亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于高內(nèi)涵篩選技術(shù)研究生首烏和制首烏醇提物的肝毒性機(jī)制

        2017-08-02 08:35:55李丹丹湯響林龍隆許龍龍譚洪玲梁乾德肖成榮王宇光馬增春王莉莉高月
        關(guān)鍵詞:氧化應(yīng)激內(nèi)涵檢測(cè)

        李丹丹,湯響林,龍隆,許龍龍,譚洪玲,梁乾德,肖成榮,王宇光,馬增春,王莉莉,高月

        (1.廣西醫(yī)科大學(xué)藥理學(xué)系,廣西南寧530000;軍事醫(yī)學(xué)科學(xué)院2.放射與輻射醫(yī)學(xué)研究所藥理學(xué)研究室,

        3.毒物藥物研究所藥物化學(xué)研究室,北京100850;4.安徽醫(yī)科大學(xué)藥理學(xué)系,安徽合肥230032)

        基于高內(nèi)涵篩選技術(shù)研究生首烏和制首烏醇提物的肝毒性機(jī)制

        李丹丹1,2,湯響林2,龍隆3,許龍龍4,譚洪玲2,梁乾德2,肖成榮2,王宇光2,馬增春2,王莉莉3,高月1,2

        (1.廣西醫(yī)科大學(xué)藥理學(xué)系,廣西南寧530000;軍事醫(yī)學(xué)科學(xué)院2.放射與輻射醫(yī)學(xué)研究所藥理學(xué)研究室,

        3.毒物藥物研究所藥物化學(xué)研究室,北京100850;4.安徽醫(yī)科大學(xué)藥理學(xué)系,安徽合肥230032)

        目的 應(yīng)用高內(nèi)涵篩選技術(shù)研究生首烏醇提物(RPM)和制首烏醇提物(RPMP)的肝毒性及其可能機(jī)制。方法RPM(終濃度10,25,50,100,200和300 mg·L-1)和RPMP(終濃度10,50,100,300,600和1200 mg·L-1)作用于HepG2細(xì)胞3~24 h。采用CellTiter-GloTM熒光細(xì)胞活性檢測(cè)試劑盒檢測(cè)HepG2細(xì)胞存活率;應(yīng)用高內(nèi)涵篩選技術(shù)進(jìn)行HepG2細(xì)胞計(jì)數(shù),并檢測(cè)線粒體內(nèi)活性氧(ROS)、線粒體膜電位(MMP)、細(xì)胞內(nèi)谷胱甘肽(GSH)、超氧化物歧化酶2(SOD2)、轉(zhuǎn)錄激活因子4(ATF4)水平及細(xì)胞凋亡和細(xì)胞周期阻滯;Western蛋白質(zhì)印跡法驗(yàn)證HepG2細(xì)胞SOD2和ATF4蛋白表達(dá)水平。結(jié)果 與細(xì)胞對(duì)照組相比,RPM 300 mg·L-1作用24 h使HepG2細(xì)胞存活率下降約48%(P<0.01),而相同濃度RPMP對(duì)細(xì)胞存活率無顯著影響;RPM和RPMP均能降低MMP(P<0.05),并升高GSH,ROS,SOD2和ATF4水平(P<0.05)。與細(xì)胞對(duì)照組相比,RPM 200 mg·L-1作用3 h SOD2水平顯著升高(P<0.05),6 h ATF4水平顯著升高(P<0.05);RPMP 300 mg·L-1作用6 h ATF4水平顯著升高(P<0.05),24 h SOD2水平顯著升高(P<0.05)。結(jié)論RPM和RPMP均具有一定的細(xì)胞毒性,RPM的細(xì)胞毒性強(qiáng)于RPMP,兩者的肝毒性可能主要與氧化應(yīng)激和內(nèi)質(zhì)網(wǎng)應(yīng)激導(dǎo)致的細(xì)胞凋亡有關(guān)。

        何首烏;肝毒性;細(xì)胞,HepG2;高內(nèi)涵篩選技術(shù);氧化應(yīng)激;內(nèi)質(zhì)網(wǎng)應(yīng)激

        DOl:10.3867/j.issn.1000-3002.2017.06.019

        何首烏是蓼科多年生纏繞藤本植物何首烏(Polygonum multiflorum Thunb.),又名紫烏藤或夜交藤的干燥塊根,性溫,味苦澀,是中醫(yī)傳統(tǒng)的補(bǔ)益類中藥[1-2]。生首烏和制首烏是何首烏在臨床上常用的2種劑型。生首烏主要用于解毒、消癰和潤(rùn)腸通便等,制首烏主要用于補(bǔ)肝腎、烏須發(fā)和強(qiáng)筋骨等[3]。何首烏自古以來一直被認(rèn)為安全無毒,但自20世紀(jì)90年代開始,有關(guān)何首烏及含何首烏制劑的毒性報(bào)道逐漸增多,甚至出現(xiàn)中毒致死的案例[4-11]。何首烏肝毒性的問題引起了國(guó)內(nèi)外的高度關(guān)注,但何首烏的肝毒性機(jī)制及其毒性物質(zhì)基礎(chǔ)至今還不完全清楚,嚴(yán)重制約了何首烏的臨床應(yīng)用并威脅患者的用藥安全。

