型車用柴油機(jī)燃用煤基代用燃料特性
        新型濕式電除塵器的研究應(yīng)用
        濕式靜電除塵器噴嘴特性
        鋁合金空-空中冷器符合翹片管材料選擇與結(jié)構(gòu)匹配
        75t/h鍋爐電除塵器提效改造
        600 MW鍋爐燃用高揮發(fā)分煤種的異常工況分析及防范措施
        久久久精品毛片免费观看| 中文人妻无码一区二区三区信息 | 超级少妇一区二区三区| 婷婷开心五月亚洲综合| 国产私人尤物无码不卡| 天天摸日日摸狠狠添| 亚洲免费视频网站在线| 中文字幕熟女激情50路| 国产精品永久久久久久久久久 | 日韩av一区二区三区在线观看| 岛国熟女精品一区二区三区| 日本高清视频www| 久久久久中文字幕精品无码免费| 一本之道加勒比在线观看| 亚洲夫妻性生活免费视频| 国产精品无码久久久久| 久久精品国产亚洲AV无码不| 色综合中文字幕综合网| 亚洲av色香蕉一区二区三区| 欧美freesex黑人又粗又大| 美女裸体无遮挡黄污网站| 极品少妇人妻一区二区三区 | 亚洲午夜无码视频在线播放| 一卡二卡国产av熟女| 免费观看交性大片| 熟女俱乐部五十路二区av| 91亚洲精品久久久蜜桃| 亚洲女优中文字幕在线观看| 好看的欧美熟妇www在线| 国产精品美女AV免费观看| 日本女优久久精品观看| 欧美精品videosse精子| 欧美在线三级艳情网站| av网站可以直接看的| 亚洲国产精品高清一区| 亚洲国产精品成人无码区| 国产一线视频在线观看高清| 全亚洲高清视频在线观看| 国产尤物av尤物在线观看| 精品人妻中文av一区二区三区| 按摩偷拍一区二区三区|