        高內(nèi)涵篩選技術(shù)是藥物篩選的新技術(shù),通過與不同的熒光指示劑、熒光抗體或配體結(jié)合,在細(xì)胞水平實(shí)現(xiàn)對(duì)生物體多系統(tǒng)、多途徑、多靶標(biāo)的動(dòng)態(tài)篩選,通過觀察細(xì)胞形態(tài)預(yù)測(cè)藥物的毒性,實(shí)現(xiàn)毒性的早期、快速和高通量檢測(cè)[12-13]。本研究通過高內(nèi)涵篩選技術(shù)檢測(cè)與肝毒性密切相關(guān)的細(xì)胞毒性參數(shù)及毒性反應(yīng)通路,如細(xì)胞數(shù)目、線粒體內(nèi)活性氧(reactive oxygen species,ROS)水平、線粒體膜電位(mitochondrial membrane potential,MMP)、細(xì)胞內(nèi)谷胱甘肽(glutathione,GSH)含量、氧化應(yīng)激反應(yīng)、內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)、凋亡和細(xì)胞周期阻滯等,對(duì)比研究了RPM和RPMP的肝毒性及其可能的毒性機(jī)制,并應(yīng)用Western蛋白質(zhì)印跡法進(jìn)一步確證高內(nèi)涵分析技術(shù)所得結(jié)果 的可靠性。因何首烏的肝毒性成分主要存在于醇提物中[14-16],故本研究采用何首烏的醇提物進(jìn)行毒性機(jī)制研究。

        1 材料與方法

        1.1 藥物、主要試劑和儀器

        生首烏及同一批次制首烏均購(gòu)自北京同仁堂,產(chǎn)地河南,批號(hào)20120707;多聚甲醛,廣東西隴化工股份有限公司;DMEM培養(yǎng)基、磷酸鹽緩沖液(phosphate-buffered saline,PBS)、Hank平衡液(Hank balance sodium solution,HBSS)、0.25%胰蛋白酶溶液、青霉素-鏈霉素雙抗液(100×)和1× GlutaMAXTM-I CTSTM,美國(guó)Gibco公司;牛血清白蛋白(bovine serum albumin,BSA),美國(guó)Sigma公司;CellTiter-GloTM熒光細(xì)胞活性檢測(cè)試劑盒,美國(guó)Promega公司;熒光染料Hoechst 33342,Mitotracker Red CMXRos,MitoSOX red,monochlorobimane(mBCI),碘化丙啶(propidium iodide,PI)和AnnexinⅤ,西班牙Invitrogen公司;兔抗人轉(zhuǎn)錄激活因子4(activating transcription factor 4,ATF4)單克隆抗體(一抗),美國(guó)Cell Signaling公司;小鼠抗人超氧化物歧化酶2(superoxide dismutase 2,SOD2)單克隆抗體(一抗),英國(guó)Abcam公司;Aexa Fluor 488熒光標(biāo)記驢抗小鼠IgG抗體和Aexa Fluor 488熒光標(biāo)記驢抗兔IgG抗體(二抗),美國(guó)Life公司;GAPDH兔單克隆抗體(一抗)、HRP標(biāo)記山羊抗兔IgG抗體和HRP標(biāo)記山羊抗小鼠IgG抗體(二抗)、抗體稀釋液、RIPA裂解液、蛋白酶抑制劑、電泳液、轉(zhuǎn)膜液、封閉液和TBS Tween-20(TBST,10×),北京康為世紀(jì)公司;HRP發(fā)光液和蛋白質(zhì)分子質(zhì)量標(biāo)準(zhǔn),美國(guó)Thermo公司;二苯乙烯苷(2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside,TSG)、大黃素和大黃素-8-O-β-D-葡萄吡喃糖苷對(duì)照品(純度均>98%),上海一飛生物科技有限公司。CO2培養(yǎng)箱,美國(guó)Thermo公司;IN CELL 2000高內(nèi)涵分析儀,美國(guó)GE HealthCare公司;超高效液相色譜(UPLC)-四級(jí)桿飛行時(shí)間(qTOF)-質(zhì)譜(MS)儀,美國(guó)Waters公司。

        1.2 生首烏和制首烏醇提物制備

        稱取生首烏和制首烏各100 g,分別加入10倍體積無水乙醇浸泡30 min后冷凝回流煎煮3次,每次1 h,合并3次濾液,經(jīng)低壓抽濾、濃縮后干燥成粉末。生首烏醇提物(ethanol extract of Radix Polygoni Multiflori,RPM)得率為12.71%,制首烏醇提物(ethanol extract of Radix Polygoni Multiflori Praeparata,RPMP)得率為24.54%。稱取RPM和RPMP粉末,溶于DMSO中配制成濃度分別為100和400 g·L-1的母液。

        1.3 細(xì)胞培養(yǎng)和給藥

        HepG2細(xì)胞購(gòu)自北京協(xié)和細(xì)胞庫(kù),生長(zhǎng)于含有10%胎牛血清、1×105U·L-1青霉素、100 mg·L-1鏈霉素和1×GlutaMAXTM-I CTSTM的DMEM高糖培養(yǎng)基中,在含5%CO2的37℃恒溫培養(yǎng)箱中培養(yǎng)。待培養(yǎng)于T-25培養(yǎng)瓶中的HepG2細(xì)胞生長(zhǎng)至80%~90%融合時(shí),用胰酶將細(xì)胞消化下來,添加適量完全培養(yǎng)基調(diào)整細(xì)胞密度至5×107L-1;將HepG2細(xì)胞接種于底透壁黑的96孔板中,每孔200 μL細(xì)胞懸液,約1×104細(xì)胞。RPM終濃度為10,25,50,100,200和300 mg·L-1;RPMP則為10,50,100,300,600和1200 mg·L-1;細(xì)胞對(duì)照組為0.3%DMSO。

        1.4 CellTiter-GloTM熒光法檢測(cè)HepG2細(xì)胞存活率

        給藥處理24 h后,采用CellTiter-GloTM熒光細(xì)胞活性檢測(cè)試劑盒檢測(cè)細(xì)胞存活率。先將CellTiter-GloTM的底物和緩沖液在室溫平衡1 h;檢測(cè)開始前,將緩沖液轉(zhuǎn)移至底物瓶中,混勻制成底物混合物。給藥結(jié)束后,取出96孔板平衡至室溫,每孔吸棄100 μL細(xì)胞培養(yǎng)基,添加100 μL底物混合液,將96孔板置于搖床上振搖2 min,室溫放置10 min后,用酶標(biāo)儀檢測(cè)熒光強(qiáng)度(fluorescence intensity,F(xiàn)I)值,計(jì)算細(xì)胞存活率。細(xì)胞存活率(%)=(待測(cè)藥物組FI-空白對(duì)照組FI)/(細(xì)胞對(duì)照組FI-空白對(duì)照組FI)×100%。

        1.5 高內(nèi)涵篩選技術(shù)檢測(cè)GSH和ROS水平

        給藥處理24 h后,用預(yù)熱至37℃的1×HBSS配制含有細(xì)胞核染料Hoechst 33342,GSH染料mBCI和線粒體ROS染料MitoSOX red的混合活細(xì)胞染料,各染料的終濃度分別為1,100和5 μmol·L-1。HepG2細(xì)胞用每孔200 μL的1×HBSS輕輕洗滌1次,加入50 μL混合細(xì)胞染料,37℃避光染色40 min,再用200 μL的1×HBSS小心洗滌1次,加入200 μL 1×HBSS,采用高內(nèi)涵分析儀進(jìn)行檢測(cè)。

        1.6 高內(nèi)涵篩選技術(shù)檢測(cè)MMP,SOD2和ATF4蛋白水平

        給藥處理24 h后,用預(yù)熱至37℃的1×HBSS配制含有細(xì)胞核染料Hoechst 33342和線粒體紅色熒光探針染料MitoTracker Red CMXRos(其紅色熒光染料的積累取決于膜電位)的混合細(xì)胞染料,終濃度分別為1和0.25 μmol·L-1。吸棄96孔板中的培養(yǎng)基,每孔細(xì)胞用200 μL的1×HBSS輕輕洗滌1次,加入50 μL混合細(xì)胞染料,于37℃避光染色40 min。染色結(jié)束后,吸棄96孔板中的混合細(xì)胞染料,每孔加入100 μL含4%甲醛的PBS溶液,室溫避光固定20 min;吸棄甲醛溶液,加入200 μL的1×透膜液(含0.1%Triton X-100的PBS溶液),室溫避光孵育30 min;吸棄透膜液,用200 μL PBS清洗細(xì)胞3次,加入200 μL的1×封閉液(含5%BSA的PBS溶液)室溫孵育1 h;吸棄封閉液,加入40 μL SOD2或ATF4一抗工作液(小鼠抗人SOD2單克隆抗體用1×封閉液按1∶500稀釋,兔抗人ATF4單克隆抗體用1×封閉液按1∶200稀釋),4℃避光孵育過夜;吸棄一抗工作液,用100 μL的1×封閉液清洗細(xì)胞3次,加入50 μL相對(duì)應(yīng)的二抗工作液(Aexa Fluor 488驢抗兔IgG二抗與Aexa Fluor 488驢抗鼠IgG二抗均用1×封閉液按1∶500稀釋)室溫避光孵育2 h。吸棄二抗工作液,用200 μL PBS清洗細(xì)胞3次,加入100 μL PBS,采用高內(nèi)涵分析儀進(jìn)行檢測(cè)。

        1.7 高內(nèi)涵篩選技術(shù)檢測(cè)細(xì)胞凋亡和細(xì)胞周期

        給藥處理24 h后,HepG2細(xì)胞用PBS清洗1次,每孔加入2 μL AnnexinⅤ-FITC,2 μL PI溶液和40 μL 1×Annexin結(jié)合緩沖液,室溫避光孵育15 min,補(bǔ)加156 μL的1×Annexin結(jié)合緩沖液,再加入100 μL用1×Annexin結(jié)合緩沖液配制的12%甲醛溶液,室溫避光固定20 min;吸棄固定液,加入100 μL含1 μmol·L-1Hoechst 33342的PBS,室溫避光染色1 h后,采用高內(nèi)涵分析儀進(jìn)行檢測(cè)。

        1.8 Western蛋白質(zhì)印跡法檢測(cè)ATF4和SOD2水平

        將HepG2細(xì)胞接種于6孔板中,每孔2×105細(xì)胞,放入CO2培養(yǎng)箱中培養(yǎng)18~24 h后進(jìn)行給藥處理。RPM終濃度為50,100和200 mg·L-1;RPMP為300,600和1200 mg·L-1;對(duì)照組為0.3%DMSO。給藥處理24 h后,使用RIPA裂解液將細(xì)胞裂解,取上清,采用BCA法測(cè)定蛋白質(zhì)濃度,取30 μg蛋白質(zhì)樣品經(jīng)10%SDS-PAGE電泳和轉(zhuǎn)印,使用凝膠成像系統(tǒng)進(jìn)行圖像采集,Image J軟件分析各組條帶的積分吸光度(integrated absorbance,IA)值,目的蛋白的相對(duì)表達(dá)水平用IA目的蛋白/IAGAPDH比值表示。

        1.9 UPLC-qTOF-MS技術(shù)檢測(cè)RPM和RPMP化學(xué)成分

        色譜柱Waters HSS T3(2.1 mm×100 mm,1.8 μm);流動(dòng)相:A為含0.1%甲酸水溶液,B為含0.1%甲酸乙腈溶液;流速:0.5 mL·min-1;進(jìn)樣量:5 μL;柱溫:30℃。流動(dòng)相采用梯度洗脫:0~1 min,2%B;1~2 min,2%~5%B;2~5 min,5%~12%B;5~7 min,12%~20%B;7~10 min,20%~30%B;10~12 min,30%~50%B;12~14 min,50%~80% B;14~16 min,80%~85%B;16~18 min,85%~100%B;18~22 min,2%B。DAD全波長(zhǎng)掃描范圍:200~400 nm。采用電噴霧離子源(ESI),應(yīng)用飛行時(shí)間(TOF)Ⅴ模式進(jìn)行質(zhì)量檢測(cè)。負(fù)離子掃描范圍為m/z 100~1500。

        稱取RPM和RPMP粉末各10 mg,置于10 mL容量瓶中,加入50%甲醇溶解并定容,12 000×g離心15 min,取上清經(jīng)0.22 μm微孔濾膜過濾后得到供試品溶液。稱取適量的TSG、大黃素和大黃素-8-O-β-D-葡萄吡喃糖苷對(duì)照品,置于10 mL容量瓶中,加入50%甲醇溶解并定容,經(jīng)0.22 μm微孔濾膜過濾后得到相應(yīng)的對(duì)照品溶液。

        1.10 統(tǒng)計(jì)學(xué)分析

        實(shí)驗(yàn)結(jié)果 數(shù)據(jù)以x±s表示,使用SPSS 18.0統(tǒng)計(jì)軟件,采用單因素方差分析和LSD檢驗(yàn)進(jìn)行統(tǒng)計(jì)處理,P<0.05為差異具有統(tǒng)計(jì)學(xué)意義。

        2 結(jié)果

        2.1 RPM和RPMP對(duì)HepG2細(xì)胞存活率的影響

        如圖1所示,RPM和RPMP作用于HepG2細(xì)胞24 h后,與細(xì)胞對(duì)照組相比,RPM 300 mg·L-1使HepG2細(xì)胞存活率明顯下降(P<0.01);而相同濃度RPMP對(duì)細(xì)胞存活率無明顯影響;當(dāng)RPMP濃度升高至600和1200 mg·L-1時(shí),HepG2細(xì)胞存活率明顯下降(P<0.01)。

        Fig.1Effect of ethanol extract of Radix Polygoni Multiflori(RPM)and Radix Polygoni Multiflori Praeparata(RPMP)on HepG2 cell vialibility by CellTiter-GloTMluminescent cell viability assay.Cells were incubated with RPM(10,25,50,100,200 and 300 mg·L-1)and RPMP(10,50,100,300,600 and 1200 mg·L-1)for 24 h,respectively.x±s,n=3.**P<0.01,compared with corresponding cell control(0)group.

        2.2 RPM和RPMP對(duì)HepG2細(xì)胞數(shù)目的影響

        RPM和RPMP作用于HepG2細(xì)胞24 h后,與細(xì)胞對(duì)照組相比,RPM 300 mg·L-1使細(xì)胞數(shù)目顯著減少(P<0.01),而相同濃度RPMP對(duì)細(xì)胞數(shù)目無明顯影響;當(dāng)RPMP濃度升高至600和1200 mg·L-1時(shí)細(xì)胞數(shù)目顯著減少(P<0.05,P<0.01)(圖2)。

        Fig.2 Effect of RPM and RPMP on HepG2 cell count by high-content screen assay.See Fig.1 for the cell treatment.x±s,n=3.*P<0.05,**P<0.01,compared with corresponding cell control(0)group.

        2.3 RPM和RPMP對(duì)GSH,ROS和MMP水平的影響

        如圖3和4所示,RPM和RPMP 100 mg·L-1作用24 h,HepG2細(xì)胞內(nèi)GSH水平顯著升高(P<0.05);RPM 200 mg·L-1和RPMP 600 mg·L-1組 ROS水平開始顯著升高(P<0.01,P<0.05);RPM 100 mg·L-1和RPMP 300 mg·L-1組MMP水平顯著降低(P<0.05,P<0.01),使線粒體發(fā)生損傷。說明RPM和RPMP對(duì)肝毒性相關(guān)參數(shù)GSH,ROS和MMP均有一定的影響;與RPMP相比,RPM在較低濃度時(shí)即可對(duì)線粒體造成一定損傷。

        2.4 RPM和RPMP對(duì)SOD2和ATF4蛋白水平的影響

        如圖5和6所示,不同濃度的RPM和RPMP作用24 h均能引起HepG2細(xì)胞內(nèi)氧化應(yīng)激相關(guān)蛋白SOD2和內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白ATF4水平顯著升高(P<0.05)。從圖7可見,RPM 200 mg·L-1在3 h時(shí)即能引起SOD2水平升高(P<0.05),6 h時(shí)引起ATF4水平升高(P<0.05)。RPMP 300 mg·L-1在 6 h時(shí)引起ATF4水平升高(P<0.05),24 h時(shí)引起SOD2水平升高(P<0.05)。

        Fig.3 Representative images of effect of RPM(A)and RPMP(B)on levels of glutathione(GSH),reactive oxygen species(ROS)and mitochondrial membrane potential(MMP)of HepG2 cells by high-content screen assay.See Fig.1 for the cell treatment.The levels of GSH,ROS and MMP were determined by relative fluorescence intensity(FI)of mBCI,Mito-SOX red and Mitotracker Red CMXRos,respectively.

        Fig.4 Effect of RPM and RPMP on levels of GSH(A),ROS(B)and MMP(C)of HepG2 cells by high-content screen assay.See Fig.1 and Fig.3 for the cell treatment.FI:fluorescence intensity.x±s,n=3.*P<0.05,**P<0.01,compared with corresponding cell control(0)group.

        Fig.5 Representative images of effect of RPM(A)and RPMP(B)on levels of activating transcription factor 4(ATF4)and superoxide dismutase 2(SOD2)of HepG2 cells by high-content screen assay.See Fig.1 for the cell treatment.The expression of SOD2 and ATF4 was determined by relative FI of SOD2 and ATF4,respectively.

        Fig.6 Effect of RPM and RPMP on levels of ATF4(A)and SOD2(B)of HepG2 cells by high-content screen assay.See Fig.1 and Fig.5 for the cell treatment.x±s,n=3.*P<0.05,**P<0.01,compared with corresponding cell control(0)group.

        Fig.7 Effect of RPM(A)and RPMP(B)on expression of ATF4(A1 and B1)and SOD2(A2 and B2)protein in HepG2 cells at different time points by high-content screen assay.Cells were treated with RPM and RPMP for 3,6,12 and 24 h,respectively.x±s,n=3.*P<0.05,**P<0.01,compared with corresponding cell control group.

        2.5 RPM和RPMP對(duì)細(xì)胞凋亡和細(xì)胞周期的影響

        RPM和RPMP作用24 h均可使HepG2細(xì)胞發(fā)生不同程度的凋亡(表1和圖8)。RPM誘導(dǎo)細(xì)胞凋亡的作用明顯強(qiáng)于RPMP。RPM 300 mg·L-1使細(xì)胞早期凋亡率、晚期凋亡率和死亡率明顯升高(P<0.01),相同濃度的RPMP對(duì)HepG2細(xì)胞凋亡無明顯誘導(dǎo)作用。此外,RPM 100 mg·L-1引起細(xì)胞凋亡作用與RPMP 1200 mg·L-1接近。細(xì)胞周期分析結(jié)果 (圖8和表2)表明,RPM對(duì)細(xì)胞周期無明顯影響,RPMP在最高濃度1200 mg·L-1時(shí)使HepG2細(xì)胞G2期發(fā)生明顯的阻滯。

        2.6 Western蛋白質(zhì)印跡法驗(yàn)證RPM和RPMP對(duì)SOD2和ATF4蛋白表達(dá)的影響

        Western蛋白質(zhì)印跡法檢測(cè)結(jié)果 表明,RPM和RPMP作用24 h均能顯著升高SOD2和ATF4蛋白水平(圖9)。RPM引起SOD2和ATF4含量顯著升高的最低濃度分別為50和200 mg·L-1(P<0.05,P<0.01),RPMP則分別為1200和300 mg·L-1(P<0.05),與高內(nèi)涵技術(shù)所得實(shí)驗(yàn)結(jié)果 基本一致。

        2.7 RPM和RPMP的化學(xué)成分

        RPM和RPMP中主要含有TSG、大黃素和大黃素-8-O-β-D-葡萄吡喃糖苷3種主要的二苯乙烯苷類、蒽醌類及蒽醌糖苷類化合物。根據(jù)各單體成分的峰面積比(圖10)可知,RPM經(jīng)炮制后化學(xué)成分發(fā)生了明顯的改變,TSG和大黃素-8-O-β-D-葡萄吡喃糖苷含量分別下降約37%和78%,大黃素含量上升約337%,與文獻(xiàn)[6,10]報(bào)道一致。

        Tab.1 Effect of RPM and RPMP on HepG2 cell apopotosis by high-content screen assay

        Fig.8 Representative images of effect of RPM(A)and RPMP(B)on apoptosis and cell cycles of HepG2 cells by high-content screen assay.See Fig.1 for the cell treatment.

        Tab.2 Effect of RPM and RPMP on HepG2 cell cycle by high-content screen assay

        Fig.9 Effect of RPM(A)and RPMP(B)on expression of SOD2 and ATF4 proteins in HepG2 cells detected by Western blotting.Cells were treated with RPM and RPMP for 24 h,respectively.A2 and B2 was the semi-quantitative results of A1 and B1,respectively.x±s,n=3.*P<0.05,**P<0.01,compared with corresponding cell control(0)group.

        Fig.10 Negative ion mass spectra of RPM(A)and RPMP(B)by UPLC-qTOF-MS.C:2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside;D:emodin-8-O-β-D-glucoside;E:emodin.Peak 1:TSG;peak 2:emodin-8-O-β-D-glucoside;peak 3:emodin.

        3 討論

        本研究采用高內(nèi)涵篩選技術(shù)較為系統(tǒng)的研究了RPM和RPMP對(duì)肝毒性相關(guān)參數(shù)及信號(hào)通路的影響,并應(yīng)用Western蛋白質(zhì)印跡技術(shù)證實(shí)了高內(nèi)涵篩選結(jié)果 的可靠性。研究發(fā)現(xiàn),高內(nèi)涵篩選技術(shù)測(cè)得細(xì)胞計(jì)數(shù)結(jié)果 與CellTiter-GloTM熒光法檢測(cè)HepG2細(xì)胞存活率相近,說明應(yīng)用高內(nèi)涵篩選技術(shù)檢測(cè)藥物對(duì)細(xì)胞數(shù)量的影響可在一定程度上反映藥物的細(xì)胞毒性。RPM和RPMP都能引起一定的氧化應(yīng)激和內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),并能通過降低線粒體膜電位對(duì)線粒體功能造成損傷,最終導(dǎo)致細(xì)胞凋亡。雖然RPM和RPMP均能使HepG2細(xì)胞發(fā)生明顯的氧化應(yīng)激與內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),但應(yīng)激反應(yīng)的強(qiáng)弱及引起應(yīng)激反應(yīng)所需要的藥物濃度和作用時(shí)間有很大區(qū)別,RPM主要以氧化應(yīng)激為主,在較低濃度和(或)較短作用時(shí)間內(nèi)就能使氧化應(yīng)激相關(guān)指標(biāo)GSH,ROS和SOD2水平明顯升高,而內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)指標(biāo)ATF4發(fā)生明顯變化的時(shí)間較晚且所需藥物濃度較高;RPMP則與RPM正相反。吳宇等[17]通過高內(nèi)涵篩選技術(shù)同樣檢測(cè)到何首烏70%乙醇提取物能引起HepaRG細(xì)胞發(fā)生明顯的內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng),但并未檢測(cè)到其對(duì)活性氧和線粒體膜電位的影響,與本研究結(jié)果 不一致,其原因可能是何首烏乙醇提取物的制備工藝不同導(dǎo)致了其中的主要成分有差異所致。

        藥物的肝毒性與氧化應(yīng)激和內(nèi)質(zhì)網(wǎng)應(yīng)激密切相關(guān),能引起肝損傷的藥物通常會(huì)刺激線粒體和內(nèi)質(zhì)網(wǎng),進(jìn)而激活氧化應(yīng)激和內(nèi)質(zhì)網(wǎng)應(yīng)激等信號(hào)通路使細(xì)胞恢復(fù)穩(wěn)態(tài),但當(dāng)損傷無法修復(fù)時(shí),長(zhǎng)期的氧化應(yīng)激與內(nèi)質(zhì)網(wǎng)應(yīng)激將導(dǎo)致細(xì)胞凋亡并引發(fā)肝損傷[18-20]。此外,氧化應(yīng)激產(chǎn)生的ROS能擾亂內(nèi)質(zhì)網(wǎng)上蛋白質(zhì)的正確折疊并引起內(nèi)質(zhì)網(wǎng)應(yīng)激,反之,內(nèi)質(zhì)網(wǎng)應(yīng)激也能引起線粒體功能的失調(diào)并引起線粒體ROS的產(chǎn)生,所以內(nèi)質(zhì)網(wǎng)應(yīng)激與氧化應(yīng)激不僅能單獨(dú)影響細(xì)胞功能導(dǎo)致細(xì)胞死亡,還可通過相互促進(jìn)作用形成一個(gè)正反饋的循環(huán),共同干擾細(xì)胞的功能并激活促凋亡等信號(hào)通路[21-23]。

        RPM經(jīng)炮制后其主要成分TSG的含量明顯降低,而大黃素含量顯著升高。實(shí)驗(yàn)室前期研究發(fā)現(xiàn),TSG可引起ROS含量升高并導(dǎo)致強(qiáng)烈的氧化應(yīng)激反應(yīng),大黃素則可以通過內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)途徑引發(fā)HepG2細(xì)胞凋亡(待發(fā)表)。RPM引起的應(yīng)激反應(yīng)主要以氧化應(yīng)激為主,這可能與其含有大量的TSG有關(guān);而RPMP經(jīng)炮制后升高的大黃素可能是其能引起強(qiáng)烈內(nèi)質(zhì)網(wǎng)應(yīng)激的主要原因??紤]到氧化應(yīng)激與內(nèi)質(zhì)網(wǎng)應(yīng)激存在協(xié)同促進(jìn)的關(guān)系,何首烏中同時(shí)存在能導(dǎo)致氧化應(yīng)激的TSG和導(dǎo)致內(nèi)質(zhì)網(wǎng)應(yīng)激的大黃素可能是其引起肝毒性的潛在危險(xiǎn)因素,故炮制雖然在一定程度上減弱了何首烏的細(xì)胞毒性,但并未完全消除何首烏致肝毒性的可能性。

        [1]Ma ZJ.A preliminary study on the objectivity,clinical biomarkers and injury mechanism of Polygonum multiflorum-induced hepatotoxicity(何首烏肝毒性客觀性、臨床標(biāo)志物及損傷機(jī)制的初步研究)[D]. Chengdu:Chengdu University of TCM(成都中醫(yī)藥大學(xué)),2013.

        [2]He YZ,Chen J,Shen SL.Research progress in relationship between Polygonum multiflorum and liver injury[J].Med Recapit(醫(yī)學(xué)綜述),2013,19(12):2206-2208.

        [3]Yan LC,Zhao JN,Qiu X.The research progress on the safety of Polygonum multiflorum[J].Pharmacol Clin Chin Mater Med(中藥藥理與臨床),2009,25(3):77-81.

        [4]Dong H,Slain D,Cheng J,Ma W,Liang W.Eighteen cases of liver injury following ingestion of Polygonum multiflorum[J].Complement Ther Med,2014,22(1):70-74.

        [5]Lei X,Chen J,Ren J,Li Y,Zhai J,Mu W,et al. Liver damage associated with Polygonum multiflorum Thunb.:A systematic review of case reports and case series[J].Evid Based Complement Alternat Med,2015,2015:459749.

        [6]Liang Z,Chen H,Yu Z,Zhao Z.Comparison of raw and processed Radix Polygoni Multiflori(Heshouwu)by high performance liquid chromatography and mass spectrometry[J].Chin Med,2010,5:29.

        [7]Lin L,Ni B,Lin H,Zhang M,Li X,Yin X,et al. Traditional usages,botany,phytochemistry,pharmacology and toxicology of Polygonum multiflorum Thunb.:a review[J].J Ethnopharmacol,2015,159:158-83.

        [8]Lv GP,Meng LZ,Han DQ,Li HY,Zhao J,Li SP. Effect of sample preparation on components and liver toxicity of Polygonum multiflorum[J].J Pharm Biomed Anal,2015,109:105-111.

        [9]Ma J,Zheng L,He YS,Li HJ.Hepatotoxic assessment of Polygoni Multiflori Radix extract and toxicokinetic study of stilbene glucoside and anthraquinones in rats[J].J Ethnopharmacol,2015,162:61-68.

        [10]Wu X,Chen X,Huang Q,F(xiàn)ang D,Li G,Zhang G. Toxicity of raw and processed roots of Polygonum multiflorum[J].Fitoterapia,2012,83(3):469-475.

        [11]Yu J,Xie J,Mao XJ,Wang MJ,Li N,Wang J,et al.Hepatotoxicity of major constituents and extractions of Radix Polygoni Multiflori and Radix Polygoni Multiflori Praeparata[J].J Ethnopharmacol,2011,137(3):1291-1299.

        [12]O′Brien PJ,Irwin W,Diaz D,Howard-Cofield E,Krejsa CM,Slaughter MR,et al.High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening[J].Arch Toxicol,2006,80(9):580-604.

        [13]Gasparri F.An overview of cell phenotypes in HCS:limitations and advantages[J].Expert Opin Drug Discov,2009,4(6):643-657.

        [14]Li Y,Xu L,Liu RN,Lin LF,Shi L.Influence of ethanol extract of raw and processed Polygonum multiflorum on mice liver[J].J Hainan Med Univ(海南醫(yī)學(xué)院學(xué)報(bào)),2011,17(4):452-455.

        [15]Li Q,Zhao KJ,Zhao YL,Wang JB,F(xiàn)ang F,Lv Y,et al.High dosage administration of Polygonum multiflorum alcohol extract caused the multi-organ injury in rats[J].Global Tradit Chin Med(環(huán)球中醫(yī)藥),2013,6(1):1-7.

        [16]LV Y,Wang JB,Ji Y,Zhao YL,Ma ZJ,Li Q,et al.Influence of extracting solvent on hepatocytes toxicity of Polygonum multiflorum[J].Chin J Exp Tradit Med Form(中國(guó)實(shí)驗(yàn)方劑學(xué)雜志),2013,19(20):268-272.

        [17]Wu Y.Screening of in vitro model in drug-induced liver injury and preliminary investigation of Polgonum multiflorum induced liver injury(藥物性肝損傷體外篩選模型和何首烏致肝損傷的初步研究)[D].Chinese Academy of Medical Sciences&Peking Union Medical College(中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院),2016.

        [18]Adachi T,Kaminaga T,Yasuda H,Kamiya T,Hara H.The involvement of endoplasmic reticulum stress in bile acid-induced hepatocellular injury[J]. J Clin Biochem Nutr,2014,54(2):129-135.

        [19]Han D,Dara L,Win S,Than TA,Yuan L,Abbasi SQ,et al.Regulation of drug-induced liver injury by signal transduction pathways:critical role of mitochondria[J].Trends Pharmacol Sci,2013,34(4):243-353.

        [20]Pereira CV,Nadanaciva S,Oliveira PJ,Will Y. The contribution of oxidative stress to drug-inducedorgan toxicity and its detection in vitro and in vivo[J].Expert Opin Drug Metab Toxicol,2012,8(2):219-237.

        [21]Cheville NF.Ultrastructural pathology and interorganelle cross talk in hepatotoxicity[J].Toxicol Pathol,2013,41(2):210-226.

        [22]Cao SS,Kaufman RJ.Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease[J].Antioxid Redox Signal,2014,21(3):396-413.

        [23]Chen S,Melchior WB Jr,Guo L.Endoplasmic reticulum stress in drug-and environmental toxicantinduced liver toxicity[J].J Environ Sci Health C Environ Carcinog Ecotoxicol Rev,2014,32(1):83-104.

        High-content screen assay for studying hepatotoxicity mechanisms of ethanol extract of Radix Polygoni Multiflori and Radix Polygoni Multiflori Praeparata

        LI Dan-dan1,2,TANG Xiang-lin2,LONG Long3,XU Long-long4,TAN Hong-ling2,LIANG Qian-de2,
        XIAO Cheng-rong2,WANG Yu-guang2,MA Zeng-chun2,WANG Li-li3,GAO Yue1,2
        (1.Department of Pharmacology,Guangxi Medical University,Nanning 530021,China;2.Department of Pharmacology,Institute of Radiation Medicine,3.Department of Medicinal Chemistry,Institute of Pharmacology and Toxicology,Academy of Military Medical Sciences,Beijing 100850,China;
        4.Department of Pharmacology,Anhui Medical University,Hefei 230032,China)

        OBJECTlVETo investigate the hepatotoxicity mechanisms of ethanol extract of Radix Polygoni Multiflori(RPM)and Radix Polygoni Multiflori Praeparata(RPMP)by high-content screen assay.METHODSHepG2 cells were treated with RPM(10,25,50,100,200 and 300 mg·L-1)and RPMP(10, 50,100,300,600 and 1200 mg·L-1)for 3-24 h,respectively.The cell viability was detected by a CellTiter-GloTMluminescent cell viability assay kit.Cell count,reactive oxygen species(ROS),mitochondrial membrane potential(MMP),glutathione(GSH),superoxide dismutase 2(SOD2),activating transcription factor 4(ATF4),apoptosis,and cell cycles were investigated by high-content screen assay.Besides, SOD2 and ATF4 levels were confirmed by Western blotting.RESULTSRPM 300 mg·L-1showed nearly 48%reduction in cell viability compared with cell control(P<0.01),while RPMP had no significant effect at the same concentration.Both RPM and RPMP decreased the level of MMP(P<0.05)but incresed levels of GSH,ROS,SOD2 and ATF4 significantly(P<0.05).Besides,RPM 200 mg·L-1significantly increased the expression of SOD2(P<0.05)at 3 h by high-content screen assay,and the enhanced expression of ATF4 was shown at 6 h(P<0.05).RPMP 300 mg·L-1markedly increased the expression of ATF4 at 6 h(P<0.05),while the expression of SOD2 significantly increased at 24 h(P<0.05).CONCLUSlONBoth RPM and RPMP have some cytotoxicity,and the cytotoxicity of RPM is stronger than that of RPMP.The hepatotoxicity mechanisms of RPM and RPMP may be related to cell apoptosis caused by long-term oxidative stress and endoplasmic reticulum stress.

        Polygonum multiflorum Thunb.;hepatotoxicity;cells,HepG2;high-content screen; oxidative stress;endoplasmic reticulum stress

        The project supported by Natural Science Foundation of Beijing City(7164291);National Science and Techonology Major Project of China(2014ZX09304307-001-003);National Science and Techonology Major Project of China(2015ZX 09501004-003-003);and Special Scientific Research for Traditional Chinese Medicine of State Administrortion of Traditional Chinese Medicine of China(201507004)

        GAO Yue,E-mail:gaoyue@bmi.ac.cn;TANG Xiang-ling,E-mail:tangxianglin@139.com

        R285

        A

        1000-3002-(2017)06-0626-10

        2016-11-10接受日期:2017-01-25)

        (本文編輯:齊春會(huì))

        北京市自然科學(xué)基金(7164291);國(guó)家科技重大專項(xiàng)(2014ZX09304307-001-003);國(guó)家科技重大專項(xiàng)(2015ZX-09501004-003-003);中醫(yī)藥行業(yè)科研專項(xiàng)(201507004)

        李丹丹,碩士研究生,主要從事中藥藥理學(xué)和毒理學(xué)研究;高月,博士,研究員,主要從事中藥藥理學(xué)和毒理學(xué)研究;湯響林,博士,助理研究員,主要從事中藥藥理學(xué)和毒理學(xué)研究。

        高月,E-mail:gaoyue@bmi.ac.cn;湯響林,E-mail:tangxianglin@139.com

        猜你喜歡
        氧化應(yīng)激內(nèi)涵檢測(cè)
        “不等式”檢測(cè)題
        “一元一次不等式”檢測(cè)題
        “一元一次不等式組”檢測(cè)題
        活出精致內(nèi)涵
        理解本質(zhì),豐富內(nèi)涵
        基于炎癥-氧化應(yīng)激角度探討中藥對(duì)新型冠狀病毒肺炎的干預(yù)作用
        挖掘習(xí)題的內(nèi)涵
        要準(zhǔn)確理解“終身追責(zé)”的豐富內(nèi)涵
        小波變換在PCB缺陷檢測(cè)中的應(yīng)用
        氧化應(yīng)激與糖尿病視網(wǎng)膜病變
        免费黄网站永久地址进入| 久久国产成人精品国产成人亚洲| 偷亚洲偷国产欧美高清| 亚洲全国最大的人成网站| 国产精品久久久免费精品| 毛片无码国产| 国产欧美日韩在线观看| 国产偷闻隔壁人妻内裤av| 青青青免费在线视频亚洲视频 | 午夜dy888国产精品影院| 中文字幕一区二区人妻| 亚洲人成网站久久久综合| 青青草视频视频在线观看| 国产精品毛片va一区二区三区| 欧美freesex黑人又粗又大| 不卡a v无码在线| 新视觉亚洲三区二区一区理伦| 国产69精品久久久久app下载| 国产亚洲av片在线观看18女人| japanese色国产在线看视频| 一区二区三区av在线| 亚洲综合色婷婷七月丁香| 在线免费观看国产精品| 亚洲精品一区二区三区国产| 91久久精品色伊人6882| 亚洲精品第一国产综合亚av| 日本高清中文字幕一区二区三区| 9l国产自产一区二区三区| 天天躁日日躁aaaaxxxx| 久久国产色av| 亚洲中文字幕av一区二区三区人| 最新日本人妻中文字幕| 亚洲精品一区国产欧美| 成年女人A级毛片免| 麻豆成年人视频在线观看| 丰满大爆乳波霸奶| 国产激情з∠视频一区二区| 亚洲女同一区二区久久| 午夜少妇高潮在线观看| 国产在线观看www污污污| WWW拍拍拍|